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ABSTRACT

The unitarity relation for virtual
Compton scattering in the deep inelastic region
derived in a recent paper is solved. The solu-
tion exhibits scaling behaviour in deep inelastic
scattering and deep annihilation wunder rather
general conditions on the spectrum, the coupling
of the final hadron states and the driving force.
The non-forward scaling function 1is explicitly

constructed and discussed.
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1. — INTRODUCTION

In a previous paper 1) we have derived a unitarity relation for

deep inelastic scattering which is valid under the following assumptions :

(i) the spectrum of the final hadron states in deep inelastic electron-
proton scattering is approximated by a continuous set of two-particle

states consisting of a nucleon and a vector meson of increasing mass j

(ii) the electromagnetic current is dominated by the same continuous set

of vector mesons (generalized vector meson dominance).

For the sake of simplicity we studiecd in Ref. 1) a model of scalar
particles and scalar currents only. In this model we obtained in the Bjorken
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limit for the leading term GB(q ,Q%,8,t) = GB(q ,Q%,s, T) of the double mass
ret
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discontinuity ) of the retarded Compton amplitude TB

tarity relation [éee Eq. (26) of Ref. 11]
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The quantity q('(m2) stands for the spectral density of the scalar mesons
and X(mz) is the scalar meson-current coupling constant [see Eq. (5) of
Ref. 1U

It is the purpose of this paper to construct a solution of the
unitarity relation (1), which in turn determines the behaviour of the

structure function in the deep inelastic region.

The paper is organized as follows. In Section 2 we present a
solution of the unitarity relation (1) diagonal in the masses q2 _and Q2
of the currents which fulfils analyticity and s-u crossing symmetry. In
Section 3 we show that the solution has scaling behaviour under rather gene-
ral conditions on the spectrum and coupling of the final hadron states and
on the driving force. The non-forward scaling function emerging is calculated
for a simple Born term ansatz, its main features are discussed. In Section 4
we outline briefly a method how to construct a non-diagonal solution of our

unitarity relation. Section 5 lists the conclusions.

2. — CONSTRUCTION OF A DIAGONAL SOLUTION OF THE UNITARITY RELATION

We start from an impact parameter representation for GB :

Gyl s, o) = (dbb L) [pays, b) .

Making use of the relation 2)
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) For details of the kinematical notation, we refer the reader to Ref. 1).
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we obtain from Eq. (1) the following unitarity relation for EXQQ,Q2,S,hl

disc g F(o‘z| Q' s, \0)

r golsvf 0,8 Qs m) [ svis, b) (2 @2 s-ix, b) .
g
With the help of the inverse rq_1 of rﬁ , defined by
Ca
gotwﬂ r'(qz,w\",s, b) [ 4(w.z,&l)s, lo) = g(qz—Q"> N C)
w2

Eq. (7) leads to

disc, [ (3@ s,b) = - SB_(_?_S)_ Ols-42) 0 (-&2).

The golution of this equation can be written in terms of a dispersion relation.
An important point is the preservation of s-u crossing symmetry. We recall
that EB(q2,Q2,s,t,u) was defined as the leading term of an asymptotic expan-—

sion in the Bjorken limit, i.e., for fixed +t, therefore

2 2 —
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From the crossing relation
GB(qz’Ql’s’t’u'B> = GB(Ciz’Qz) u’B)tl S) (11)
it follows
2 T
GB(G\’-,Q%S;'C)%3> = G'B (q?-,Q, 'LLB, —S-%: -C) S) (12)

and thus for the impact parameter amplitude rﬂ

(3,63 s, b)u8> = P(C'Z Q3 uB’ b S) (13)

552.
Ug



...4_
The crossing relation for the inverse rw-1 is rather involved. Since,

however, Eq. (9) exhibits the S(qQ—Qg) function, it is sufficient to give

the relation for q2 = Q2 only

r(q q s, b 'uB>_ r (O] Ol)uB;u b, S) (14)

Assuming a dispersion relation for rﬂ s the inverse r—'_ satisfies the

following dispersion relation in s and up keeping qz, Q2 and b fixed

767,63 5,b,ug) = B (45&3S, b, g)
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The subtraction-like form of the dispersion integral is needed in order to

(15)

fulfil the crossing relation (14). The term B_1 plays the réle of the
inverse of a t channel Born term, i.e., it is a subtraction and it is
therefore a polynomial in s and Up- We ensure the correct crossing pro-
perty of B_1 by introducing it as the inverse of the impact parameter

transform of an explicitly crossing symmetric function.
The simplest assumption about the Born term

2. Q?-)
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with
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The function L(qz,uB) is obtained from Eq.

(18) through the substitution
w - w).

The expression (17) for r"(qz,Q2,s,b,uB)
unitarity relation (7) in the deep inelastic region.

S-u

is the solution of the

By construction it is
crossing symmetric and has the correct analyticity properties.

By the impact parameter transformation (5) we find GB( 2,Q2,s,t,uB)

Gl st ue) = S(460) i Sdkb’\r(bﬁd

V((‘z (1-w)q?, 4 —w ’(4*'“)(12’) (20)
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which is a diagonal solution of the unitarity relation, Eq. (1).
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3. - SCALING LIMIT AND SCALING FUNCTION

In Ref. 3), we have shown that the deep inelastic scaling function
F(a)) satisfies a double dispersion relation [Eq. (13), Ref. 3{1. A straight-
forward generalization of the arguments given there leads to a representation
for the non-forward scaling function F(UJ,JZ,t), which, for the case where

= . 822'_. . *
GB contains a (q -Q ) functlon, can be brought into the form

_'F((AS).":)— (w::-) 4gdm , @ (w't) y SL=1- Qa -

(w'-w) (w'-S).)
Here the spectral function (P(U),t) is defined as the scaling limit **)

(8o, 224 )
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Y,g,tfmd.

with g ©being the triple discontinuity of the retarded Compton amplitude,
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From the solution (20) of the unitarity relation (1), one obtains

3 @& st ue)= L i) T C(q‘) © (-w)
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Here, the non-forward scaling function F is obtained from the structure
function by extracting 1/q-Q instead of 1/q2 as in Ref. 3), where the

forward direction was treated only.

*%
) In a scelar model where the currents have the canonical dimension 2,

Eq. (22) states the correct scaling behaviour.



where we used the rotation

D = 1 :
C(‘] ) - 8(215)"'(]20('(61") X’-(qz) (25)

With no further restrictions on the Born term V, Egq. (24) has the correct

1/s scaling behaviour required by Eq. (22) only if

()

V(qza w)qlewB (4+w)q) 2__“,0 (Mz) \/ (@, B) (o)
oo,bf\xed. .
C@amr () CC 0.

Assuming this kind of behaviour, we obtain for the spectral function

?(H)W’t) for n=0 :

o 3
CP(O)((') )t) =T 9('0)) C(B) ( A wwy‘,

[V -
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We should like to recall at this point that scaling has been achieved under

two assumptions :

(i) the condition (27), which implies a restriction on the spectrum
c&'(qz) of the mesons and the "photon" coupling to the mesons K{q ),
for the spectrum of the kind found in dual models, i.e., of'(q%) = &' =

= const., Eq. (27) requires
n-1/a
2 Q)
&GP) 2 <-3/\_5-> R "7 0. (30)

C!—-oo
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The non-forward scaling function, Eq. (37), obtained from the unitarity rela-
tion, Egq. (1), in conjunction with the driving force, Eq. (32), and the scaling
conditions on the spectral density, photon-meson coupling and the Born term, has

the following properties :

(i) the t dependence as expressed by the function @(t), Eq. (38),
gives the correct lowest t channel threshold at +t = 4 2 ; the
branch point at t = O showing up in Eq. (%8) is fictitious j the
fact that the t deperdence factorizes in Eq. (37) is a consequence
of the rough approximation of the K0 Bessel function in the deno-

minator of Eq. (36) ;

(ii) the scaling function is analytic in the entire complex W and.JZ

planes, apart from the cuts

-5 < W 55 (o) ) _— <: -S). 5; CD ;

the poles seemingly apparent in the function H(Uo) appear in
unphysical sheets only ;
(iii) specializing F(O),jl,t) to forward direction F(M),UJ,O) = F(U))

one has

N .
-‘F((A)>=-" \310) e 2 ((A)"/\) d.'—H (w) ) (39)
THCe (1+%) dw
the threshold behaviour at @ = 1 1is linear ; obviously the cut
in @} extends over the interval -©o<@W<O0 ; the behaviour for

large () is proportional to mnW/W ;

(iv) as regards the scaling function F(Q)) of the annihilation channel

(-1 <@ < 0) one simply has [see Ref. 3)]

Fw)y=—FCw) , (40)

since F(W), Eg. (39), has no cut in the interval 0 <@ < 1 ; as
a consequence of the simple crossing relation, Eq. (40), F(w)) has
the same threshold behaviour at () = -1 as F(Q) at QW =1 ;
for W~ 0, F()) goes to a constant.
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Now we turn to the case n >0, for which the spectral function (n)(bo,t)
is given by Eq. (29). For the Born term given by Eq. (3%2) resp. (35) the
scaling function does not exist, since in this case ¢(n) turns out to be
given by const./ @) for t = 0. The simplest modification in accordance

with crossing symmetry is

U(qz,s,t,ue)’= };;::Li(‘q&’-) (s-wg) . (41)

This leads in forward direction to

(W) _ 3
q ((A),O) = C,OhS't. X W . (42)

Obviously, in this case, the representation (21) needs three subtractions
and the high @) Dbehaviour of the scaling function F(W ) is proportional
to U)BEHLQ. Of course, the three subtraction constants are not determined
in this approach. Nevertheless this example illustrates that arbitrarily

high W) Dbehaviour can be accommodated.

4. — CONSTRUCTION OF A NON-DIAGONAL SOLUTION OF THE UNITARITY RELATION

Up to now we have dealt with solutions which were strictly dia-
gonal in q2 and Q2. This property of the solution was a consequence of
the diagonal ansatz of the Born term, Eq. (16). In the following we shall
exhibit an example of an explicitly non-diagonal solution of the unitarity
equation (7). Obviously, we have to sStart from a non-diagonal Born term

B8 s,bwa) = §(q2-6%) V(q35b,us)

+W(q2,5,b,KB)V(QZ)S,b,Mg> (43)

which corresponds to a strong diagonal driving force and a factorizable
non-diagonal contribution. One easily checks that B_1(q2,Q2,s,b,uB)
defined in the sense of Eq. (8) is given by ’
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with

(R((\Z»vafus)v"‘-‘ V(425 b) k)

Walsib %) (92,5, byup) (45)
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2 2} 2,
X, (b Ug)== 4=l (s by k)
hnz.

V (W‘z; S) b)“B) e

in the dispersion relation (15) the expression (44), one

Using for B--1

obtains for r'

\—'(c\",QZ,S,b,u@ = S(q"— C\f') I)(qz,s,b,ua)

(47)

Reisiba OGS bUe) pyca g oy

%: (Stb)/‘LB)
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. V(qz,stb)ub)
R WX e M

and

2 = 2
'Xz(s‘b,u.e)=—4-—§d,mz?.(mz, 5) b,MBX:D(le,S, bl ‘13) .
Mg

(49)
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We should like to point out that the diagonal part of Eq. (47) is
identical to the diagonal solution, Egq. (17). In order to comstruct from the
solution (47) for r‘ the scaling function F(OO,Sl,t) one has to repeat
all the steps after Eq. (19). The scaling function P ,8L,t) obtained this
way consists of two terms. The first one, arising from the diagonal part of
the driving force is the same as above. The second term has its origin in the

non-diagonal part of the Born term, Eq. (43).

For & determination of the scaling function one could supplement
the diagonal Born term used in Section 3 by a non-diagonal, factorizable term.
Fronr the ccmplexity of the solution, Ec. (47), it is obvious that the calcula-

tion of the scaling function has to be done by numerical methods.

5. — CONCLUSION

From a deep inelastic unitarity equation 1) for the leading term
in the Bjorken limit of the virtual Compton amplitude in a scalar model we
have shown under rather general conditions on the spectrum of the intermediate
states and the driving force that sceling behaviour prevails. In addition
we have constructed explicit solutions to this unitarity relation which fulfil
the analyticity requirements in all three channels s, t, u and £-u crossing
symmetry. This then leads to a non-forward scaling function which satisfies

3)

the constraints of locality and spectral conditions , which originate from
the fact that the non-forward scaling function is the Bjorken limit of a ma-
trix element of the local commutator of currents. It is therefore a model

for the one-particle matrix element of a bilocal operator.

In particular, starting from a simple Born term of the form of a
single particle exchange in the t channel and diagonal in the masses q2
and Q2 of the currents, we have presented a non-forward scaling function

with the following properties in forward direction :
(i) 1linear threshold behaviour at @) = 1,
(1i) high @ behaviour of the type fnW/w ,

(iii) identical threshold behaviour for scattering and annihilation.
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