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INTRODUCTION

At the 1972 Chicago-Batavia Conference a picture was presented of a Pomeron
Regge pole,with intercept one,in considerable theoretical difficulty. The reviews
of Low!) and Gribov?) suggest that if the Pomeron is a simple Regge pole then it
must decouple from a large number of processes in the forward direction®). The
only essential difference in the pictures presented by Low and Gribov is that
Gribov does not accept the Brower and Weis argument“) that the Pomeron should
actually decouple from total cross-sections. Gribov has the Pomeron decoupliﬁg
from inelastic processes but argues for a cancellation mechanism which allows it
to couple in total cross-sections. However, this cancellation mechanism requires
all Pomeron couplings to be equal and so requires all cross-sections to go to the
same constant. While this may save the Pomeron theoretically,it removes the ap-
plicability of Gribov's Reggeon Calculus®™7) (or any similar theoretical picture
of the Pomeron as a pole plus accompanying multi-Pomeron cuts) to an energy regime

that is possibly physically unattainable?) .

These theoretical problems for the Pomeron have, of course, been followed by
the recent ISR measurement of a significant rise in the proton-proton total cross-
section in the ISR energy range. While this has been widely interpreted as experi-

mental evidence (to add to the theoretical evidence!) against the Pomeron as a

simple pole, we now have several fits to the ISR data based on the Reggeon Calculus®™19)

which show that in fact this interpretation of the Pomeron fits very well all the
features of the data. In this context it is important to note that while the
Froissart bound is a very familiar s-channel constraint on models which produce
asymptotically rising cross-sections, it is not at all clear that the t-channel
constraints are not even stronger. Not only do the "hard" Regge cuts typical of
such models have to be made consistent with the '"soft—cut'" requirement of two-
particle unitarityll), but also the full multiparticle equations have to be satis-—
fied!?). The Reggeon Calculus has the great virtue of satisfying full multiparticle
t-channel unitarity. If the Pomeron can be rescued from the s-channel decoupling
arguments then it is clear that a Reggeon Calculus description of it will provide
a very theoretically appealing basis for understanding high-energy phenomena. We
would also, of course, like to save the Pomeron as a pole for its factorization

properties - particularly in inclusive processes.

The purpose of this paper is to present a self-consistent picture of the
Pomeron as a pole (plus cuts) which clearly avoids the decoupling arguments. The
decoupling arguments all proceed from the famous zero (which we retain) in the
triple Pomeron coupling which appears in the inclusive cross-section and in the
Reggeon Calculus. This zero is presumably not a theoretical requirement under

all possible conditions. In particular if we allow multi-Pomeron cuts to be
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highly-singular at t = 0,and do not insist that they be separable from the pole,
then it may be that there is no constraint on the triple Pomeron vertex. However,
in such a situation we would not expect to be able to develop a theory with any
predictive power. The triple Pomeron zero must therefore be viewed as a condition
on the "weakness' of the Pomeron's interaction with its cuts. This requirement is
mostly clearly framed in the Reggeon Calculus. There it emergese’7) as the con-
dition that the renormalized skeleton graph expansion converge at t = 0,with the
Pomeron propagator receiving only mild corrections from the two—Pomeron cut. As

a result the renormalized trajectory has a finite slope at t = 0. Recent experi-
mental results13) suggesting that the inclusive triple Pomeron vertex may indeed

vanish at t = 0, provide further experimental support for a solution of this kind.

It has been shown that the s-channel arguments for the triple Pomeron zero,
based on inclusive sum rules, could be invalid because of effects analogous to

15’16). In these

the AFS cancellationlu) or more general absorptive cancellations
cases, however, the weak coupling condition is not imposed and complete self-con-

sistency can not be discussed.

In this paper we shall argue that the requirement that the Pomeron self-in-
teraction be weak should only lead to constraints on Pomeron couplings to itself
and should not spread to Reggeon couplings which are simply associated with finite
renormalization effects at t = 0. We make this argument explicit by invoking a
particular dynamical mechanism as being responsible for the triple Pomeron zero.

We generalize Bronzan's study17) of the sum of ladder diagrams within the Reggeon
Calculus by assuming that two-Pomeron iterations of an effective singular potential
are responsible for the zero. We are then able to see that it is vital to take
account of extra contributions to two-particle inclusive cross—-sections besides the
conventional Regge pole contributionms. These contributions correspond to "triangle"
and other "anomalous threshold" Reggeon graphs and represent a natural generaliza-
tion to production processes of the Mandelstam cuts which appear in two-body pro-—
cesses. We show that these extra contributions lead the pole contributions for
negative momentum transfer and at zero momentum transfer give the same asymptotic
behaviour as the pole contributions. They may, of course, only be important at
very high energies but they are vital for avoiding the decoupling arguments. We
emphasize that,although we base our arguments on the Reggeon Calculus, we antici-
pate that the extra j-plane singularities which we find to be important are actual-

ly a general requirement of t-channel unitarity.

The outcome of our study then is that not only is the Pomeron not required to

decouple from total cross-sections but also there need be no inelastic decoupling.

However, we find that the mechanism for producing the triple Pomeron zero which

we consider leads naturally to the result that the total cross—section for the
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scattering of particles a and b should have the universal form

o, (8) = |- X* o (1 _ (1.1)
ab ) %&6b< l'ns) * (lns)a)

so the combined contribution of the Pomeron pole and two-Pomeron cut factorizes

and total cross—sections should become proportional before reaching their asymp-
totic limits. This, of course, also implies that the two-Pomeron cut will con-—
tribute negatively to all processes - the t-channel proof given in Refs. 18 applies
only to processes which are elastic in the t-channel. The negative sign of the
two-Pomeron cut is only indirectly related to the mechanism for producing the

triple Pomeron zero and may not be essential.

It may also be that two-Pomeron cut contributions to inclusive cross—sections
(in channels where the Pomeron mass is zero) factorize in a similar way to (1.1),

since this would explain the good factorization properties of such cross-sections.

Apart from normalization factors the 7y that appears in (1.1) is directly
given by the slope of Gribov's triple Pomeron vertex at t = 0. Note that Yy is
not directly related to the slope of the inclusive triple Pomeron vertex since
the two vertices only co-incide at t = 0. However, we could expect the two slopes
to be similar in order of magnitude. It is interesting that in this way we would
recover (indirectly) the correlation between the rate of increase of the total
cross-section and the large missing mass production in the inclusive cross-section ,
which has been obtained by several authors!?2%) using an iterative model for the
Pomeron which has an effective non-zero triple Pomeron coupling. In our picture
the zero mass triple Pomeron coupling must vanish, but a rapidly increasing cross-—
section would imply that this zero should only have any effect at very small t

(where it could possibly be masked by cut contributionszs)).

Clearly the difference between (1.1) and the formulae given by Gribov5—7),
or Muzinich, Paige, Trueman and Wangzs) is the absence*) of any "low-energy"
contribution to the cut coupling (or fixed pole residue) which would be represented
by a Reggeon Calculus coupling of the form M and which is normally taken to

be given by the single-particle contribution of the absorption model.

P X (1.2)

The reason is that "enhancement" takes place in that this term is overwhelmed by

the "bare Pomeron'" contribution

*) It is interesting to note that the most complete fit to the ISR data is that
given in Ref. 8, and in this fit the coupling No (>& ) although taken to be
finite at t = 0, is relatively small and plays a negligible role in the fit
for t ~ 0.
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before two—Pomeron iteration of the potential introduces the triple Pomeron zero.
This will not be the case if the triple Pomeron zero is effectively already pre-
sent before two—Pomeron iteration. Formula (1.3) will not then hold since the
triple Pomeron zero reduces the left-hand side to a finite quantity at t = 0. We
suggest, however, that the decoupling arguments will not be avoided unless the
triple Pomeron zero only appears after two-Pomeron iteration. In this case en-

hancement takes place and (1.1) follows.

We begin by reviewing the decoupling arguments in Section 2. We emphasize
that much of the thinking behind such arguments is based on treating the Pomeron
as an elementary particle. This is particularly true of the arguments presented
by Gribovzz which are partly motivated by the Reggeon Calculus treatment of
Reggeons as quasi-non-relativistic particles. Gribov's original derivation of

5)

the Reggeon Calculus’’ does not,in our view,distinguish clearly enough its domain
of application. As we have said,we regard the Reggeon Calculus as a very powerful
means for studying the interaction of the Pomeron with its cuts and we use it to
seek an explanation of the triple Pomeron zero. However, it is clearly very impor-

tant to know precisely the extent to which the Pomeron can be treated as a particle.

In Section 3 then we essentially remotivate the Reggeon Calculus by first
showing that the j-plane Regge cut discontinuity formulae,which control Reggeon
cut contributions to the four-point function,are analogous to the unitarity equa-
tions for the scattering of non-relativistic particles. It is straightforward
then to solve these equations by introducing a non-relativistic field theory

Feynman graph expansion and this is, of course, Gribov's Reggeon Calculus.

We then go on to discuss Bronzan's model for the triple Pomeron vertex as
a sum of Reggeon Calculus ladder graphs. Using two Pomeron unitarity extensively
we discuss how a generalization of this model could give a similar mechanism for
the emergence of the triple Pomeron zero in the complete theory. In this way
we give generalizations of the S-matrix N/D representations of Pomeron amplitudes

27,28) using self-consistency arguments. From the Reggeon

obtained by Bronzan
Calculus point of view the representations we give are more realistic and it is

clear how and why (1.1) emerges.

In Section 4 we continue our discussion of the "particle—~1like" properties of
the Pomeron. We depart temporarily from the Reggeon Calculus to discuss the treat-
ment of Pomeron scattering amplitudes, and their unitarity relations. We emphasize
the importance of a proper treatment of the helicity of the Pomeron®®23%) . This

is in itself sufficient to prevent the arguments given by Gribov?) from leading to
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any serious decouplings. We set out in detail the circumstances under which some
decouplings may be required by unitarity equations for Pomeron amplitudes,or al-
ternatively subchannel discontinuity formulae. These decouplings refer only to

certain partial-wave amplitudes and on the whole would not be physically observ-

30) actually plays an important role in en-

able. (We find that vertex signature
suring this.) The strongest result would be the vanishing of the full two Pomeron/
particle vertex -énv, but this can only be obtained by making assumptions which

we suggest in Section 5 are unjustified.

In Section 5 we discuss the interpretation of the Reggeon Calculus in the
s—channel. We emphasize the qualitative nature of the arguments because of the
lack of a Reggeon Calculus for production processes. To discuss inclusive pro-
cesses we follow the approach of Abramovskii, Gribov and Kanchelli®!) which is
based on extracting particles from the Reggeon Calculus diagrams for the four-
point function. We introduce both '"bare'" Pomerons and Reggeons into the Calculus
as multiperipheral production processes and discuss the subsequent renormalization
of propagators and vertex functions. We are then able to discuss the relation be-
tween Reggeon contributions in the two-particle inclusive cross-section and the
triple Pomeron vertex in terms of Reggeon renormalization of the vertex function.
We then invoke the mechanism for the vanishing of the triple Pomeron vertex dis-
cussed in Section 3 to show the necessity of adding additional Reggeon contribu-
tions to the two-particle inclusive cross—section. Finally we show that these
extra contributions give the leading asymptotic behaviour of the inclusive cross-

section even at zero momentum transfer.

Section 6 contains a short discussion of our results, how we think they re-
late to other pictures of the Pomeron, and how we would hope to improve them by

future research.

THE DECOUPLING ARGUMENTS

In this section we briefly review the various decoupling arguments as they
have been presented. We shall not go over the s—channel arguments for the vanish-
ing of the zero-mass triple Pomeron coupling YPPP(O,O,O) but rather accept the
vanishing of this vertex as a t-channel constraint (for the reasons which we dis-
cussed in the Introduction and discuss further in the next section). Here we
shall be concerned with the arguments that FPPP(O,O,O) = 0 requires further more

serious decouplings.

Gribov2) has emphasized that further decouplings are immediately seen to be
required if it is accepted that Pomeron scattering amplitudes can be treated like

ordinary particle amplitudes. This is the approach originally used by Abarbanel,
o

. . [~
Ellis, Green and Zeeaz). Suppose that the Pomeron amplitudes ::[]:: and
P c
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Applying the Schwartz inequality to (2.1) gives
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and using (2.) and the usual optical theorem gives

t 2
o —~ b a a %) b
len § ) < |lm ( 2 \m:@ (2.4)
c ¢ ¢
P r ®

1f we now take the mass of all Pomerons to be zero and go also to t = 0 then

taking the high-energy limit gives

o b| % o a b b
Pl ¢ < P P (2.5)
P P P c c

The powers of the asymptotic variable on the right and left-hand sides of (2.5)

match up exactly at t = 0 and so the vanishing of T (0,0,0) on the right—hand
PPP P o)

side also requires that the two Pomeron particle vertex Aﬁﬂ&ﬂﬂﬂ vanish when both

Pomerons have zero mass. This would be the original Finkelstein and Kajantie

resultaa).
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If we now allow C to be a two particle state carrying vacuum quantum numbers
. . ] .
then the same argument as above gives that the amplitude ;E:I:IZ-C vanishes when
2
both Pomerons have zero mass. If C; and C, carry quantum numbers then taking a

further limit gives

11 '::I:{ —~ R (2.6)
P
R

where MAWW represents the appropriate Reggeon exchange. If this further Regge
limit commutes with the zero mass limit for the Pomerons then because of factoriza-—
tion we must have “i-~é¥wJ3/ = 0 at zero mass of the Pomeron. Brower and Weis”)
have argued that this result can be continued to the particle pole (which can be
taken to be C1) on the Reggeon trajectory to obtain the decoupling of the Pomeron
from the total cross—section. This is disputed by Gribov2),but the cancellation
mechanism he argues for requires all Pomeron couplings to be the same at zero
Pomeron mass and so all total cross-—sections have to go to the same asymptotic
limit.

To free the above argument from the need to assume unitarity relations for

34)

the Pomeron amplitudes involved, Abarbanel, Gribov and Kanchelli showed that

the argument could be based on subchannel discontinuity formulae. Consider the

discontinuity of the five-point function in a sub-channel
a b N a b

Dise Eczm - —(jjzif .7

M2 e e
Applying the Schwartz inequality directly to this relation gives

a b | * b d b
O S (+H-T | e
M? e e 4 ¢ c

and now using the Mueller theorem together with the optical theorem gives

o o |12 a b
c

e b
Disc cl| < Dise e I (2.9)
M'l e s ~ Ml 182]
a

c
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Taking a simple Regge limit now leads directly to (2.4) and so the succeeding

arguments can be followed through in exactly the same way.

The above arguments are claimed to be valid even in the presence of multi-
Pomeron cuts. This should be the case for those arguments which depend only on
isolating Pomeron asymptotic behaviour at the zero mass-point. A stronger argu-—
ment leading to the same vanishing of the Reggeon-Pomeron-particle vertex has been

35).

given by Jones, Low, Tye, Veneziano and Young In the original presentation

of this argument cuts were explicitly neglected.

Consider the sum rule which relates the one and two-particle inclusive cross-—

sections

[~ % a

C
P '8 b
(o). A F g o, S F
c a d

+ exclusive term

oq N

(2.10)

Taking the triple Pomeron limit of (2.10) and exploiting the positivity of
the two-particle inclusive cross-section gives an inequality which can be graphical-

ly represented as

P P 'tl d P t,
t=0 . > D (2.11)
P t
! d ﬁ> \
35)

and which can be written as

ot (o)
et > (Lo (o

B (¢,t,-,4)

—15’
(2.12)

If cuts are neglected then (2.11) holds for all negative tl,since the Pomeron
poles give the leading asymptotic behaviour of (2.10). If cuts are taken into
account then (2.11) holds only at t; = 0.

Since T (0,0,0) = 0 it follows that
PPP

+,=0

t=0 B (0’%,_'_; bl %) = O (2.13)

‘-
t,=0
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Finally if we assume that the limit t; > O commutes with the further Regge limit

y > 1 in which

Y P
n>
- (2.14)
ﬁ)
d
o . P AR
factorization requires that = 0 when the Pomeron has zero mass.

Although it is not explicit there is a sense in which the above argument
attempts to treat the Pomeron like an ordinary particle. The important idea is
that the three Pomeron vertex AM{I:: can be related to the amplitude -~¢(:
This follows if the Pomeron amplitude XX satisfies an inclusive sum rule of

the form

o w
ot LSz 10T o

THE t—CHANNEL PICTURE OF THE POMERON (i) AS A QUASI-NON-RELATIVISTIC PARTICLE

In the previous section we have discussed how attempts to treat a Pomeron
Regge pole as an ordinary particle lie behind the various decoupling arguments.
In this and the next section we shall discuss the rather complete picture of a
Reggeon that emerges from t-channel unitarity,with the aim of clarifying when a
Regge pole can be treated as a particle and when it can not. We shall emphasize
the important distinction that must be made between the appearance of Reggeon
couplings and amplitudes in cut discontinuity formulae and their appearance in the

asymptotic behaviour of multiparticle amplitudes.

For the purpose of solving the Regge cut discontinuity formulae given by
t-channel unitarity it is very useful to work with a Reggeon as a quasi non-
relativistic particle. This is familiar from Gribov's Reggeon Calculus but it
it is important to emphasize the independence of the analogy both from Gribov's
original derivation of the Reggeon Calculus via the high-energy behaviour of
Feynman graphs and from the existence of a perturbation solution of the cut dis-
continuity formulae in terms of a non-relativistic Reggeon field. To make the
analogy explicit we consider first the coupled discontinuity formulae which con-
trol the contribution of the two Reggeon cut to the four-point function. The

formulae can be represented pictorially by18’36)
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dise  a(n® = T+ -1 6D
TN,
A~

a(j,t) is the Froissart-Gribov projection of the four-point function. The notation

i
2

we have used in (3.1)-(3.3) naturally suggests that the Reggeon amplitudes appear-—
ing in these formulae should be identified with those of the previous section (or
rather their j-plane projections). The notation also suggests that (3.2) can be
obtained from (3.3) by going to integer points on two of the external Regge tra-
jectories and that (3.1) can be obtained from (3.2) in a similar way. Unfortunate-

ly the equations are more complicated than the pictorial representation suggests.

To define “X®X_ we first conmsider the partial-wave analysis of the six-point
function corresponding to the coupling scheme of Fig. 3.1. This introduces a
partial-wave amplitude a(j,%y,%2,n1,02,t,t1,t2) where j,21,%2 are angular momen-
tum labels, ni,n are helicity labels and t,t;,ts are the masses of the various
pairs of particles. This amplitude can be continued to complex js%1,%2 (with
2,-n; and f-np kept fixed). If we continue to Regge poles at £ = mp = 01 = a(ti),
22 = ny = 0ap = o(tz) then,after factorizing off the Reggeon/two particle vertex
functions,we obtain the j-plane projection Aulaz(j’t) of what we shall call the

full Reggeon-particle scattering amplitude (we shall enlarge upon this later).

The four—Reggeon amplitude :}E:: is defined through the partial-wave analysis
of the eight-point function corresponding to the tree diagram of Fig. 3.2. Defin-
ing the partial-wave amplitude a(j, %1, «++5 &4, M1y «o0 Tiy t1, ..+, ty) and
then going to £ = n1 = u(ti) i=1, ..., 4 we obtain (after factorization) the

j-plane projection Au (j,t) of the full four-Reggeon amplitude.

1seeesOn

We can write (3.1) in the form

. o i
disc 0(.),1:) = 1 SinTg gdtidtd. §(5-o,- Q'H)[.-}\ (t;fnfz)]/\(dnf‘z)
2° t sinLa, sinTol,
x Ad,dl( ‘y"’ t) Ad‘d,‘(.&_’ t)

(3.4)

A (‘t,‘t.,‘t23 <0
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with /\I (2,,42) = 1/ (24D M (242) M (22,72 643)

We have omitted all signature labels in writing this formula since we shall assume
the signatures of all Reggeons to be positive. Formula (3.4) shows that the two-
Reggeon discontinuity in a(j,t) can be computed solely in terms of A a (j,t)
evaluated at the nonsense-point j = o1 + 02 — 1. [The j+,j_ in (3.4?1r2fer to

boundary values onto the two Reggeon cut in Aalaz(j’t)]'

It is possible to write a discontinuity formula for A _ (j,t) in terms of
Au1 o (j,t) and A 810 (],t) 1tse1f and this is given in Ref 18. However, to
yeees

do this it is necessary to add 2 labels to the definitions of both Aa o and
2

s e e and the formula is not a simple generalization of (3.4),although it
does reduce to it at integer on0z. In fact this point was illustrated in more
detail in Ref. 37 where the Reggeon-particle cut was considered. Unfortunately
the 2 labels are not simply a technical complication which can be ignored. These
labels have a fundamental significance in that they directly relate to the sin-

gularity structure of amplitudes allowed by the Steinmann relations.

. . . > . . . _
It is possible to ignore the < labels if we consider only Nu a (j,t) =
2

. >
= Aa o (j =a; +ax -1, t), with the relevant < labels averaged over. If we
1012
similarly define Ndlazaauu(J’t) in terms of Aa1,...,aq(J’t) evaluated at

j=a; +a; - 1=o03+a, - 1 then we can write!®

Ny, (358 = N, (556 = tsing 3 (dt/de; Q(S—ot’—oz'—bL—P\(e el e
2 1?2 —

2 t sink e( Q'ﬂu—d

At e)<o
% N2 Ny 570 Ny o (576)

(3.5)

and also
LU0 N, (70 = Leing s (delde] 6 (soutrat DAt
26 ?\(r,t:,{:,')<o t s;nﬁ.;al," sfnﬁ,;,l:
YA .:")N &( +)N,, ,,(3 i‘)

(3.6)

Equations (3.4)-(3.6) then are what we should consider to be pictorially repre-—
sented by (3.1)-(3.3). Because of the nonsense conditions involved in defining

the N's it is clear that (3.6) does not in general reduce to (3.5) at integer
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o3 and oy. For example, if a3 = oy = 0 in (3.6) then we must have j = a3 + oy = 1
= -1, whereas in (3.5) j is only restricted by j = a; + 62 — 1. In the same way,

(3.5) will not in general reduce to (3.4) at integer 0;05.

We emphasize that, in spite of the notation,Na o (j,t) is a function of three
102
variables. If j and t are taken as independent variables then t; and t; are con-
strained by o(ty) + a(ty) = j + 1. Similarly N (j,t) is a function
102030y

of four variables.

Equations (3.4)-(3.6) are a complete set of coupled equations which are suf-
ficient if we are interested in studying the two-Reggeon cut just in a(j,t). The

fundamental equation is clearly (3.6) and it is from this that we shall develop

the non-relativistic analogy.

We can simplify (3.6) by first extracting the threshold behaviour from

. £
Nal,...,au(J’t) to define

Cd'__,w(i,’c) = N, .. GOt
N (£¢,t) ?\%(t,tg,n)

(3.7)

and then defining

. i
B () = % Coany [N N (04D

6 . . . . 7
n 2 S"\l\;o{.s|f\l£o(z Smgo&, Sm‘,ll\;fat1

(3.8)

(3.6) now becomes

B (56) -B, (50 = im (d&/de] s(s-aroie)) B, LG50 B (534)
/\ <O [." ?\(f.{',", f‘:’)] %'

(3.9)

Suppose now that we introduce two-dimensional momenta k, ki, Kz, k!, ki such

that

o
1}
]
R
»

(3.10)

We can impose ''momentum conservation"



|
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w

1

)3 - )fl“' \31. = )33 -+ !’Sq (3.11)

without constraining the t's. If we also introduce energies w; = ai(gi) -1

then because of the '"nonsense' conditions above we can impose 'energy conservation"

W, +Ww = w/’ + ugl :
| 2 1 2 (3.12)

Equations (3.11) and (3.12) reduce the ten momentum variables introduced in (3.10)
to five. If we now regard Bga’(j’t) as a function of the k's then it will be
"invariant" under simultaneous rotation of all the k's. This together with its
remaining four-variable dependence guarantees that it can be regarded as a rota-
tionally invariant function of four two-dimensional momenta satisfying momentum

and energy conservation. That is B(k1, ..., kj) can be regarded as an amplitude

for the scattering of two-dimensional non-relativistic particles.

The restrictions on the region of integration in (3.9) A < 0, and j - af - af +
+ 1 = 0 now correspond to the condition for physical scattering and energy conserva-

tion respectively. We can actually rewrite (3.9) in the form
B(k h,) - B(h H)‘k— N TS o wo 20" o "
- 22 _',--J2) T ‘L_Q'j'- golw| sz d !‘}, d h,, S (w,“l"':’a,"": “'\J:

x § (Rt Ran ki~ 162) § ol (H)+1) S(es- (7 +1)

n u 'N¥
x B, %) B (k- k) (3.13)

This is now explicitly the two-particle unitarity condition (apart possible from
normalization factors) for the scattering amplitude B(ki, ..., k2). Higher multi-
Reggeon cuts were not studied in Refs. 18 and 37 but we can infer from the work

of Gribov, Pomeranchuk and Ter—Martirosyan36) that the multi-Reggeon discontinuties
of Nal,...,uu(j’t) can be expressed in the form of multi-particle unitarity con-
ditions for B(ki, ..., gé). If this is the case then it is clear that we can

study solutions of the Regge cut discontinuity formulae by studying the analogous
unitarity equations for the scattering of non-relativistic particles.

This analogy is, of course, not new and is evident from Gribov's Reggeon

138) as being of

Calculuss-7). The analogy has also been emphasized by Abarbane
importance for constructing '"S-matrix" solutions of the Regge cut formulae. We
have written the analogy out in detail because we think it is important to realise

not only the exact sense in which the analogy is useful, but also its present
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limitations. In fact we regard the Reggeon unitarity equations as the strongest
motivation for the construction of a Reggeon Calculus - that is a non-relativistic
Reggeon field theory. An important advantage of a Reggeon field theory solution
of (3.13) over a pure "S-matrix" solution is that the "bare" propagators in the
theory can be expected to have an s—channel interpretation in terms of specific

production mechanisms.

There is, however, an important difference between the Reggeon discontinuity
formulae and non-relativistic unitarity equations. We can illustrate this by
first supposing that the single Reggeon with which we are working has intercept
less than one. We have not specified the range of t for which we expect the above
equations to be valid. If the intercept is less than one, however, we can take
t to be negative and to lie between zero and the intersection of the Regge pole
and two-Reggeon cut trajectories. In this case the trajectory function will be
real, and the various Reggeon cuts will appear in the j-plane as shown in Fig. 3.3
The two-Reggeon discontinuity given by (3.6) will be N(j + ie, t) - N(j - ig, t)
(with the branch cut drawn as in Fig. 3.3). Figure 3.3 is clearly analogous to
the usual energy plane picture - with the multi-Reggeon cuts simulating the multi-
particle thresholds - except that the figure should be rotated through 180°. This
means that N(j - ie, t) is what should be identified with the "physical" scatter-
ing amplitude. In this case it follows from (3.6) that the "two-Reggeon cut" con-—
tributes negatively to the imaginary part of B(ki, 55) in the "physical' boundary-
value. In fact the multi-Reggeon cuts contribute with alternating signs to the
imaginary part of B. This is, of course, directly related to the alternating sign

of the contribution of these cuts to the total cross—section.

For t > 0 the integration region in (3.4)-(3.6) becomes complex if we still
draw the two—Reggeon branch-cut as in Fig. 3.3. For t below the intersection of
the pole and cut both the pole and cut trajectories aquire complex parts and
therefore so does the integration region in (3.4)-(3.6). Therefore the pure non-—
relativistic analogy (apart from the sign of the cut) holds only in a very restric-—
ted t-interval. (For the Pomeron, with intercept one, this is only the point t = O,
which is the delicate point where all the thresholds co—incide.) Nevertheless,
we anticipate that the non-relativistic analogy will be very useful outside of this

range also, since this is certainly true of the field theory approach.

Before going on to field theory solutions of (3.4)-(3.6) we consider their

content in terms of the nature of the singularity in Ca , a(j,t) at

, C
10 o ,0%2
j = ac(t) and what can be said if these amplitudes also contain a pole at j = o(t).

The starting-point is the deduction from (3.6) that
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C, — '
d=>ole
- Y
€t cbyzty = % A /d I(%)

3.14
In (3= <®) (-1

where A and v are regular at the two—Reggeon branch-point j = ac(t). Vv is deter-
mined by the signature and kinematic factors in (3.6) and would be ome if (3.14)
was written instead for B(k;, ..., gé). A straightforward way to see conditions
under which (3.14) can be deduced from (3.6) is as follows. Assume that the thres-
hold behaviour shown in (3.7) is the only singular behaviour of the N's that must
be considered apart from the branch-point at j = ac(t) = Za(%) - 1. Assume also

that Cu — be expanded in a series of logarithms
1seees0n

oo

-N
Ce{.—-o!q = Z an. [\n (S_a,c)] (3.15)

neiy

so that
n=

C:‘l,,_,( = Z bn[l“(i—‘*o)]m (3.16)

(73
" = - o

Equation (3.16) can be substituted into both sides of (3.6) and the powers of the
logarithms compared. Going to j= uc(t) the integral reduces to a constant and
going to t; = tp = t3 = ¢ty = t/4 reduces all the an's and»bn's to functions of
t. Consequently (3.6) reduces to

n=l

nz|
n : N
E b, [InG-aa+im] - E b, linG-a)-iT] = -2Mi¥  (3.17)
N - 00 Nz -o0 °<,

which immediately gives

b' = ¥ , b° arbi’crary bn=0 n=-1,-2 - - - (3.18)
d,
Therefore, (3.14) gives an exact representation of C at j = o if
01 9geeesCy c

a o contains only logarithmically singular terms. Note that (3.15) allows
1oyl

for weakly singular terms in C of the form (j - ac)m 1n n(j - ac) since

Oy gees Oy
these would be obtained by writing a Taylor expansion for the an's about j = o, -
Also it seems difficult to envisage a more complicated singularity structure for

Cu a which is compatible with the simple constant discontinuity (that is
1ol
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logarithmic discontinuity) given by the integral of (3.6) unless the N's have a

complicated singular dependance on t, ty, ..., ty. From (3.5) and (3.4) it follows

also that

C. . D

%2 Y5, (3.19)
- ¥ -
t=ty = £ A v I'n (3 dc)
-
2
a(s,t) - D + E

Y=l A - % In(5-dc) (3.20)

0{’

where D and E are regular at j = ac(t).
These equations can be derived using the analogous equations to (3.15)-(3.18).

If a(j,t), C and C share a Regge pole at j = a(t) then it clearly
[e31e%) Ol gees Oy

has to come from the vanishing of the denominator in (3.14). The vanishing of

A - a7?%727 1n [j - 2@(%) + 1J at j = a(t) imposes a consistency condition on a.

If we specialise to the Pomeron then the pole-cut collision occurs at t = 0.

Bronzan27) has shown that if A is finite at t = O then we must have o' (0) = .

This leads to the vanishing of the pole residue in (3.18) so that the cross-—section

is given asymptotically by the two-Pomeron cut which is then forced to give a posi-

tive contribution.

To allow the two—Pomeron cut to contribute negatively to the cross—section
and to obtain a self-consistent trajectory with a’(0) finite it is necessary
to make D? and A singular at t = 0. The simplest solution is that given by
Bronzan27) in which A and D? share a second-order pole (which we shall call Zg)
passing through t = 0, j = 1. This pole must be second-order to avoid a square-
root branch-point in (3.19). A also has a separate zero (which we shall call Py)
also passing through t = 0, j = 1. Py is in effect the Pomeron trajectory before
its renormalization by the two—Pomeron cut. Zo is the triple Pomeron zero, whose
origin we want to understand, as can be seen by writing (3.16)-(3.18) in the quali-

tative form

1]

C: ol ,_014

(3.21)
FL/%:2. - ‘9L<, lr\ (3"°Lc)

o

% /=2,

l9‘/27. - In (3-ec)

[~3

Cdﬂ’(?.

(3.22)
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2
a(r,t) = (%/z,)

(3.23)
Y | (‘
A 2 - 7 n 3’°zc)
’zk oL’
Clearly Cu is finite at j = 1, t = 0 because of the cancellation between Zp and
102

Py whereas a(j,t) ~ %; and so still has a pole.

In this solution of (3.14), (3.19), (3.20) the logarithm coming from the two-—
Pomeron cut is overwhelmed by Z3 and it is fairly easy to see that if P, and Z,
are simple linear expressions then the trajectory has only t? log t terms (no log
t or t log t) so that a’(0) is finite. We note, however, that E plays no role in
the solution. We shall show that the Reggeon Calculus suggests a more subtle solu-—

tion, involving E in a crucial way.

Gribov's original construction of a Reggeon field theoryS) was based on a
direct correspondence between the perturbation theory graphs of a non-relativistic
field theory and the high—energy behaviour of classes of full (four—-dimensional)
Feynman graphs. However, it is clear that the direct analogy between (3.6) and
the non-relativistic unitarity relation (3.13) also suggests that we can construct
a perturbation expansion solution of (3.6) by introducing a non-relativistic field
Y to describe the Reggeon. 1 will be a function in a fictional two-dimensional
co-ordinate space,which will always be irrelevant if we are only interested in the
momentum space perturbation expansion. Following Gribov and Migdale) we take the
free Green's function Do(w,g) to correspond to a linear trajectory function (5 is

scaled so that a’(0) = 1).

D, (w,k) = (w+ &) (3.24)
while the interaction has the general form
Hioe = ir Ly ys wpgrl = A uppy
ALty s v el o-

(3.25)

The couplings ir, A, A, etc. are illustrated in Fig. 3.4. They correspond to three,
four ... Reggeon couplings. If it converges the renormalized perturbation expansion

* . .
in terms of skeleton graphs ) provides a series expansion solution of (3.6) (and the

*) As Gribov and Migdal discussS), when w ~ 52 = 0 the skeleton graph expansion
may converge, whereas the complete expansion in terms of all graphs will not

converge.
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associated coupled multi-Reggeon equations) in powers of the renormalized vertex
functions I';, I'y T3, ... . This then provides a powerful way of simultaneously
solving the coupled equations for all the many-Reggeon amplitudes in terms of a
few parameters - maybe only those needed to describe I'; - this is illustrated in
Fig. 3.5. The "Feynman rules" for writing down the integrals corresponding to
these graphs are given by Gribov®>®). The amplitudes appearing in the integrals
may now be "off-shell" in that we do not impose wg = a(g%). Also in contrast to
(3.13), a propagator is introduced for each internal Reggeon and the associated
Reggeon energy is integrated over. Since the perturbation expansion is non-
relativistic it is necessary to add diagrams which differ only by the order of

emission and absorption of Reggeons.

The question then arises as to the extension of the non-relativistic analogy
to (3.4) and (3.5). Gribov's original Feynman graph derivation of the Reggeon
field theory applied also (and in fact primarily) to the amplitudes involved in
these equations, and since the integration regions in (3.4) and (3.5) are the same
as that of (3.6) it is straightforward to couple the external particles into the
field theory as external sources. In principle the full renormalized amplitudes
can be calculated from the integral equations coupling them to the four-Reggeon

amplitude. These take the form

U = TR
T + I (3.27)

The amplitudesm: and are general two-Reggeon irreducible amplitudes.
Equations (3.26) and (3.27) represent formal ways of obtaining complete solutions
of (3.4) and (3.5), given _IX_ , by introducing "off-shell" propagators in place
of the on-shell integrations of (3.4) and (3.5), together with a 'generalized po-—
tential" I¥I... For some purposes it may be sufficient to regard:M:and
as freely parametrizable within the theory and so ignore the field-theoretic ex-
pansion of these amplitudes - this will certainly involve the neglect of multi-
Reggeon cuts. However, self-consistency does place some constraints on and
these are naturally understood from the field theory point of view as we shall dis-—
cuss. First, however, we consider the vital question of the need for and origin

of, the triple-Pomeron zero.

6)

Gribov and Migdal's original motivation®’ for the triple Pomeron zero came
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from the observation that for small w and 52 the effective expansion parameter
for the singular part of the skeleton graph expansion of Fig. 3.5 is T? wD? Ez.
Therefore, if the Pomeron propagator D contains a pole with intercept one and
D~ was w~ Bz + 0 the series will presumably only converge in this limit if
7 << w. They then showed that no inconsiétency arises if it is assumed that I}

vanishes linearly, or using the notation of Fig. 3.6.

2 .
rl?, (wl)}'/G_Q’B a w -P\ok + Cc9 + higher order terms
(3.28)

"higher order terms" here includes terms of the form gz/ln w,vw/ln w etc. The
important point is that the multi-Pomeron thresholds in each of the Pomeron legs
of the vertex function (as well as anomolous thresholds),which accumulate at the
zero mass, zero energy point, are suppressed relative to what might be expected —-
for example, the two—Pomeron cut (unitarized) would be expected to produce a

1/1n (w - %g) zero of . The suppression can take place consistently because in
the full series for I, shown in Fig. 3.7 the relevant thresholds are all generated
in the small "w'", small "52" regions (if the external w, k, and gz are all small)
where all the T'; vertex functions involved are small by assumption. In this case
the major contributions to I';, in the series of Fig. 3.7, come from the finite

energy regions and for (3.28) to hold it is only necessary for these to cancel to

first order.

Bronzan17) has emphasized that Gribov and Migdal provide no dynamical under-
standing of how their 'weak-coupling' solution can be realised. He has studied the
sum of Pomeron ladder diagrams shown in Fig. 3.8 as a model for I';. Within this

model T, satisfies the integral equation, shown graphically in Fig. 3.9

.

(v, k; 0',f?.) =v -t 55;1’ 81421’ fa(ok; o a")
e 28T Ta (o) + (ks 9'S]

| J -+ '
e (w)l[«k(«—«)»( ) &) (1Y)

(3.29)

This now provides a dynamical mechanism for I'; to acquire a strong zero at

= k% = q2 = 0. All the propagators in (3.29) pinch the integration contour at

~

this point and,unless T, has a compensating zero,this will produce an infinity
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which will éarry over into I';. Therefore I'; has to be either infinite or zero
and so,if it is assumed to be finite,then it must be zero. If the "potential"
represented by the propagators of the last bracket were not singular then this
argument would still go through,but the zero produced by the remaining propaga-

tors would be only the inverse logarithm of the two-Pomeron cut.

Unfortunately the potential considered by Bronzan is too strong and instead
of producing a simple zero in I'; it produces an essential singularity. This carries
over into the propagator and gives rise to an accumulation of new Regge poles at
t =0, j =1. The original bare pole has intercept one and finite slope after
renormalization but an essential singularity in the propagator would almost cer-—
tainly destroy the usefulness of the Calculus, even if violation of the Froissart

bound is avoided.

The full vertex will satisfy the integral equation shown in Fig. 3.10. ::1::X:l
is the full one and two-Pomeron irreducible amplitude and Aﬂ<i:: is similarly
irreducible. The Pomeron exchange terms hn::(:): will be softened by the presence
of full triple-Pomeron vertices as shown in Fig. 3.11 and so these terms can not
be considered as producing the zero in I'; in the same way as in Bronzan's model.
Although, of course, I'; must have a zero for consistency. In fact all the potential-
ly singular contributions to::K::X: will be similarly softened by the presence of
softened vertices. We could assume that:z::i: is singular for some reason that
we don't understand and that it is singular in such a way as to produce the zero
of T, without the accompanying accumulation of poles found by Bronzan. This assump-
tion would, by itself, be sufficient for the following analysis, even if it is
difficult to justify in terms of particular renormalized graphs. However, it seems
more likely that in the full equation of Fig. 3.10 the zero appears as a result of
cancellations amongst the various terms in the iteration of :Z::I::. This is es-—
sentially what Gribov and Migdal assumed. For this to happen it is, of course,
essential for the iterations of:]::l::to alternate in sign and this is directly

related to the negative sign of the two—Pomeron cut.

Nevertheless we would like to retain the idea, implicit in Bronzan's model,
that the singular nature of the exchange of bare Pomerons (not just one necessarily)
is the dynamical mechanism which produces the triple Pomeron zero. Even if ::I:)::
is not sufficiently singular we can still do this as follows. First we note that
the full vertex will satisfy Bronzan's integral equation (3.29) but with a non-
trivial inhomogeneous term. This is because we can always rearrange the perturba-
tion series so that the final sum we perform is over iterations of the exchanged
bare Pomerons as shown in Fig. 3.12. Of course, this rearrangement of the per-
turbation expansion may not be valid, but formally at least we obtain the equation

shown in Fig. 3.10 with::z::X:'given by Bronzan's kernel. The equation is not
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useful however, because now the inhomogeneous term itself contains iterations of
graphs very similar to ::K::[::. For example, those with the simplest vertex
insertions shown in Fig. 3.13. As a result the inhomogeneous term will itself
contain an essential singularity which can cancel against that produced by the
iterations of Fig. 3.12. This cancellation must take place if I', is to have only

a simple zero.

We can also consider the iteration of a more complicated set of graphs. For
example, a set which contains single Pomeron exchanges with only partially softened
vertices. This will again give an equation of the general form shown in Fig. 3.10
which may now be useful. This will be the case if the kernel is singular in such
a way as to produce a simple zero in [';, provided only that the inhomogeneous term
is well-behaved. The inhomogeneous term will again contain many iterations simi-
lar to those we are considering but this won't matter if such iterations just pro-
duce a simple zero. We, therefore, have a dynamical mechanism for producing the
triple Pomeron zero if we assume that it is a consequence of an integral equation
of the form of Fig. 3.10 in which the kernal::z:)::is singular. :3::1:: may be
the full set of two—Pomeron irreducible graphs,but probably it won't be. If it
isn't then ww~<1:: will not be two Pomeron irreducible.

There afe many unrenormalized graphs which will be singular in the forward
direction and we shall not attempt to consider which ones could be involved. Clear-
ly if the single Pomeron exchanges considered by Bronzan are involved then the
hard vertex functions r must be at least partially softened by the addition of
some vertex corrections. The importance of our assumption is that we will be able
to consistently trace other consequences of the triple Pomeron zero, whether they
refer to other Pomeron amplitudes or the decoupling arguments discussed in the

previous section.

The first point to note is that the sets of one Pomeron irreducible graphs
in the four Pomeron and two Pomeron/two particle amplitudes satisfy the same
equations as I'p, but with different inhomogeneous terms, and so they must also

have zeros.

Although Bronzan's model is inadequate it will be convenient for us to use
it for illustrative purposes as we did in Ref. 39. The exchanged Pomerons provide
an adequate graphical representation of our potential which in reality must contain

a large class of graphs. As a model for the full four—Pomeron amplitude ] ) ,

which is consistent with Bronzan's model for [, ,we can teke all two-—Pomeron itera-

tions of the Born terms
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so that

o T+ (Pooee + Domomonel v )

(3.31)

where the one Pomeron irreducible amplitude ::El:: is given by
Sot I AN SRS U O SURE S SN
(3.32)
~¢Y” is given by Fig. 3.8 and

3.33)

W=W+’-~C®-+M~C@‘”("

We shall also write

M‘:Pw —_ O~ ¥ 'V"O"""O""' + - - - - - (3‘34)

SO »n(:>- is the full propagator in the model and, of course, (3.34) formally

sums to ,

AP~ 1 (3.35)
P, - £

c

with P, being the "bare" propagator (bare of Pomeron cut renormalization that 1is)
and ZC is given by the subtracted part of the set of graphs in (3.33) with the

external propagators removed.

We can now use two—Pomeron unitarity to obtain representations analagous
to (3.14), (3.19) and (3.20), for the various amplitudes we are considering.

::]:I::satisfies two Pomeron unitarity in the form

B~ EL - 63

(we have now crossed the Pomeron lines that are "on-shell') and so has the repre-

sentation
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- |
T = (3.37)

A-ln (w+riB)

v has disappeared relative to (3.14) because we are considering contributions to
the scattering amplitude B(kji, ..., gé) defined in (3.8) and o’ has disappeared

because we have scaled 52. We are also using weak coupling in writing

u(gz) ~ —52 + 1. We shall ignore the extra dependence of ::EI:. on ki, ..., k3

which should be introduced into (3.36) in both ; and the numerator since this

will be irrelevant for the pole—cut collision that we want to study.

The unitarity equation for «~(:I::is
G -~ = ~—GECTLC (3.38)

and so in analogy with (3.19) we can write

& = D (3.39)

o~

A - In (“""'1‘31)

The unitarity equation for ~O~~ is

and so comparing (3.38) with (3.19) we can write in analogy with (3.20)

~ 2

A~~~ D 4 ﬁ

A - In(w+k¥$)

fl

(3.41)

Since F represents that part of ~~O~~ which does not have the two Pomeron cut,
the finite part of it at,w = 52 = 0,should have been absorbed into Py in the re-
normalization process. Therefore, we can take F to be zero in the following.

Substituting (3.37), (3.39) and (3.41) into (3.29) we obtain
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so the A of (3.14) is given by

A=(P. A —52)/& (3.44)

The integral equation satisfied by ::[:I:: in Bronzan's model is analagous to (3.29)
and graphically takes the form

TTTT = T - TST e CITE ¢ CITS oo

(Both the inhomogeneous term and the potential will be different in the full am-

plitude of courseg. The same mechanism which produces a zero in ~«3Q: therefore
will also produce a zero in ::I]:; - (In fact, using the variables of Fig. 3.14,
it can easily be checked that _5_  + T JC is finite if the limits q->q"”

and 0 +~ ¢” are taken in an appropriate way, so the inhomogeneous term does not

interfere with this argument even in Bronzan's model.)

If the zero of 1 is to be stronger than the logarithm of the two-Pomeron

cut it must be that A is singular at k2= 0. We will obtain a linear zero if we
1
Zo"
must have an essential singularity.) From (3.39) it follows that Z, will similarly
give I'; a zero. Since the vanishings of JII_ and ~e& are due to the same
dynamical mechanism it is natural that they should have a common origin in A.

From (3.44) we have

assume that A has a simple pole,and write formally A= (In Bronzans model A

~ 2
A= PFPo- D2z, (3.46)
~ Z,
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So in contrast with (3.21) A does not have a double pole but rather has two single
order poles and a single order zero coming from the vanishing of Py - D?Z,. To

see how this structure leads to consistency we go on to calculate :I):: and

r

We introduce "bare'" particle Pomeron couplings >-~ (g) and >C:.:‘ so that

:Q: :EE: + :OMM (3.47)

where in Bronzan's model

T
o

R S DS S
> ¥ j:l’w (3.49)

with

il

T = e ¢ Yo+ Dame

(3.50)
Therefore, we have the two—Pomeron unitarity relations
BT - FL - TILES 050

:EM - EM = (=)~ (3.52)

and so

ﬁ - In (co-v—‘/,tg“)

~ o~

£ (3.54)

A - In (wrisK)

j’_‘_‘[: = c (3.53)
T
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We can absorb g into g and so substituting (3.39), (3.40), (3.53) and (3.54) into

(3.47) gives

T =-¢ v+ (ar £B )
~ ﬁ—\n(w“'%g)
(3.55)

A - ln(wriE)

il
N\
0O
1-
9
O
AN
N
\\\<::/
Ay
»
\
Q
]

EY
~
t
X
"
nE
~7
~—~"

Finally we take

IC + O (3.57)

\

Q=

where, in Bronzan's model

T = :>c::::><: + j>c::f§;::x< + :x::jZ:::( -
(3.58)
so that unitarity for T_L] gives

B - =L = BT

(3.59)

and
NQ. —~
E; (3.60)

ﬂ - In (w-riz-lg*)

Substituting all the relevant expressions into (3.57) now gives



—27_

2

~ A =~
= =_¢ + E (@ +E0 )*
A- In(w+y B") ﬁ-‘-n(w*%,‘s‘)

|

~ 2
P, - D /’Av-—lr\(w*‘!i“‘:)
(3.61)

X

( C + 9 "5/,,0)
fo PR - B") - 1n(ueg)
(%52) e

)
m?
+
®
4+

If we insert A = %0 we obtain

~ —_ -~ 2
@) = E + ?:' + (C""b O/Po>
Po o - 5'&20) — lafers )

P. 2. (3.63)
In this model then the D of (3.20) is given by
D = ¢+ 9 (3.64)

o |or

Therefore, D? does have a second-order pole at j =1, t = 0, but it originates
from Py and not Zo as in (3.23). Overall the last term in (3.63) has a simple
pole at Py = 0 with residue -g? /Py and this is cancelled by the g?/Po term which
appears in E in the representation (3.20). 1In this model it is clear that Pg =
=w - Bz represents the bare trajectory before renormalization by the two—-Pomeron

cut. Therefore, it is quite acceptable for E to contain a pole at Py = 0. The

renormalized trajectory is given by

~ 2
Po = O Z, /(._z, In (w-»’ab‘)) (3.65)
= Bz + DT Z2 In(wrsE) £ - - (366

so that if Z, is a simple zero we have consistency with the assumed weak coupling

in that the trajectory does indeed receive only a t? 1n t modification from the two-

Pomeron cut. There is a renormalization of the slope by D but this could have been

removed by giving F a term D2/A in (3.41).



_28_

It is clear that the structure of (3.63) is rather different from Bronzan's
27) in (3.23).
of a specific model it is clearly much more general.
(3.44) are quite general with XTI

amplitude.

solution In fact although we have arrived at (3.62) in the context

Equations (3.31), (3.34) -
simply defined as the one Pomeron irreducible
The following equations leading up to (3.62) can also be similarly
generalized. The vitalwpoint which is not, of course, general is the tracing of
the vanishing of I'; to A. This is a consequence of relating the zero of T, to
the iteration of a singular potential. Equation (3.63) has a fundamental signif-

icance for the following reason. Taking t -~ 0 gives

= - & o0 O
- t oy (3.67)
Po P (_P_"_ -0 -6 \n(w*‘{);))
[~}

D z2
(Po- zo

ln(ua—%)_?) 4——-)

(3.68)

2
2 ————L—*——:‘ +
(Pa—z,D" &)

This last equation shows that the softened cut of (3.63) is "hardened" at

t = 0. However, more importantly it shows that

off from the combined cut and pole contribution.

attachment of quantum numbers to particles. If

the factor g? can be factorized
We have not considered the

we consider the scattering of two

non-identical particles a and b it should be clear that the only quantities in

(3.63) that can depend on a and b are g and C.

D, Pg, Zo are determined only by

the Pomeron or by Pomeron couplings so (3.63) will generalize to

a a ~ ~ ~ 6-‘
v ! [ v — E 4+ %ﬁqb + (C""i' Do %g)(cb+ qb T°;>
~
Po-D Zo - In (U*éi)_:
Pozo (3.69)
and (3.68) becomes

(73 a ~
_——‘O: —> 2% ‘ . + D 2: In (u+%)§)+———>
b b + 20 P.-2,0 Fap__zzaisa.

(3.70)
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Therefore, the combined contributions of the Pomeron pole and two-Pomeron cut

to total cross-sections should always be given by the same universal function
(after factorizing off the Pomeron vertices). That is all total cross—sections
should become proportional before reaching their constant asymptotic limits.

This also, of course, implies that the negative sign for the contribution of the
two Pomeron cut will be universal and not apply only to processes that are elastic

in the t- channells)

The above results are a consequence of assuming that the triple Pomeron zero
has its origin in A If instead D vanlshed linearly, so that. the triple Pomeron
.coupling vanished like w 1n w then the C a’ Eb terms in (3.69) would not be over-—
whelmed by the g, D/Po and g, D/Po terms. As a result the cut term would not
factorize in the same way as the pole term. Also the cut would remain soft at

t = 0.

It is simple to understand how our assumption that the triple Pomeron zero
is generated by two-Pomeron iterations of a singular potential leads directly to
(3.70). This iteration treats both the bare pole term (>~ ) and the bare two
Pomeron/two particle coupling ( S&% ) in XX identically. At t = 0 "enhance-
ment" takes place and »~4& dominates over > before iteration of the poten-
tial is considered. This is equivalent to the domination of gD/Po over C in (3.64)

which results in (3.68). -

As we have said Gribov and Migdale) assumed that the triple Pomeron zero is
produced by cancellations amongst graphs,but they did not envisage a dynamical
mechanism of the sort we have considered. In effect they assumed that the triple
Pomeron zero is already present before two Pomeron iterations are considered. To
preserve the linearity of this zero after the iteration they require the four-
Pomeron amplitude to also have a zero,which arises from further cancellations. 1In
our approach this zero of the four-Pomeron amplitude is directly related to the
triple Pomeron zero and we do not have to appeal to further cancellations to pro-
duce it. 1In terms of our N/D representatlons the Grlbov and Migdal solution has
a pole (—-) in A but this pole is shared by C and D. D has a further zero which
is their trlple Pomeron zero. This cancels with Py in (3.64) so that,at t = O,E
is not eliminated by the domination of Py, and there is no universal factorization
as in (3.70), although the cut does become hard. However, if simple cancellations
(with no underlying dynamical mechanism) are responsible for the various zeros
then it is very difficult to understand how the decoupling arguments of the last
section can be avoided. To avoid these arguments it seems to be essential to
have non-uniformities in Regge asymptotic limits and,as we show in Section 5,
these are naturally provided by the singular potential we are assuming exists.

For this reason we suggest that it is natural to associate factorization of the

form of (3.70) with avoidance of the decoupling arguments.
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Since the two-Pomeron cut contribution to the propagator is softened to the
form w? 1n w at 52 = 0, it becomes comparable with three and four Pomeron cut con—
tributions. We should therefore have taken these cuts into account in our discus-
sion. This is discussed by Gribov and Mlgdal6 7) Since they have the four-
Pomeron coupling vanishing, the three Pomeron cut does not modify the propagator
to order w? 1n w but the four-Pomeron cut does. Therefore the four—Pomeron cut
contributes to the 1In (j - 1) sinéularity of a(j,t) at t = 0. However, since it
does this through the propagator it does it in a universal way and the factoriza-

tion of (3.70) remains true.

THE t-CHANNEL PICTURE OF THE POMERON (ii) AS A RELATIVISTIC PARTICLE WITH NON-

INTER SPIN

Our treatment of Reggeon amplitudes in the previous section was entirely con-
fined to nonsense amplitudes, that is "fixed-pole residue" amplitudes. We now
discuss what we shall call "t-channel" results for full Reggeon scattering ampli-
tudes. The main point we shall make is that it is vital to consider the helicity
of a Reggeon as well as its spin in order to treat it to some extent as a particle.
We begin by stating the results of Ref. 30 on the s-channel unitarity relation for

the three particle/Reggeon amplitude Aa(t )(s,t) shown in Fig. 4.1.
1

The amplitude A alty )(s ,t) is defined through a helicity-pole limit of the
five-point function. To obtain an amplitude satisfying a simple s-channel unitarity
relation, the Toller angle w associated with the coupling scheme shown in Fig. 4.2
must be taken large. As a result A alty) has helicity n = a(t:) in the s-channel
centre of mass frame. It satisfies a two- particle unitarity relation in the s-

channel in the form

41
3 s )
disc A, (s,cos8) = o (5) _g'a (cos0) Ay (508D

S=lkm?*

x L gav'('v')—d—'A; - 7 gdv'(—qf’id—tﬁzz

(4.1)

cos 0 is the s—channel centre-of-mass scattering angle, p(s) is the usual phase-
LN ]
space factor, vl o= et , Ay = 1:! and is a function of s, cos O, cos p', v

The integrals Cp and C are contour integrals around the right and left-hand cuts

of Au, which for flxed cos 06!, appear in the v I-plane. As shown in Ref. 30 the

v'-integration in (4.1) can be rearranged so that the equation can be written in

the form
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where now ___ represents the usual two-particle phase-space integration and a1

represents an integration over unphysical large momentum transfer regions. We

shall assume that a corresponding result holds for the multi-particle discontinuities

of‘:IZ:E: so that in general we have
b o b d
- - ¥ (mEen - EAT) e
d

where Zi;ai again represents integration over unphysical large momentum transfer

regions.

There are, therefore, three important features of (4.3) which are relevant

if we want to use it as we used equation (2.1) in section 2. These are
i) the presence of unphysical regions in the phase-space integrations;
ii) the helicity of the Reggeon is defined in the s-channel centre of mass frame;

iii) the Reggeon/Reggeon/particle couplings which appear in Aa(tl) are not the
full couplings which appear in the double Regge limit of the five-point func-—

tion.

We can argue that (i) can be neglected when considering further Regge limits
if we make the dynamical assumption that large momentum transfer regions do not
contribute to Regge asymptotic behaviour. To study the Regge limit taken in (2.5)
it is necessary to use the t-channel amplitude A;(tl)(s,t) defined with the Reggeon
having helicity a(t;) in the t-channel centre-of-mass. A® can be expressed in
terms of t—-channel amplitudes by means of the crossing—relaéionso) (signature will

not be important in the following argument,so as in Ref. 30 we ignore it).

s o4 ) t
Ad = SIinTT&, ga"\ Dd“fv\ (C a) (d,"h)

' Y + [n>-n,>=<]

SinTTn Sinﬂ'(o‘l-n) (4.4)

. . . t . . .
where C is the crossing transformation and a>(a1,n) is a partial-wave amplitude
with angular momentum £; = o; but with the t-channel helicity n not specifically
linked to o;. We can obtain an alternative form for (4.4) by pulling the n-contour

to the left in the n-plane. For that part of A; with a discontinuity in s, only
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the poles at n = 01, ;3 - 1, ... coming from sin T(a; - n) need be considered.

In our case the Reggeon will be a Pomeron,and since we need to go to t = 0,
we effectively need to cross a massless particle. To avoid the singularities of
Dgin(c) which occur for n < -20, we evaluate (4.4) by moving the contour to the
right in the n-plane. The important contributions now come from the {n - -n}

*)

term and in fact we obtain

s b S]] €
A = z D (C) A + terms with no s discontinuity
4, A, ~ol + IV -+ N
- ) 1
N-o (4.5)
At t, = 0 when the crossing-angle becomes T we have
Sl
D (c) = § (4.6)
oy, %, +N oN
and so at t; = 0 we have the simplification that
S t
disc Ay = disc A (4.7)
s ! . s !
since A" = N
o -0,

' ]

We also assume that the equivalent of (2.2) holds in the form

d

JPCNENOPEOOD S CEZON

where the Reggeons a;, 0 have helicities n; = a3, ny = 0» in the s-channel (note

(4.8)

that + refer to boundary values of ;}:2: in the s-channel, we do not imply that
the left-hand side of (4.8) is an imaginary part). We can now apply (4.3) and
(4.8) to Pomeron amplitudes to derive (2.4) as a relation between the s—channel
discontinuities of s-—channel Pomeron amplitudes (neglecting the contributions to
(4.3) and (4.8) from unphysical regions of integration). The simple crossing re-
lation (4.7) together with a similar relation for disc :I::; then gives that
(2.4) holds at t = 0 also for t-channel Pomeron ampl?tudes. Therefore, (2.5)
follows and the two Pomeron/particle vertex involved must vanish.

At this stage point (iii) above becomes important. A; has the Sommerfeld-

. P
Watson representatlonao)

*) The second term on the right-hand side of (4.5) is omitted in Ref. 30.
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t 1 (Cdp - ~ .
A,{(;): 20 Ssinwa_,Q pﬁ 2 9 (%, /o) (4.9)

with z being the t-channel scattering angle so that

+ ot ()

Ao{,,(t,) ";'_)wlz M (2pt)-Ap(t)) O (tpleD), p (£), 8o () [Bop®>
(4.10)

where g[ap(tl), ap(t), ap(tl)j is simply related to the residue of the partial-
wave amplitude of the five-point function,a(%:, &, n, t1, t),at &; = ap(tl),
L = ap(t), n = ap(tl). To take the s-discontinuity of A, (tl) we first have to

—ap (t)/2

extract a kinematic factor (z? - 1) As a result taking the discontinuity
introduces a factor sin WCup(t) - up(tl)J which removes the pole at ap(tl) = ap(t)
in (4.10) coming from the I'-function. It then follows that (2.5) requires only

that the partial-wave amplitude é satisfy

(1,y,1) = © (4.11)

(the circumflex on g will be explained later).

This is very far from a condition on the whole two Pomeron/particle vertex
as we shall discuss. First, however, we show that the alternative argument of
Abarbanel, Gribov and Kanchelliau) given in (2.7)-(2.9) leads to both (4.11) and
extra conditions. The basic reason why this argument gives no serious constraint

on Pomeron vertices has previously been discussed in Ref. 29.

The complete two-Reggeon/particle vertex can be written in the form (signature-

particularly vertex signature T3, now becomes important so we include it again).

VQ(—:)' = IZI-dlZ.l’&' Z gdn [(' z“) + T, (22, W ] QI (ot,2,,m)
Ty SinmTn
2%

o P P lnma) ez v @5 T en R @]

+€> 74% (4.12)
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If we now take o and o) to be Pomerons then T and T; = +1. 1In the following we
shall always evaluate (4.12) by moving the C, and C_ contours to the left in the
n-plane. This means that we can ignore the {> - <} contribution apart from its
vital role in cancelling the poles at integer n in the left-half plane coming from
sin mn. Pulling back c, and dropping the contribution at infinity expresses V as

a sum of two asymptotic power series in u~!

coming from poles of I'(n - a) and
I'(n - a1) respectively. As discussed in Ref. 30 taking the s discontinuity as
in (2.7) (s = M? in this context) removes the poles coming from I'(n - a) by in-
troducing a factor of sin m(n - a) [z[OL_n in place of {(—z)OL-n + T3T1(z)a_n} in

(4.12). Therefore

i N+a T (l)"
- TTe, - ' =(-
disc V = S (6 “'l)]u' %3 (°‘7°‘H°‘|’N) (4.13)
N=0 ginTT &, PN+ (N+l+o(,-ac) )

We now want to consider the consequences for V of the vanishing of (4.13) at

t = t; = 0. Unfortunately, the representation (4.12) is very difficult to use
at this point because of kinematic singularities of the angular variables, z, z
and u. In fact the asymptotic expansion (4.13) will probably not converge at

t1 = t2 = 0 because of this. However, the analyticity properties of the five-

point function suggests that an asymptotic expansion in inverse powers of n where

'yl = (4;4;,)1 cos w -t -1, +m?

(4.14)
A (t,t,,m")

will converge since this variable is a simple ratio of invariant variables. For
ty1, tz # 0 the terms in (4.13) which are large or finite as |u| + o can be simply
re-arranged into the corresponding terms in the expansion in powers of n. There-
fore, the convergence of the n-expansion at t; = t, = 0 justifies isolating the
leading terms in (4.13). A further subtlety is that the angular variables in-
volved in defining limits on both sides of (2.4) and (2.9) are not identical and
so we should compare powers of the invariant variables that are taken large. If
we do this then the vertex V whose discontinuity is required to vanish at t =t =

is defined by dividing through by

=z ?\)‘1 (t,t,,m")
1%

<% A °<|
l zl (\z (‘k, ‘tl 'mt)
+%
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rather than by [z|OL|21|0L1 as we did in (4.12). In consequence the condition that

disc V vanish when o = a; = 1 for arbitrary finite u requires that if

A'rg - > = ‘/ °‘l '53
57 ey = | 212 97 () 4.15)
then
N
A T=C1)
% i (1, ‘,“N) =0 N=o,l (4.16)

(£, =%.=0)

(the N = 1 result here is strictly only true up to inverse powers of n). There
may be further conditions besides (4.16) required to satisfy (2.9) but we can not

use (4.12) to phrase them in terms of helicity amplitudes.

Since (4.16) is symmetric with respect to t and t; and o and o; it is clear
that it is sufficient for the vanishing of the discontinuity of the two-Pomeron
contribution to the five-point function in both sub-energy channels. However,
it is important to note that this does not by itself imply the vanishing of the
full two-Pomeron vertex at t = t; = 0 “0). This can be seen immediately from

(4.12).

At a; = 0, the two sets of poles from I'(n - a;) and I'(n - a3) coincide and
so we have to evaluate the contribution of a sequence of double poles to the in-

tegral of (4.12). If (4.16) holds then we have

"

N
"~ - N+ Af‘—’(“')
V(t:t,:tD) Z lul 2 %"(',,,n)]
nz=|-N

Mol [r(ne)]” L0

+ lower order terms in n (4.17)

which need not vanish.

We now consider the extension of the above arguments to involve Reggeons
by using (2.6). We stress first the important point that in order to use (2.6)
to derive the vanishing of a Pomeron/Reggeon/particle vertex,it is essential to
make the strong assumption,that further Regge limits of Pomeron amplitudes are
uniform with respect to the limit of zero masses for the Pomeron. If particle ¢
in (4.3) is to be replaced by a two-particle state then we have to start from the
unitarity relation for the four particle/Pomeron amplitude. If this is derived

using the approach of Ref. 30 then the Pomeron will again have helicity n = ap(tl)
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in the s-channel. Using the crossing relation as above and making the same assump-

tions of neglecting the large momentum transfer regions will lead to the result

oLp(ta)

-» O (4.18)

~ €2 {;,'—[»1»0
Sp(t) t

where the Pomeron with spin ap(tl) also has helicity n; = ap(tl) in the t-channel.
The helicity n, of the other Pomeron will be integrated over, but for fixed n,

the amplitude has the Sommerfeld-Watson representation.

o (Pard, M=) L T, =)
Ny olr(h)( -h Z) - ;\.— S At pl—'nz-‘ o,y (= ? (dg'ﬂ"‘.'p/ d, rnr:d)
/ Sin T (8-m,—otp(t,))

(4.19)

T3 still refers to the n; signature, and we are ignoring all other signature and
> labels here. Taking the further Regge limit as in (2.6) gives the contribution

of a Regge pole at & = a(t) as

A —~ z ' F("'nz”h\) 9 (dzl“z/d, ol.'ol,\ (4.20)
nz,“,(ta) lzl-‘) o0

15 . . . . . .
g (o, mp, O, G}, Q1) is simply related to the residue to the six-point function

partial-wave amplitude a(f2, nz, %, %21, n1, tz, t, ty) (see Fig. 4.3) at &; =n; =

=0y, £ =0, %2 = ap. Unitarity essentially requiresao) that g factorize in the
form
=) Ty= |
% (O‘z,ﬂz,d'd.‘d.> = 9 ("1, nz,"l) q (d:dl'al) (4'21)

where g is the analogous amplitude to that considered for the two Pomeron vertex
above. Taking account of kinematic singularities as before then (4.18) will be

satisfied if

A 'C'-s'=+l

9 (a,1,1) =0 (4.22)
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This result is clearly similar to (4.11) and in fact if we take o to be a Pomeron

is simply a stronger version of this result.

The analysis of Ref. 29 (with azimuthal angles not taken large) shows that
using the approach of Abarbanel, Gribov and Kanchelliau) simply extends (4.19) to
the analogue of (4.16), that is

N
(a,1,1-n) =o© N=o0, 1 (4.23)

(+,=0)

A 13:(—0

(Again the N = 1 result is only true up to inverse powers of n.)

The correlation between the results obtained from unitarity for Reggeon
amplitudes and subchannel discontinuity formulae is not surprising but it is in-
teresting that one approach gives slightly stronger results than the other. To
derive (4.16) or (4.23) from the unitarity equations for Reggeon amplitudes would
require the vanishing of further triple Pomeron couplings with the helicities of
two of the Pomerons differing from their spin by integer amounts. This does not
seem to be required by either the Reggeon Calculus or inclusive sum rules. In
this context we should perhaps note that the use of subchannel discontinuity
formulae involves the assumption that these formulae continue to hold in high-

energy Regge limits and this has certainly never been proved.

In general such formulae tend to hold only in a very limited regionils“Z)
and outside of this region the phase-space integrations are distorted by singulari-
ties of the amplitudes involved. It may be that for the helicity-pole limit isola-
ting the external Pomeron in (2.4),no problems arise, but in the full Regge limit
they do. The helicity limit is simpler than the Regge pole limit in that fewer
invariants are taken large. Certainly for positive t; simple analytic continuation

30),whereas con—

of unitarity equations to complex helicity seems to be possible
tinuation to complex angular momentum does not seem to be. If a helicity-pole
limit (which is actually unphysical) of (2.9) is taken then only the weaker results

of the unitarity equations for Reggeon amplitudes are obtained.

If oo is a Pomeron then (4.23) requires that the two Pomeron/particle vertex

amplitude have two zeros. That is

N
&7 (4,0,-8) = o N=o
N (t,:a) (4.24)
A ’53':(-‘)
% (1,4, 1-8) = © N=o0)

({——,o)
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This would be sufficient to require that

N
2 %u;:-(—l) (. | ﬂ)] ) N=0o |
o ! .25
{ 2mM nel-N (4.25)

unless §T3 (1, 1, n) has further singularities whose origin we do not understand.
In the absence of this then,it follows from (4.17) that (4.23) requires the two
Pomeron/particle vertex to vanish when both Pomerons have zero mass (at least up

to inverse powers of n). This is the full result of Finkelstein and Kajantie33).

It is, of course, important to emphasize that if o is a Reggeon then (4.23)
does not constrain the Pomeron coupling in the four-point function obtained by
going to a = integerzg). Suppose we consider a = 0. From (4.12) it is clear
that the pole at o = 0 arises from the pinching of the n-contour by the pole at
n = o coming from I'(n - o) and the pole at n = 0 coming from sin Tn. For the

residue not to vanish because of the signature factors we must have T3 = +1.

Therefore,

Vo~ Lorea feats 7201 377 (0u,0)

>0 a
1z1™ (4.26)

whereas only §T3=_1(0, a1, 0) is constrained by (4.23). Similarly if we go to

o = 2 the amplitudes involved are

~

%’l’-“-l (Q_,ol"2,) , %’r‘i"—l(a',d” ‘3 , % ¢3=*| (:le‘,a\ (4.27)

which are also unconstrained by (4.23).

So there is no inelastic decoupling of the Pomeron.

The above results can be summarized by pulling back C> to write

T, 7,

\% =V

T, o,

o T
lul” + V, lul

‘ (4.28)

where VETI comes from the poles of I'(n - a) and so’if T = +1,contains the ampli-

tudes

n-ol
g %’53 "("I) (o(lo(‘l ‘n) ’% (h.29)
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while VETl comes from poles of I'(n - o) and so contains the amplitudes

=Y
% i (A ,m) } (4.30)

V¥T1 contains the particle poles on the Reggeon trajectory and so the residues of
these poles contain the amplitudes (4.29). Unitarity for Pomeron amplitudes and sub-—
channel discontinuity formulae contrains only V;T; or the set of amplitudes invol-
ved in (4.30).
If VTTl has to vanish at t; = O,rather than just V;Tl,then clearly the ampli-
4

tudes of (4.29) are also constrained,and the argument of Brower and Weis 2 leading

to the complete forward decoupling of the Pomeron,can be applied.

The mild results of (4.11) and (4.18) can be regarded as 't-channel" results
in that they are based on unitarity equations which are derived from channels
where the Pomerons involved have positive mass. They therefore make no reference

to the s—channel structure of the Pomeron.

We have not discussed the full range of possible decoupling results that
could be derived by extending the methods we have discussed to more complicated
Pomeron amplitudes. We anticipate that for similar reasons to those we have

discussed any further results also have only very mild consequences.

Finally we note that the crossing and helicity problems which we have con-—
sidered in this section may well complicate the derivation of an "inclusive sum
rule" of the form of (2.15) from (4.8). Even if we ignore the unphysical phase-
space contributions to (4.8), it is clear that a result of the form of (2.15) can
only be expected to hold for amplitudes where the Pomerons have helicity a(t))
in the s.channel (that is the M?-channel for 2.15). We have already discussed
crossing the two particle/two Pomeron amplitude to the t-channel and this should
cause no problem at t; = 0. The amplitude appearing in (2.11) can be de-
fined through a helicity-pole limit associated with the coupling scheme shown in
Fig. 4.4,and so can be regarded as a t-channel helicity amplitude. However, it
has a complicated singularity structure,with singularities in more than one channel.
Consequently we would not expect its crossing properties to be simple in general,

even if they simplify at t; = O.

THE s-CHANNEL PICTURE

In this section we study how the t-channel structure discussed in Section 3
is reflected in the s—channel, and its consequences for the s-channel decoupling

arguments. It will become apparent that one cannot go nearly so far with s-channel



_40...

arguments because of lack of knowledge of the structure of multi-particle amplitudes,
and the possiblity of large scale cancellations. Instead of choosing a specific
model of complete production amplitudes we shall attempt to re—interpret the t-
channel structure in terms of the s—channel. The t-channel structure of the four-
point function we take to be correctly given by the Reggeon Calculus, with the full
apparatus of renormalization and the specific dynamical mechanism for achieving

the triple-Pomeron zero described in Section 3. Ideally one should then formulate

a Reggeon calculus of production amplitudes, along the lines suggested by Drummond“a).
Such a calculus would have of necessity to incorporate correct helicity structure,
unlike the calculus for the four point function, which makes no statements about
helicity. The consistency of such a scheme with s-channel unitarity would give

direct information on exactly what unitarity constraints the various Reggeon-particle

vertices should satisfy.

Instead one is forced to a more model-dependent standpoint. We shall adopt
that of Abramovskii, Gribov and Kanchelli (AGK)31), based on the Reggeon calculus
of the four-point function. The basic propagators in the calculus will be bare
Pomerons and other non-vacuum Reggeons. It is at this level that we make the
s—channel interpretation: a bare Pomeron (or Reggeon) correponds to a multi-
peripheral production process, that is one with a uniform distribution in rapidity
space and a strong transverse momentum cut-off. This interpretation is motivated

5)

by the Feynman diagram derivation of the Reggeon calculus where ladder diagrams,
the prototype of all multiperipheral processes, are used as bare Reggeons. We
should stress, however, that our considerations will be independent of Feynman dia-
grams and use only the multiperipheral nature of the bare Reggeon. Indeed we shall
ignore those special properties of the ladder diagrams which correspond to non-
multiperipheral intermediate states. Such a feature is the specific mechanism

1”), which is related

of the AFS cancellation, discussed by Halliday and Sachrajda
to the fact that ladder diagrams do not have a particularly strong transverse
momentum cut—-off and the AFS cancellation occurs between purely multiperipheral
intermediate states and non-multiperipheral ones. In our picture the strong trans-
verse momentum cut-off allows the purely multiperipheral states to cancel among

themselves, on the basis of the usual analyticity arguments““).

The bare multiperipheral Pomeron will be represented by a dashed line as
in (5.1). It will have some intercept which we expect is less than one. This

intercept will not however be observable (in contrast to the conclusions of Ref. 45),

PR ( = Y JIIImm 5.1

since in any observed purely multiperipheral event the bare mechanism is shadowed

by numerous possible absorption effects, shown schematically in Fig. 5.1. This
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bare Pomeron is not the bare Pomeron referred to in Section 3, which has intercept
one. To generate an intercept of one, one must take into account all possible
self-energy insertions in the Pomeron proagator. The analysis of Section 3 shows
that in the weak-coupling solution,which we assume exists,the Pomeron cuts them-
selves only serve to renormalize the trajectory in a mild fashion, but not the in-
tercept. An example of a mechanism which can increase the intercept is the inser-
tion of Reggeon—Reggeon cuts as in (5.2), where non-vacuum Reggeons are represented

by a zig-zag line. The precise form of this renormalization of the intercept is

model-dependent and only acquires a well-defined meaning in a given specific model.
For example, in a Reggeon field theory with given bare couplings, the set of dia-
grams depicted above has a precise meaning. If, however, one started from the
Feynman diagram derivation of the Reggeon calculus one would obtain a different
result. This is because one is interested in the regions of momentum integration
where there are only finite sub-energies across the Reggeon-Reggeon cuts. In this
case the simple two-dimensional momentum integration around the loops breaks down,

*)

and the momentum transfers along the Reggeons depend also on the finite sub-energies .

These ambiguities are associated with the fact that we are taking the Reggeon
calculus "off mass shell", that is, extrapolating it away from the region where
the leading Reggeon singularities are generated and where it was first conjectured
from the Reggeon unitarity equations as in Section 3. These ambiguities need not,
however, be disadvantageous as long as one stays consistently within the same
model, and they merely confirm the model-dependent and unobservable nature of the

bare multiperpheral Pomeron.

It is clear that there are numerous other effects which will play a part in
bringing the Pomeron intercept to one, before the inclusion of Pomeron cuts.
Thus the s-channel interpretation is deeply buried inside a host of renormaliza-
tion effects which vastly complicate any s—channel analysis of simple t-channel
effects. One can, however, proceed a certain way in terms of largely qualitative

statements and this we proceed to do.

If we consider a typical Reggeon calculus diagram constructed out of bare
*% . . . .
Pomerons and Reggeons ), cutting the diagram in all possible ways will lead to
an enormous variety of possible intermdiate states. However, there is a consider-

able simplification. To illustrate this consider the simple diagram of Fig. 5.2.,

*) This same difficulty occurs for the renormalization of the Pomeron intercept by
the finite parts of Pomeron loops (as opposed to the singular parts associated
with two Pomeron cuts).

*%) Renormalization of Reggeon trajecjories will play no role in the following dis-
cussion and so we shall always refer only to renormalized physical Reggeons.
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which has the Feynman diagram analogue as shown. The simplification is that cuts
like C, are negligible, because one can then show by energy conservation that the
sub-energy s’ is of the same order of magnitude as the momentum transfers. This
contradicts the original definition of the bare Pomeron as having all sub-energies
large and all momentum transfers finite. Thus the only cuts of Fig. 5.2 we need
to consider are those like C;, where neither, just one, or both Pomerons are

cut completely. Thus Fig. 5.2 contributes only to the production processes.

—(E =

il

0f course, because of renormalization effects,these contributions to the exclusive
processes are hopelessly buried for the model to have predictive power. On the
other hand, inclusive processes can be dealt with more satisfactorially, as is
shown in AGK. To discuss, for example, one-particle inclusive cross—sections

in this picture one, of course, chooses one particular particle out of a possible
s—channel intermediate state. This means that diagrams for the one—particle in-
clusive cross—-section are obtained from the diagrams for the four-point function
with bare Pomerons and Reggeons by attaching two particles to a cut bare Pomeron
or Reggeon or cut vertex. For example Fig. 5.3 where crosses denote cut Pomerons
and vertices. The reason that the model is more predictive for inclusive cross-—
sections is that one can now imagine the inclusion of all other diagrams contribu-
ting to the renormalization of the bare Pomerons in Fig. 5.3 and building up the
diagrams of Fig. 5.4 with physical Pomerons and potentially calculable vertices,

as set out in AGK.

We now discuss the s-channel decoupling arguments in terms of this picture.
First we consider our specific dynamical mechanism for the triple Pomeron zero.
We again use Bronzan's mode117) in an illustrative sense. We therefore consider
the integral equation of (3.29), shown graphically in Fig. 3.8. If we take the
discontinuity of this equation and relate it to the one-particle inclusive cross-—
section via the above prescription we obtain several distinct contributions on

the right-hand side

I v~

|
) (5.3)
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The classification here is simply 'topological" and we are grouping together terms
with the order of emission and absorption of the exchanged Pomeron reversed and
different internal Pomeron's cut. We are also implicitly assuming AGK's claim

that vertex functions are unchanged by the various ways of cutting.

The inhomegenous term (a) in (5.3) is presumably finite when all three ex-
ternal Pomerons have zero mass. Terms (c), (d) and (e) can be made finite by a
sufficiently strong zero in ~~_ . For (b) to be finite, however, it is clear
that ~(:f: will have to possess a zero. Therefore, it seems that a solution of
(5.3) for ~(¢x: which is finite at zero mass of the Pomerons will in fact be zero
at this point. The amplitude is not sufficiently well defined within our
present scheme and so we should not immediately identify it with the amplitude
appearing in (2.11). Nevertheless, (5.3) does suggest the possibility of obtaining
a result of the form of (2.13) from t-channel arguments, and in the following we

shall make this identification.

Within the above model then the zero of «{i}:’ will be given by the sum of

diagrams

»@%%”ﬁ@*%)

This sum cannot be simply associated with two-Pomeron iteration in a single channel
and so it is difficult to generalize the unitarity arguments of Section 3 to cover

this situation.

Using (5.4) we can, however, explicitly discuss how the argument of Jones
et al. can break down in going from (2.13) to (2.14). First we have to incorporate
Reggeon renormalization of vertex functions into (5.4). We have already discussed
the two Reggeon renormalization which contributes to the propagators of (5.4). If
we include a bare two Pomeron/two Reggeon coupling ::ﬂ::: in our original Reggeon
calculus then there will be Reggeon renormalization of the triple Pomeron vertex

of the form

(5.5)

As we have said, Reggeon renormalizations of this sort are simple finite effects,
which were already included in the definition of the bare triple Pomeron vertex

-¢K: which we used in Section 3. However, the importance of (5.5) is that
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after renormalization of the external Pomerons the first term leads to the con-
tribution to the two—particle inclusive cross—section considered by Jones et al.

We simply extract the single-particle intermediate state from :ﬁrff:so that

::}:“- > ::j\ (5.6)

0
sO.\
o
35 “'O"Om (5.8)
o

Therefore

However, the Reggeon/Pomeron vertex \M«Jn- appearing in (5.9) is not yet the
complete vertex in that we still have to add Pomeron and Reggeon renormalizations,

for example

MQ:!::?“ ) W (5.10)

These renormalizations of vvnALn~simp1y contribute to the renormalization of
fv-¢<: via (5.8). However, it is clear that renormalizations of f-~C::

of the form shown in Fig. 3.8,which give rise to (5.4),cannot be interpreted as
simply renormalizing v~m1-v in (5.9). Therefore these diagrams have to be
added separately. Finally then we conclude that we can write an equation of the

form (5.4) with

,w..l{: > ‘%:i (5.11)
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where v-L- is the full Reggeon/Pomeron/particle vertex and so (modulo all the
uncertainties of the Reggeon calculus we are using) we can identify the right-hand
sides of (2.14) and (5.11). It follows then,that to produce the triple Pomeron
zero,we have to add all the diagrams of (5.4) to the right-hand side of (2.14).

Addition here is, of course, in the sense that the diagrams are interpreted
as Feynman diagrams within the Reggeon calculus. This essentially means adding
the diagrams in a j-plane sense. The diagrams in the sum of (5.4) will give rise
to a complicated singularity structure in the j-planes which control the asymptotic
limits involved in (2.14), (we discuss this in more detail below but compare also
Drummond's analysis"s) of )c:5>< and Botke's analysis”s) of )K:i:D( ). There-
fore, the zero of -{§:: is produced by adding terms which have d}stinguishable
asymptotic behaviour in the extended limit of (2.14). It follows then that this
limit cannot be uniform with respect to the zero mass Pomeron limit and this is

the basic reason why the vanishing of m»qk~— cannot be deduced.

In fact we can show that (2.14) does not give the leading behaviour in the
extended limit even at t = 0. Consider the diagram shown in Fig. 5.5 which is
part of the sum (5.4). The two particles shown have been extracted from the
triple Pomeron vertex to which they are attached and the crossed Pomerons have

been cut. If we again use (5.11) for the cut vertex we obtain

m<il\_{l\ 2 w@; (5.12)
! l

The internal cut Pomeron will not be important for our arguments and in fact a
subset of the diagrams of (5.4) can be treated in the same way as (5.12) to give

the general result

|

Comparing (5.13) with (2.14) is clearly analogous to comparing the five-

point functions of Fig. 5.6 (a) and (b).

The diagram of Fig. 5.6 (b) will give rise to the conventional pole and

cut singularities in the t and t channels shown in Fig. 5.7.
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The Reggeon-Pomeron cut of Fig. 5.7 (a) is itself sufficient to ensure that
the diagram of Fig. 5.6 (b) leads the pole diagram of Fig. 5.6 (a) for t negative.
However, Fig. 5.6 (b) also contains the "triangle" singularity shown in Fig. 5.8,
which has been studied by Drummond"a), and at t = t = 0 this actually "enhances"

the asymptotic behaviour given by Fig. 5.6 (b) as we now show.

This calculation can be carried out from the Feynman diagram approach (four-—
dimensional), in a similar manner to that of Drummond, or, more simply, in a
Reggeon field theory. In the latter method we introduce Reggeon energies w; and
w2 in whose complex plane the singularities control the asymptotic behaviour in
s, and s, respectively, (see Fig. 5.9 for notation). The produced particle, how-
ever, carries away a certain angular momentum and thus Reggeon energy is not con-

served at the central vertex.

Ignoring momentum dependence of the various vertices, the double partial wave

amplitude is, apart from constant factors

de g d?k J
2
ame (0o “‘V’S?* Ag) (c+X) ("3:.“"""(9“3} )(""a* ‘f)
(5.14)
where Ap =1 = 0p(0) and t = -q%, t = -q°. The o-integration can be carried out
to give
(5.15)

(d*= !
(0¥ + (@10 + D) (ar ¥ +(@-0))(ar %)

Equation (5.15) clearly displays the various singularities discussed above. For
general q and a the Reggeon-Pomeron cut in the t-channel arises from the integra-
tion region k ~ % a, and the Pomeron-Pomeron cut in the t-channel from k ~ % q.
The triangle singularity arises when these collide near q ~ q. This is in fact

a singularity in n (= slszls) by virtue of the relation n = m?> + (q - q)?, and it
occurs on the boundary of the physical region in n. One can show that the n for
the internal Pomeron-Reggeon-particle vertex is equal to the n defined by the ex-
ternal variables of the whole diagram, and so we expect no other new singularities
in n apart from the triangle described above. When q = q = 0 the singularities all

enhance each other and the asymptotic behaviour is given by (ignoring signature

factors)
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w4+l W+l e
dew (29 5 % dx ' (5.16)
A Ame @ (w+x+ D) (wa+n) ’
<@ o -f x -
= 5 Sz § e _e_j‘ Cr-e %] (5.17)
e 2

where £, = 1n s;, &2 = 1n s3.

When &; and &, are large and of the same order of magnitude the integral
in (5.17) is just a finite number, as can be shown by scaling x = x'/&1. Thus
the contribution of Fig. 5.6 (b) is of the same order as the pure pole contribu-—

tion.

We have identified just one contribution in the sum of (5.4) that is import-
ant in the extended limit of (2.14) but there will be others. Also we have stayed
within Bronzan's model in this section in order to be able to discuss specific
Reggeon calculus diagrams,and within this model it is consistent to ignore the
momentum dependence of the vertices in Fig. 5.9. A complicated potential of the
form that we suggested in Section 3 is more difficult to discuss, but the essen-—
tial feature is contained in the above discussion. The enhancement of the Reggeon~
Pomeron cut in Fig. 5.9 can be regarded as due to the singularity of the central
Pomeron propagator (produced at the Reggeon/particle/Pomeron vertex). This is
the Pomeron that would be replaced by the full singular potential in the complete
amplitude. Clearly enhancement will be produced by the singular potential in a

similar way.

For general f the Pomeron amplitude obtained from Fig. 5.9 (see Fig. 5.10)
will be singular at t = O because of the collision of the two—-Pomeron cut (in the
t-channel) with the pole. Again a singularity at t = 0 of this sort will also
occur if the central Pomeron is replaced by our general singular potential. This
is the non-uniformity of the t Regge expansion which we referred to earlier as

being the basic cause of the breakdown of the decoupling arguments.

If the Reggeon calculus does extend to production amplitudes in a straight-
forward way,then we might expect the further vanishings of Pomeron vertices des-—
cribed in Section 4 to be attributable to the same dynamical mechanism. 1In this
case we might expect the vanishing of the two Pomeron/particle vertex amplitude
to arise from a series of diagrams of the form (again using Pomeron exchange

for our singular potential).
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DA

(5.18)

"

e %

Similarly the vanishing of the two-particle/two Pomeron amplitude as in (4.18)

should result from a sum of the form

/d\ =~k +~_~C\£\+~a<‘_f{k--

(5.19)

Consequently we would not expect the extended limit of (2.6) to be uniform with

respect to the zero mass Pomeron limit.

In general then our understanding of zero mass Pomeron zeros is such that
we do not expect any of the results based on taking further asymptotic limits
of amplitudes that vanish to go through. This rules out any results on Reggeon
couplings. This is in accord with our picture of the triple Pomeron zero being
associated simply with Pomeron self-renormalization problems. Reggeon contribu-—
tions are associated with finite renormalization effects,which should not be con-

strained by the weak coupling of the Pomeron.

As we discussed in Section 3, Gribov and Migdal have the triple Pomeron zero
appearing before two Pomeron cut iterations are considered. This would clearly
impose more serious decoupling constraints. The sums of diagrams we have considered
could no longer be appealed to. Therefore, the extended limit arguments, particu-—
larly that of (2.14) would presumably go through. This is why we suggested in
Section 3 that our association of the triple Pomeron zero with two—Pomeron itera-

tion of a singular potential is vital for the avoidance of the decoupling arguments.

DISCUSSION

Our aim in this paper has been to present a general framework within which it
is clear that a consistent picture of the conventional Pomeron as a pole plus cuts
can be obtained. We have emphasized the qualitative nature of our discussion in
Section 5. This has partly been because of our desire to present an over-all
picture, but more importantly because of the difficulty of performing s-channel
calculations that are sufficiently realistic. We have based our arguments on the
Reggeon calculus since this is the only practical way of obtaining an s-channel
picture that is consistent with t-channel unitarity. However, even the Reggeon
calculus is not yet applicable to production amplitudes. Eventually we may hope
to be able to give a complete description of multi-particle partial-wave amplitudes
in terms of Reggeon field theory diagrams. This would enable us to give a more

precise version of the discussion in Section 5.
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In general terms what we are saying is that absorption effects in multi-
particle amplitudes are both complicated and very important theoretically. Their
theoretical importance is not, as yet, something we can estimate quantitatively.
We can only say that they are important for the decoupling arguments, but may be
unimportant phenomenologically. 1In principle it may be possible to discuss these
effects independently of the Reggeon calculus. General discontinuity formulae
for mult-Reggeon singularities analogous to the two-Reggeon cut discontinuity
formulae can presumably be obtained from multi-particle t-channel unitarity.

We could then envisage parametrizing the amplitudes appearing in these formulae
within some sort of "S-matrix'" approach. However, it seems likely that the
Reggeon calculus approach will be more fruitful. Also the extension of the cal-
culus to both inclusive and exclusive production processes may well sharpen its

predictive power.

There are many problems in extending the Reggeon calculus. The results of
Section 4 and of Ref. 30 make it clear that the helicity of a Reggeon must play
an essential role in any treatment of multi-particle amplitudes and this has not
yet appeared in the calculus. The subtlety of the unitarity relations for Reggeon
amplitudes discussed in Section 4 and Ref. 30 suggests that the vertex functions
of the Reggeon calculus cannot be cut freely in taking discontinuities as suggested

31) and implicitly assumed by us in Section 5.

by Abramovskii, Gribov and Kanchelli
Therefore, even the understanding that this assumption provides of the emergence
through the s—channel of the negative sign for the two-Pomeron cut represents an
over-simplification (which probably only holds exactly for the simplest Feynman

l'+)).

diagrams

Nevertheless, it is clear that a self-consistent description of diffraction
scattering,in all its aspects,must be able to incorporate both s-channel absorp-
tion effects and full multi-particle t-channel unitarity systematically. This is
what we feel can be done in principle within the Reggeon calculus,and what is
missing from other schemes,which essentially ignore t-channel unitarity and either
postpone absorption to satisfy the Froissart bound at ultrahigh energieslg,ZO) or
else assume that it is negligible and that consistency can be achieved with a
Pomeron intercept less than one and a positive sign two-Pomeron cut21"2“). The
importance of a correct treatment of absorption effects has recently been emphasized

15). 16)

In particular Blankenbecler has shown

by Blankenbecler, Fulco and Sugar
that the rise of the proton-proton total cross-section at ISR energies cannot be
simply attributed to large missing mass production via the triple Pomeron and that
the self-consistency of the Pomeron must be considered. From this point of view
our indirect association of large missing mass production with the rising cross-

section,through (1.1), seems more satisfactory.
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Cuts through the bare two-Pomeron diagram.

Bare Pomeron diagrams for the one-particle inclusive cross-

section.
Renormalized diagrams.

Extraction of particles from an internal triple-Pomeron vertex.
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Fig. 5.6 : Reggeon graphs for the five-point function.

Fig. 5.7 : (a) Reggeon-Pomeron cut in the t-channel.

(b) Pomeron-pole plus two Pomeron cut in the t-channel.
Fig. 5.8 : A triangle Reggeon graph.
Fig. 5.9 : Variables for the graph of Fig. 5.6 (b).

Fig. 5.10 : A three-particle/Pomeron amplitude.
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