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Abstract. We study the Jordan structures and geometry of bounded matrix-valued harmonic functions
on a homogeneous space and their analogue, the harmonic functionals, in the setting of Fourier algebras
of homogeneous spaces.
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1. Introduction

In this paper, we study two classes of complex Banach spaces, related to harmonic func-
tions on Riemannian symmetric spaces, namely, the Banach space of bounded matrix-
valued o-harmonic functions on a homogeneous space, and its analogue, the space of
harmonic functionals on the Fourier algebra of a homogeneous space. They are shown to
be JB*-triples and therefore their open unit balls are symmetric manifolds. This gives
rise to interesting classes of Jordan triple systems for harmonic analysis and motivates
our investigation of the detailed algebraic analytic structures of these spaces.

We begin with some background. Let X be a Riemannian symmetric space of non-
compact type, represented as the right coset space H\G of a connected semisimple
Lie group G by a maximal compact subgroup H. Furstenberg [20] has shown that the
bounded harmonic functions on X can be characterized by an integral equation as follows.
Let A be the Laplace-Beltrami operator on X. Then there is an H-invariant absolutely
continuous probability measure o on G such that a bounded C? function f on X satisfies
Af =0 if, and only if,

flH) = (Fxo)(Ha) = | Flay ioy)  (Hae X = H\G)

where we define f(Ha) = f(Ha '). This motivates the definition of a harmonic function
with respect to a measure in a wider context of coset spaces of locally compact groups
without differential structures.

In what follows, G denotes a locally compact group with a right-invariant Haar
measure A in which case the convolution of two Borel functions f and h on G is defined
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by
f#hiz) = /G fay Hh)dry)  (z € G)

whenever it exits.

Let 2 = H\G be a homogeneous space of G, represented as a right coset space H\G
by a closed subgroup H. Let x € 2 — x.g € {2 be the action of G on (2. Fix a quasi-
invariant measure v on (2 (cf. [15]). We take v = X if H = {e} is the identity subgroup.
Let M,, be the C*-algebra of n xn complex matrices, with identity 7. Given an M,,-valued
measure o on G, an M,-valued Borel function f : 2 — M, is called o-harmonic if the
convolution f x o exists locally v-almost everywhere and f(z) = f * o(z) whenever the
convolution

(f *0)(x) = /G [y Vdoly) (z € Q)

exists. We recall that a Borel set S C 2 is locally v-null if v(SNK) = 0 for every compact
set K C 2. Let L*(§2, M,,) be the Lebesgue space of essentially bounded M,-valued
functions on {2, with respect to the measure v. Our first main object of study is the
following Banach space of (essentially) bounded M,,-valued o-harmonic functions on {2:

H,(2,M,) ={f € L®(02, M) : f = f x 0}

In the special case of 2 = G and a complex measure o, the space H,(G,C) of complex
o-harmonic functions on G has been studied in [8], and the space H, (G, M,,), for matrix-
valued o, was considered in [6]. Our results subsume some of those in [6,8] and are
applicable to symmetric spaces. The intention of studying the matrix equation f = f xo
is to view it as a system of convolution equations.

Our second object of study is an analogue of H,(2,C) in the setting of Fourier
algebras A((2) of homogeneous spaces 2 = H\G. This is the Banach space A(f2)% of
harmonic functionals on A(£2). The Fourier algebra A((2) is an ideal in the Fourier-
Stieltjes algebra B(f2) of the homogeneous space {2 and the dual A(£2)* identifies with
a one-sided ideal of the von Neumann envelope of the group C*-algebra C*(G). There is
a natural action (0,T) € B({2) x A(2)* — o-T € A(£2)*. Given o € B({2), the space
A(82)% is defined by

A ={T e A(2)":T=0-T}.
If G is abelian, the right coset space {2 = H\G is a group. Given a complex measure o
on the dual group {2, its Fourier transform & belongs to B (£2) and the space Hg(ﬁ, ©)
is isometrically isomorphic to A(£2)%, where do(z) = do(z™"'). Therefore one can view
the harmonic functionals A(£2)%, for arbitrary (2, as a ‘non-commutative’ analogue of
harmonic functions on (2.

We now give a brief review of the paper. We first prove in Section 2 some relevant
basic results on matrix-valued functions and measures. We give a brief introduction to
Jordan triple systems in Section 3 and prove a spectral result for a later application
to matrix-valued harmonic functions. In Section 4, we study matrix-valued harmonic
functions on homogeneous spaces. We first show that, as in the case when (2 is a group
[6], there is a contractive projection from L*°(§2, M) onto H,(£2, M,), for ||o| = 1.
Consequently, H, ({2, M},) is a Jordan triple system and is, moreover, isometric to a finite
£>®-sum @y L>®(£2;) ® C, where Cf is a finite-dimensional Cartan factor of type 1,2,3
or 4. Tt follows from the spectral result in Section 3 that the spectrum of H, ({2, M,),
regarded as the Poisson space of H,(£2, My,), is a finite disjoint union of Stonean spaces.
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We give an explicit formula for the Jordan triple product in H,(G, M,). The Jordan
structures of H, ({2, M) generally differ from that of L°°(£2, M,,). We give necessary
and sufficient conditions for the coincidence of these two structures. We also show that
H, (2, M,) is always a subalgebra of L>°({2, M,,) whenever {2 is a homogeneous space of
a nilpotent group and o is symmetric.

To conclude the section, we discuss the connection to Riemannian symmetric spaces.
Given a homogeneous space 2 = H\G with H compact, and given an H-invariant mea-
sure o € M (G, M,,) with norm one, we show that, if H, ({2, M,,) contains only constant
functions, then G acts amenably on (2, in the sense of [21]. If (2 is a Riemannian sym-
metric space of non-compact type, with the Laplace-Beltrami operator A, then the A-
harmonic L (2, C)-functions are exactly the functions in H(£2,C) = {f : f € H,(£2,C)}
for some H-invariant probability measure o on G. Hence H(£2,C) is identified with
H,(£2,C) which cannot be trivial by the above result, and in this case, the Jordan triple
structure in H($2,C) is associative, that is, H(§2,C) becomes a C*-algebra whose pure
state space then provides the Poisson space and Poisson representation of H ({2, C).

We study the space A(£2)% in Section 5. We show that A(£2)* is also a Jordan triple
system. The non-commutative analogue of the Liouville theorem for harmonic functions
is the triviality of A(£2):. We give some necessary and sufficient conditions for this.
For instance, if H is a compact subgroup of a second countable group G, then one can
find some o € B(H\G) such that A(H\G)} is trivial. Conversely, for a locally compact
group G with a compact subgroup H, the triviality of A(H\G)} implies that H\G is
first countable. The Liouville theorem is closely related to amenability of the underlying
groups as shown in Section 4 (see also [8, Proposition 2.1.3]). Given a compact subgroup
H of a second countable group G, we show that G is amenable if, and only if, I,(H\G)
has a bounded approximate identity for every norm-one o € B(H\G), where A(H\G)%
is the annihilator of I,(H\G). We also study the related questions of the existence of a
bounded approximate identity in A(H\G) and the existence of a topological invariant
mean on the dual A(H\G)*.

2. Matrix-valued functions and measures

We begin by proving some basic Banach algebraic results for matrix-valued measures
and functions on groups. Let Tr : M,, — C be the canonical trace of the C*-algebra M,,.
Every continuous linear functional ¢ : M,, — C is of the form ¢(-) = Tr(-A,) where the
matrix A, € M, is unique and ||¢|| = Tr(]A,|) which is the trace-norm ||A,||; of A,.
We will identify the dual M}, via the map ¢ € M, — A, € M,, with the vector space
M,, equipped with the trace-norm || - ||;.

By an M,,-valued measure p on a locally compact space (2, we mean a (norm)
countably additive function p : B — M,, where B is the o-algebra of Borel sets in (2. Since
the trace-norm ||-||; is equivalent to the C*-algebra norm on M,, and M, = (M, ||-||1), we
can regard an M -valued measure on {2 as an M,-valued measure on (2, and vice versa.
We can denote an M,-valued measure p on {2 by an n x n matrix p = (u;;) of complex-
valued measures p;; on f2. Since each y;; is of bounded variation [34, Theorem 6.4], 1 is
also of bounded variation, that is, |u|(£2) < oo, where the variation |u| of x is a positive
real measure on {2 defined by

ul(B) =sup { 3 Iu(ENI} (B eB)

E;cP
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with the supremum taken over all partitions P of E into a finite number of pairwise
disjoint Borel sets. We define the norm of p to be ||u|| = |p|(£2). As shown in [6, p. 21],
p has a polar representation p = w - |u| where w : 2 — M, is a Bochner integrable
function with ||w(-)|| = 1. Likewise, if y is an M*-valued measure, we define its norm by

el (£2) = [ul1(2) = S%p{EZe:p””(Ei)Hl}'

Let M(£2,M;) be the space of all M}-valued measures on (2, equipped with the
total variation norm || - ||;. It is linearly isomorphic to the space M (2, M,,) of M, -valued
measures on {2, equipped with the total variation norm | - ||. Let Cy(£2, M) be the
Banach space of continuous M,,-valued functions on {2 vanishing at infinity, equipped
with the supremum norm. It has been shown in [6, Lemma 5] that M ({2, M) is linearly
isometric order-isomorphic to the dual of Cy(£2, M,,), where a measure p € M (£2, M)
and a function f € Cy(§2, My,) are positive if u(E) and f(x) are positive matrices for all
E € B and z € {2. The above duality is given by

(,):Co(02, M) x M(2,M;) - C

(f,p) = Tr ( / fdu> S
i,k

where f = (fi;) € Co(£2, My) and p = (p5) € M (2, M;;) (cf. [6, Lemma 5]). A function
[ = (fij) : 2 — M, is said to be p-integrable if each f;; is a Borel function and the
integrals || o Jijdpke exist and we define, for any E € B,

/Efd/i: (;/Efikdﬂkj> € My,.

Let v be a regular Borel real measure on (2. Let L'(£2, M) be the complex Ba-
nach space of (equivalence classes of) M *-valued Bochner v-integrable functions on (2.
The dual space of L'(G, M) identifies with the space L°(£2, M,,) of M, -valued essen-
tially bounded weakly locally v-measurable functions on 2 (cf. [36, 1.22.13]). It is a von
Neumann algebra under the pointwise product and involution:

(f9)(@) = f(x)g(x), [*(z)=[f(x)"  (f,9 € LZ(2 My), v € 1).

If 2 is a locally compact group G, we will always take v = A to be the right
invariant Haar measure on G in which case, we will use the duality between Cy(G, M,,)
and M (G, M;) to show that M (G, M) is a Banach algebra in the Arens product.

Given a € G, we define left and right translations on Cy(G, M,,) by

(laf)(x) = flaz), (raf)(z)= f(za) (z€ Q)
for f € Co(G, My).

Lemma 2.1 Given f € Cy(G, M,,), the maps a € G — L, f € Co(G,My,) and a € G —
rof € Co(G, My,) are continuous.

Proof. Let C.(G, M,,) be the subspace of Cy(G, M,,), consisting of functions with com-
pact support. Since C.(G, M,,) is dense in Cy(G, M,,), it suffices to prove the result for
C.(G,M,). Let f € C.(G, My,) have compact support K and suppose, for contradiction,
that the map a € G — £,f is not continuous at the identity e € G. Then there exists
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e > 0 and a net (a,) in G converging to e such that ||, f — f|| > € for each a. Let V'
be a compact neighbourhood of e such that a, € V! from some oy onwards. Then the
support of ¢, f — f is contained in VK from oy onwards. By compactness again, there
exist v, € V and z, € K such that

oo f = FIl = [If (@avaza) = f(vaza)lly, for o> ap.

Passing to a subnet if necessary, we may assume (v,z,) converges to some x € VK.
Then we have

e < oo f = Il = I (@avaza) = f(vata)lln, = 1f(2) = f(2)|la, =0

which is impossible. So the map a € G — £, f is continuous. Likewise, the map a > 7, f
is continuous.
O

Lemma 2.2 For f € Cy(G, M) and p € M (G, M), the functions
a€ G [J(luf)dp € M, and a € G — [,(rof)dp € M, are in Co(G, M,).

Proof. This follows from Lemma 2.1 and the fact that || [, hdu| < ||A]| ||p|| for every
h € Cy(G, My,), by [6, Lemma 4].
O
Given any u € Cy(@G), the orbit of the left translates of u is relatively weakly compact
in Cy(G). Apply this fact entry-wise to a matrix-valued function on G, we obtain the
following analogous result.

Lemma 2.3 Let f € Cyo(G, My,). Then the orbits LO(f) = {lof : a € G} and RO(f) =
{rof : a € G} are relatively weakly compact in Co(G, My,).

Now we construct the Arens products on M (G, M)). Let p,v € M(G,M)). We
define the Arens products pdv and o v by

(fa/j'l:h/> = <Vl(f)a/1'>a

(fimov) = (ur(f)v)
where vy(f), pr(f) € Co(G, M,,) are defined by

ve(f)(a) = [g(laf)dv,

lj'r(f)(a) = fG(Taf)dN

We remark that if G is discrete, then M (G, M) = ¢Y(G, M}) C ¢1(G, M})*™ and the
above products are the restrictions of the Arens products on ¢! (G, M;)**

By a matrix-valued Fubini Theorem, the above two Arens products actually coincide
on M(G, M}). Indeed, we have, by [6, Proposition 7], that

(f c CU(G, Mn))

(a € G).

puv =pov=pxv (2.1)
where p * v is the convolution defined by
(p*v)(E) = (pxv){(z,y) e GxG:2y€c E} (E€B).

The M,-valued product measure p X v is defined as in the scalar case (cf. [6, p. 24]).
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Proposition 2.4 The Banach space (M(G,M;), || - |l1) is a Banach algebra under the
convolution product in (2.1).

Proof. Tt suffices to show that ||u*v|[1 < ||ulli]|lv]i. Let p = w*-|ul; and v = w” - |v|; be
the polar representations shown in [6, p. 21], where w”,w” : G — M,; are Bochner inte-
grable functions with [|w”(-)|[1 = ||w”(-)1 = 1, and |u|1, [v]1 are positive real measures
on GG. We have

el =sup {[Te( [ sates )| : 7 € oG 51 < 1)
=sw{[1e( [ [ penaut@an)|: 1 e oG M. 171 <1}
=su{[( [ [ s @ i @deh )]

f € ColG, M), I < 1}

<sun{ [ [ J1e( @y @ ) il @) )
f € ColG, M), IfIl <1}

<sup{ [ [ 1 o @)l o @l (@)l o)

f € Co(@ M), If < 1}

< pl (@ (G) = Il .

Under the convolution product, the Banach space L'(G, M;) is also a Banach alge-
bra. The second dual L'(G, M})** = L*(G, M,)* is a Banach algebra with respect to
the two Arens products which are different in general. We recall that a Banach algebra
A is called Arens regular if the Arens products on the second dual A** coincide. It has
been shown in [44] that L'(G) is Arens regular if, and only if, G is finite. This result
remains true for L'(G, M) by considering L'(G) as a subalgebra of L'(G, M}) via the
embedding
f 0
=1 -
0 7

Let Cy(G, M,,) be the Banach space of bounded M,-valued continuous functions
on G, equipped with the supremum norm. Let C,,(G, M,) (respectively, Cp, (G, My))
be the subspace of Cy(G, M,,), consisting of right uniformly continuous (respectively,
left uniformly continuous) functions, where a function f € C,(G, M,,) is right uniformly
continuous if the map a € G — £,f € Cy(G, M) is continuous, and the left uniform
continuity is defined by the continuity of the map a € G — r,f € Cy(G, M,,).

For f € Cy (G, M) and m € L*°(G, M,)*, we can define their product m - f €
L>(G, M,) by the duality (-,-) : LY(G, M}}) x L™®(G, M,) — C :

<(pamf>:<f(pam> (‘PELI(GaM:;))
where f - ¢ € L*°(G, M,,) is defined by
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Lemma 2.5 Let G be a locally compact group. Then we have

(i) Cru(G, M) ={f € L®(G,My,) : a € G~ Lof € L*(G, M,) is continuous};
(i) Cou(G, My) ={f € L*(G,My,):a € G rof € L>®(G, M,) is continuous}.

Further, for f € Cry (G, M,) and m € L*(G, M,)*, we have m - f € Cr,(G, M) and
(m - f)(a) = m(laf) for a € G. Analogous result also holds for f € Cyp, (G, My,).

Proof. This follows by applying entrywise the result for the scalar case [29].

3. Jordan triple systems

For later applications, we introduce Jordan triple systems in this section as well as the
concept of a spectrum for such a system.
A Jordan triple system is a complex vector space V with a Jordan triple product

{4 }: VXV XV =V

which is symmetric and linear in the outer variables, conjugate linear in the middle
variable and satisfies the Jordan triple identity

{a,b, {x,y,z}} = {{a,b,x},y,z} — {x,{b,a,y},z} + {x,y,{a, b, z}}

A complex Banach space Z is called a JB*-triple if it is a Jordan triple system such that
for each z € Z, the linear map

D(z,z) :v€ Zw—{z,z,v} €Z

is Hermitian, that is, || exp (itD(z,2))|| = 1 for all ¢ € IR, with non-negative spectrum
and || D(z, 2)|| = [12]1*.

JB*-triples play an important role in the theory of symmetric Banach manifolds.
Indeed, generalizing the Riemann Mapping Theorem, Kaup [27] has shown that the
bounded symmetric domains in complex Banach spaces are exactly the open unit balls
of JB*-triples, up to biholomorphic equivalence. It is therefore interesting that, as we
will show, certain harmonic function spaces form JB*-triples.

A JB*-triple Z is called a JBW*-triple if it is a dual Banach space, in which case
its predual is unique, denoted by Z,, and the Jordan triple product on Z is separately
weak*-continuous. The second dual Z** of a JB*-triple Z is naturally a JBW *-triple. A
subspace of a JB*-triple is called a subtriple if it is closed with respect to the Jordan triple
product. The JB*-triples form a large class of Banach spaces. They include, for instance,
C*-algebras, Hilbert spaces and spaces of rectangular matrices. The triple product in a
C*-algebra A is given by

1
foy,2} = 5 o9z + 2°2).

JB*-triples arise as tangent spaces to complex symmetric Banach manifolds which
are infinite-dimensional generalization of the Hermitian symmetric spaces classified by
E. Cartan [5] using Lie groups. The non-compact irreducible Hermitian symmetric spaces
are, up to biholomorphic equivalence, the open unit balls of six types of finite-dimensional
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spaces of matrices. The infinite-dimensional generalization of these spaces are the follow-
ing six types of JBW *-triples, known as the Cartan factors:

type 1 L(H,K),

type 2 {z € L(H,H):z' = -2},

type 3 {z€ L(H,H): 2" =z},

type 4 spin factor,

type 5 M;2(0) =1 x 2 matrices over the Cayly algebra O,
type 6 M3(O) =3 x 3 hermitian matrices over O,

where L(H, K) is the Banach space of bounded linear operators between complex Hilbert
space H and K, with Jordan triple product

1
{z,y,2} = §(xy*z + zy*x)

and z! is the transpose of z induced by a conjugation on H. Cartan factors of type 2 and
3 are subtriples of L(H, H), the latter notation is shortened to L(H). A spin factor is a
Banach space that is equipped with a complete inner produce (-,-) and a conjugation j
on the resulting Hilbert space, with triple product

(#9,2) = 5 (@97 + {2 9)7 — (@,32)0)

such that the given norm and the Hilbert space norm are equivalent. The Cayley algebra
O is a non-associative complex algebra with a basis {ey,...,e7}. Given a = apeg + -+ - +
azer € O, we define @ = agey + -+ - + azer and a* = agey — (age; + - -+ + azer). The
Jordan triple product in M;»(0) is given by {z,y,2} = 3 (2(y*z) + 2(y*z)) where y* =

*
(gi) for y = (y1,y2). Matrices in M3(O) are hermitian with respect to the involution
2

> akek)i = apep — ZF{' ager in O. The triple product in M3(0O) is defined by
{z,y,2} =z0(y 02) —y o(zoz)+zo(xoy”)

where z oy = Z(zy + yz) and (yi;)* = (7i;). The Cartan factors M 2(O) and M3(O)
are exceptional which means that they cannot be embedded as a subtriple of L(H). A
JBW*-triple which can be embedded as a subtriple of L(H) is called a JW*-triple. We
refer to [9,26,35,40,41] for more details of JB*-triples and symmetric manifolds.

Let Z C L(H) and W C L(K) be JW*-triples. Then their algebraic tensor product
Z ® W identifies naturally as a subtriple of L(H ® K), where H ® K is the usual Hilbert
space tensor product. The ultraweak closure ZQW of ZOW in L(HQK) is a JW *-triple.

Let Z be a JB*-triple. An element e € Z is called a tripotent if e = {e,e,e}. If Z is a
C*-algebra, the tripotents are exactly the partial isometries. A tripotent e € Z is said to
be minimal if {e, Z,e} = Ce, to be unitary if {e, Z,e} = Z, and complete if {e,e,z} =0
implies z = 0. The complete tripotents are exactly the extreme points of the closed unit
ball of Z. We note that a JB*-triple may not have any tripotent, but JBW *-triples
contain an abundance of tripotents. Given any extreme point p in the closed unit ball
Z7 of Z*, there is a unique minimal tripotent s(p) € Z**, called the support of p, such

that p(s(p)) =1 [18].
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A closed subspace J of Z is called an ideal if {Z,J,Z} +{Z,Z,J} C J. If Z is a
C*-algebra, this definition is equivalent to saying that J is a closed two-sided ideal. If Z
is a J BW*-triple, then every weak*-closed ideal J in Z is 1-complemented, that is, there
is a weak™-continuous contractive projection P : Z — Z with J = P(Z) [24].

The Murray-von Neumann classification of von Neumann algebras into types I, II
and ITT can be extended to JBW*-triples. These types are preserved by weak™ continuous
contractive projections as follows [11].

Proposition 3.1 Let Z be a JBW*-triple of type j, where j =1, 11 or I11. Let P : 7 —
Z be a weak™ continuous contractive projection. Then each direct summand of P(Z) is
a JBW*-triple of type k with k < j.

We now define the spectrum of a JB*-triple. The structure space of primitive
M-ideals of a Banach space was introduced and investigated in [1]. In JB*-triples,
the primitive M-ideals are the kernels of Cartan factor representations [3]. Let Z be
a JB*-triple. A Cartan factor representation of Z is a (nonzero) Jordan triple homo-
morphism 7 : Z — M where M is a Cartan factor and n(Z) is weak*-dense in M. Two
Cartan factor representations m : Z — M and 7 : Z — N are equivalent if there is
a Jordan triple isomorphism % : M — N such that 7 = ix. Given an extreme point
p € Z7, let Z7* be the weak™-closed ideal in Z** generated by the support s(p) of p.
Then Z7* is a Cartan factor and the composite map

P
7rp:Z<—>Z**—p>Z;*

is a Cartan factor representation, where P, : Z** — Z** is the natural weak*-continuous
projection mentioned above. In fact, as shown in [3], all Cartan factor representations are
of this form, and two representations 7, and m, are equivalent if, and only if, s(p) = s(n).
Hence the set Prim Z of primitive M-ideals of Z is given by

Prim Z = {ker 7, : p € 0. Z7}

where 0.Z; denotes the set of extreme points in Z;. We equip Prim Z with the hull-
kernel topology in which the closure of a set S C Prim Z is the hull-kernel hk(S) defined
by

hk(S)={J € Prim Z:J D k(S)}, k(S)=n{J:JeS}.

The spectrum of a JB*-triple Z is the set 7 of equivalence classes of Cartan factor
representations of Z, equipped with the topology induced by the hull-kernel topology of
Prim Z via the following surjective map:

WEZ\H ker 7 € Prim Z

where, following the usual convention, we use the same symbol 7 for its equivalence class.
Given a Cartan factor C, its spectrum C' reduces to a singleton since C' contains no
proper weak*-closed ideal and hence every Cartan factor representation of C'is equivalent
to the identity representation.
If Z=1&®J is an £-sum of two closed ideals I and J, then as in [3, p. 22], we have
Z=TuUlJ.
Proposition 3.2 Let Z be a finite-dimensional JB*-triple and let C(S, Z) be the JB*-triple
of continuous Z-valued functiﬂzs\on a compact Hausdorff space S, with pointwise triple

product. Then the spectrum C(S, Z) is homeomorphic to S x Z.
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Proof. For each s € S, let 0, € C(S)* be the unit mass at s. We have 9.C(S); = {ad; :
s € S,|a| = 1}. The support tripotent s(ds) of Js is a minimal projection p € C(S)**
whereas the support tripotent of ads is ap. We have C(S);* = C(S)**p = Cp and the
Cartan factor representation w5, : C'(S) — C(S)5* is one-dimensional with 75, (f) =
f(s)p, which is equivalent to mg, : C(S) — C(5)55, = Cp, given by mag, (f) = af(s)p.

— —

Hence C(S) is homeomorphic to S, via s € S — 75, € C(S). Identify C(S, Z) with the
koK

injective tensor product C'(S)®Z. Since Z is finite-dimensional, we have (C(9)®Z)"" =
C(S)**®Z, by a simple application of [12], say.

Let (7s,, 7)) € C/’(E) x Z. Then we can define a natural Cartan factor representation
w5, @1, C(S)®Z — Cp ® Z".

Two such representations 75, ® 7, and 75, ® m, are equivalent if, and only if, s = ¢ and
s(p) = s(n) € Z**. Thus we can define an injective map

—— —

(m5,,7,) € C(S) X Z s 75, © 7, € C(S, Z). (3.1)
To see the map is surjective, consider a Cartan factor representation
T, : C(S)®Z — (C(S)**@Z)w

where ¢ € 0.C(S,Z)] and (C’(S)**@Z)w is the weak*-closed ideal generated by the
support tripotent s(¢) in C'(S)*®Z. It is well-known [37] that

p=adsQp

for some s € S and p € 0.Z7. It follows that m, is equivalent to 75, ® 7, and the map in
(3.1) is surjective. The above arguments also show that the following map is bijective:

@ : (kerms,, kerm,) € Prim C(S) x Prim Z — ker (75, ® 7,)
€ Prim (C(S)®Z).

Further, @ is a homeomorphism as it is straightforward to verify that (hk(S)) = hk®(S)
for S C Prim C(S) x Prim Z.

Since Z is finite-dimensional, the map 7 € Z + ker 7 € Prim Z is a homeomor-
phism. Hence C(S) x Z is homeomorphic to Prim C(S) x Prim Z and the following
diagram implies that C(S) x 7 is homeomorphic to C (S,2):

C(S) x Z —» Prim C(S) x Prim Z
B !
c(S,Zz) —  PrimC(S,Z).



Jordan structures in harmonic functions 11

4. Harmonic functions on homogeneous spaces

In this section, we study the Jordan algebraic analytic structures of bounded matrix-
valued harmonic functions on homogeneous spaces. Let G be a locally compact group
acting on a locally compact Hausdorff space §2 by a right action (g,&) € Gx 2 — £-g € (2.
If G acts transitively, then there is a closed subgroup H C G and a continuous bijection
from the right coset space H\G onto (2. If this bijection is a homeomorphism, for example,
this happens when G is a countable union of compact sets, then we call 2 ~ H\G a
homogeneous space of G, where the action (g,&) — £-g is equivalent to the natural action
of G on H\G.

There is a quasi-invariant measure v on the homogeneous space 2 = H\G (cf. [15]).
Here quasi-invariance means that all translates of v are mutually absolutely continuous.
We fix such a measure v on 2. The Lebesgue spaces of v on 2 are denoted by LP(2) for
1 < p < oo. Likewise LP({2, M,,) denotes the space (of equivalence classes) of M,,-valued
LP-functions on (2.

Given o € M (G, M,,) and a Borel function f : 2 — M,,, we define their convolution

f*o by
(f o) /féy Jdoly) (£ € Q)

whenever the integral exists. As before, we let
H, (2,M,) ={f € L™, M) : f=fxo0}

be the space of (essentially) bounded o-harmonic functions on f2.
In the scalar case 0 € M (G, C), we have

(hxa,f)y=(h,fx0) (h € LY(92), f € L™(2)) (4.1)

and it follows that the map f € L°(£2) — fxo € L*(£2) is weak™ continuous. Moreover,
if we let J be the norm closure in L'(£2) of the subspace

{hx& —h:heLY(0)},

then H,(2,C) = (L'(22)/J)".

In the matrix-valued case 0 € M (G, M,), however, (4.1) need not hold for M,-
valued functions, but the weak™ continuity of the map f € L*®(£2,M,) — f*xo €
L>*(2, M,,) follows from entrywise computation. Indeed, let (f,) be a net weak* con-

vergent to f in L°°({2, My). Then the net (f,);; of each entry weak™ converges to f;; in
L>®(£2). For any h € L'(2, M}), we have

o) = T ( [ o)fa xo))iv(a))
= 5 [ [ ha@)faisto -y dosivta)

ijk

= Z/ zk*U]Z fa)k]( )dV((II)

ijk

3 [ (i =50 )ibl) = (0 f 5 )

ijk
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Therefore H,(£2, M,,) is weak*-closed in L*°(§2, M,,) and if we let
J={he LY (Q,M}): (h, f) =0,Yf € H, (2, M)} (4.2)

then H, (2, M,) = (L*(2,M})/J)".

We now show that, for ||o|| = 1, there exists a contractive projection from L (£2, M,,)
onto H,(£2,M,). The construction of such a projection is similar to that in [6,8] for
groups. We outline the main steps below.

Proposition 4.1 Let 2 be a homogeneous space and let o € M(G,M,) with |o|| =
1. Then there is a contractive projection P, : L*°(2, M,) — L*(£2,M,) with range
H, (2, M,). Further, given any weak* continuous map T : L>(2, M,) — L (2, M,)
satisfying T(f * o) = (Tf) * o, then PT =TP.

Proof. Define the convolution operator A : L*°(£2, M,) — L*°(§2, M,,) by
Af)=Fro  (f € I2(2,M,)).

Then ||A]] < 1 since |lo|| = 1. By the above remark, A is weak* continuous. Let
L>®(02, M,)L™(2Mn) he equipped with the product weak* topology 7. Let K be the
T-closed convex hull of {A™ : n = 1,2,...} where A" = Ao---0 A (n-times). Define
®: K — K by

O(I)(f)=T(f)xo (€K, feL® M,)).

Then @ is well-defined, affine and T-continuous. Therefore there exists P, € K such
that @(P,) = P,, by the Markov-Kakutani fixed point theorem, and P, is the required
contractive projection.
The last assertion follows from T'A = AT.
O

Corollary 4.2 Let 2 be a homogeneous space and let o € M(G, M,) with ||o|| = 1.

Then H,(£2, M,) forms a JW*-triple and is either {0} or linearly isometric to a finite

0 -sum @L>®(£2) @ Cy, where Cy, is a finite-dimensional Cartan factor of type 1,2,3 or
k

4.

Proof. Since H, ({2, M,,) is the range of a contractive projection P, on L*(f2, M,), by
[19], H,(£2, M,,) is a JW*-triple with the Jordan triple product defined by

1 * *
{f,9:h} = 5 Po(fg"h + hg"f)
for f,g,h € Hy(£2, My,). As L>®(§2,M,,) is a finite type I von Neumann algebra, by [6,
Proposition 11], H,(§2, My,) is either {0} or a finite direct sum ®L>(§2;) ® C, where Cj,
k

is a finite-dimensional Cartan factor which cannot be exceptional, that is, of type 1,2,3
or 4.
g

Remark 4.3 The proof of Proposition 4.1 implies that there is a net {4} in the convex
hull of {o™ : n =1,2,...} such that

Fo(f) = w" =T f+ g



Jordan structures in harmonic functions 13

for every f € L*°(§2, M,,) which gives
1 * *
{f,9:h} = 5 Po(fg"h + hg" f)
1
=w' —limg (fg"h +hg"f) * pa

for f,g,h € H,(£2, M,). We note that, in general, the range of a contractive projection
on a JB*-triple V need not be a subtriple of V, although it is a JB*-triple in its own
right. We will discuss when H, (2, M,,) is a subtriple of L>(£2, M,,).

Example 4.4. Let G be a discrete group with at least two elements. Let o € M (G, My)
be supported on {a,b} C G and defined by

o-(32) -1}

Then ||o|| = 1 and for any f = (fij) € Hy(G, M>), we have f;1 o011 = fi1 and fipx 090 =
fiz, where || fij * oj;|| < || fijlllloj;]l and [o1]] = [log2|l < 1 imply f;; = 0 for all 4, 5. So
Hy (G, M) = {0}.

If o € M(G,C) with ||o|| = 1, then H,(G,C) is an abelian von Neumann algebra
[8, Corollary 2.2.9] and its spectrum is the natural Poisson boundary for the Poisson
representation of H,(G,C) [8, Proposition 2.2.13]. In the matrix-valued case, we have
the following description of the spectrum of H, (2, M,).

——

Corollary 4.5 Let 0 € M(G, M,) with ||o|| = 1. Then the spectrum H,({2, M,) is
compact Hausdorff and homeomorphic to o finite disjoint union of Stonean spaces.

Proof. We can ignore the trivial case H, ({2, M,) = {0}. By Corollary 4.2, we have
H,(02,M,) = loo & L>®(£2;) ® C, where the direct sum is finite and C}’s are Cartan
k

factors. Therefore we have the disjoint union

Ho(2,M,) = | JL>(2) ® C,
k

>~ | JL=(02) x Gy
k

~ | Jr=(2)
k

by Proposition 3.2.
g
The pointwise product of two harmonic functions need not be harmonic. We now
determine when H, ({2, M},) is a subalgebra of L>(£2, M,,).

Theorem 4.6. Let 2 be a homogeneous space and let o € M, (G, M,) be positive with
o(G) = 1. The following conditions are equivalent:

(i) Hy (2, M,) is a subtriple of L*>°(£2, My,);
(ii) H,(£2, M,) is a subalgebra of L>(§2, M,,);
(iii) Hy(£2, M) is a von Neumann subalgebra of L*° (82, M,);
(iv) Hy(2, M) = {f € L(2, My) : VE € 2, £(€-y~) = £(0) for |o] — ae.y € G).
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Proof. We first note that, since o(G) = I, the constant functions f(-) = A € M, are
o-harmonic.

(i)=>(ii). Let 1(-) = I be the constant function with value I € M,. Then for any
f,g € Hy(£2, M,,), we have

fa=1{f 1,9} € Hy(2, My,).

(ii)==-(iii). It suffices to show that f € H,(f2, M,) implies f* € H,(£2, M,), that is,
ffxo=f*

Let ¢(-) = Tr(A-) be a state of M,, where A is a positive matrix in M, Let g :
2 — M, be the constant function g(-) = A. By condition (ii), we have fg € H, ({2, M,,)
and therefore, for £ € (2,

o(f*x0()) =

= ([ 1€ Nate -y o))
T (99" F(©)7) = Te(AF(6) =0 (£7(9)).

As ¢ was arbitrary, we have f* o = f*.
(iii)==(iv). Clearly, if f € L>(£2, M,,) satisfies

fE&y =1 (ol-aeyeG)

then f € H,(f2, M,). We need to prove the converse. Let 0 = w - |o| be the polar
representation of o as in [6, p.21]. Let p € M,, be a minimal projection. Then for every
y € G, we have pw(y)p = A(y)p for some A(y) € [0,1]. Let f € H,(£2,M,) and & € (2.
We may assume that f = f*. By condition (iii), we have

(f = £(6))°p € Hy (2, My,).
Therefore
/G (€ y ") — 1) pdoty) = (f — F())2p *o(€)

which gives

/G (F€-yY) = £(0) puy)pdlol(y) =

and hence
2
; Tr ( ) = F©) P)Ay)dlol(y) =
It follows that Tr (p(f(¢-y 1) — f(¢ ))2 ) = 0 for |o|-almost every y € G. This implies
that p(f(¢-y 1) — (f)) p = 0 for |o|-almost every y € G. Since p was arbitrary, we

conclude that f(€-y= 1) = f(&) for |o|-almost every y € G.
(iv)==(iii))==(i). Obvious.
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O
We call a measure o € M (G, M,,) symmetric if d|o|(z) = d|o|(z~ ). The support of
the measure |o| is denoted by supp |o]|.

Proposition 4.7 Let {2 be a homogeneous space of a nilpotent group G and let o €
M(G, M,,) be symmetric, positive and ||o|| = 1. Let f € Hy({2, M,,). Then we have

f(&-a)=f(8)
for every & € 2 and a € supp |o|. In particular, Hy ({2, M) is a subalgebra of L*°(§2, M,,).

Proof. Let q : G — (2 be the natural map onto the right coset space {2. Then f oq is
o-harmonic on the nilpotent group G. Using this device, we only need to prove the result
for the special case of 2 = G. Let G, be the closed subgroup of G generated by supp |o].
Since o is symmetric, |o| is a non-degenerate probability measure on G, that is, G, is
the closed semi-group generated by supp |o|.

We first prove the result for a bounded left uniformly continuous o-harmonic func-
tion f on G. By restricting f and o to G, we may regard f as a bounded left uniformly
continuous o-harmonic function on G,. By [10, Theorem 4], f is constant on G, and in
particular, we have

f(za) = f(z)  (a € supp|o])
for all x € G,, and hence for all x € G, by applying the above formula to the left
translate £, f of f at e € G,. B
Now for any f € H,(G,M,) and ¢ € L'(G, M,), the function 9 * f is bounded,

left uniformly continuous and o-harmonic where v (z) = v(z~'). Therefore the above
arguments imply, for a € supp |0,

(f = farth) = Tr (§ = f)(e) = Tx (4 * f)(a) = 0

where f,(-) = f(-a). Hence f = f, in Hy(G, M,,).
The last assertion follows from direct verification.
O
We now derive further properties of H, ({2, M,) for 2 = G. As before, given any

M,-valued function f on G, we define f(z) = f(z ') for z € G.
Lemma 4.8 Given o € M(G, M,,), the space H,(G, M,) N Cp, (G, M) is weak* dense
in Hy(G, My).

Proof. Let {hq} be a bounded approximate identity in L'(G) where h, has compact
support and hy, = hy. Then the M,-valued functions

ha 0
Pa =
0 ha
form a bounded approximate identity in L'(G, M,,) and @, = @,.
Given any f € H,(G, M,), we have @, * f € Hy(G, M,) NC,y (G, My,) and for every
W € LNG, M), pat) = 1o, implies that
<¢79004*f> = <9006*71/)7f>‘

Hence (g * f) weak™ converges to f.
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O
We describe below the Jordan triple product of matrix-valued harmonic functions
on G in more detail which extends [8, Theorem 3.3.12].

Theorem 4.9. Let 0 € M (G, M,,) with ||o|| = 1. Then H,(G, M,) N Cyy (G, My,) is a
subtriple of Hy (G, My,) and there is a net {jq} in the conver hull of {o" : n € N} such
that the triple product of f,g,h € H,(G, M,) is given by

2{f,9,h} =lim (fg*h + hg" ) * pa

where the convergence is uniform on compact subsets of L'(G,M;). Further, if f,g,h €
H,(G,M,)N Cr,(G, M,), then the convergence is uniform on compact subsets of G.

Proof. Let f,g,h € H,(G, M,) N Cr,(G, M,). Then

2{f,9,h} = P;(fg*h + hg" f)

where P, : L*(G, M,) — H,(G, M,) is the contractive projection in Proposition 4.1 and
P, commutes with any weak* continuous map 7' : L (G, M) — L*°(G, M,) satisfying
T(f xo) = (Tf) xo for all f € L>*(G, M,). In particular, P, commutes with the left
translations ¢, (a € G). Hence by Lemma 2.5, we have {f,g,h} € Cy (G, M,) which
proves that H,(G, M) N Cy, (G, My,) is a subtriple of H,(G, M,,).

The second assertion follows from Remark 4.3 and the Mackey-Arens Theorem.

Now let f,g,h € H,(G, M,) N Cypy (G, My,). To show that the above limit converges
uniformly on compact sets in G, it suffices to prove it entrywise. Let

= % (fg"h+ hg* f).

We show that, for each 4,5,k € {1,...,n}, there is a subset {pg} of {{n} such that
{D @ik * (18)k;}p converges to {f, g, h};; uniformly on compact sets in G.
k
Write Cy(G) for Cry (G, C). For m € Cpy(G)*, we define m - i € Cry(G) by
(m - i) (z) = mlepix)  (z € G).

Let S = {m - pi : m € Cpy(G)*, ||m|| < 1}. Then S is a pointwise compact subset of
Cyry(G). Moreover, S is bounded and equicontinuous. Indeed, the inequality ||m - x| <
lm|| ||pik|| implies that S is bounded. Given € > 0, there is a neighbourhood V' of the
identity e € G such that

wv €V implies ||[€upir — Lupir]| < €.

Hence [(m - pir)(u) — (m - gir) (v)| = [m(Lupir) — m(bupir)| < €.
We have

0 * pio(z) = /GsO(xy‘l)dua(y)
= / p(zy)diia(y)
G

where dfiq(y) = dpo(y—'). We may regard (fiq)x; as an element in Cy,(G)* by defining

(i) (w) = /G wd(fin)e; (W € Cru(@))
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in which case we have
| len)dGia)is ) = oy - ouo

and (¢ * pa)ij = D (fta)kj - @ik- By Ascoli’s theorem, there is a subnet {(z)k; - @ir}
k

which converges uniformly on compact subsets of G, and therefore converges in the weak*
topology of L*°(G).

Running through the index k£ € {1,...,n}, we can therefore find a subnet {pg} of

{#a} such that {d (zig)k; - vir}s converges uniformly on compact subsets of G, and in
k

the weak™ topology of L*°(G). It follows that
{f:9,h}ij = lim (g * 1p)s

= 1%112 (18)kj - Pik
k

uniformly on compact sets in G. Finally, running through the ij-entries, we can find a
subnet {p } such that

{f’g?h} = liaf,nSO*Ma’

uniformly on compact subsets of G.
O

We now consider the case when the dual space H,(G, M,)* is a Banach algebra.
Let H,(G, M,) = (L*(G,M})/J)" where J is defined in (4.2). We note that H,(G, M,)
is a left translation invariant subspace of L*°(G, M,,) and the identity

(Cah, f) = 8(a™") (b, £y=1 f)

implies that .J is left-translation invariant in L'(G, M,,), where A is the modular function
of G. If Hy(G, M,,) is also right-translation invariant, then L!'(G, M;)/J is a Banach
algebra by the following lemma. It follows that H, (G, M,)* = (L'(G,M;)/J) s a
Banach algebra with respect to the two Arens products.

Given h € LY(G,M}) and f € L*(G, M,), we can define two functions h - f,
f-h € L®(G, M,) by

(h- f)(z) = /G h(y) (o ) () dA ()
(f - W) = /G h(y) (£ ) (9)dA(y)

for z € G.

Proposition 4.10 Let o € M (G, My,). Then the following conditions are equivalent :

(i) Hy(G, M,) is translation invariant;
(ii) J is translation invariant;

(iii) J is an zdeal m LY(G, M*),

(iv) fG fG Yz)do(y) for f € Hy(G, n) N Cru(G, My,);
(v) thELl(G M*) andeH(G’M) then h - f,f € H,(G, M,).
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Proof. (i)<=(ii)<= (iii). Given h € L'(G, M}) and f € L>*(G, M,,), we have

(ha'raf> = A(a’_l)<’ra—1h7 f>

for every a € G. Hence H,(G, M,,) is right-translation invariant if, and only if, .J is. The
equivalence of (ii) and (iii) is standard.

(i)=(iv). Let f € H,(G, M) N Cy (G, M},). The right invariance of H,(G, M,,) gives

/fwy )do(y) = (f *0) ()

= rz(f *0)(e)
= (rzf)(e) = (rzf x 0)(e)

/fy x)do(y

(iv)==(i). Let f € H,(G, My) N Cry(G, My). Then £, f € H, (G, M,) N Cry(G, M,) and

(raf)(z) = ra(f * 0)(a /facay Vdo(y

which yields the right invariance of H, (G, M,) N Cy, (G, M,,), and hence, of H,(G, M,,)
by weak™ density from Lemma 4.8.

(i)=>(v). Since h- f = h * f, we have h - f € H,(G, M,) whenever f € H,(G, M,). By
(i), we also have r,f € H,(G, My,) and

(f ) % olx) = / (f - W)y V)do(y)

// f(zy t2)do(y)d\(2)
= [ [ M r-ntaydatmae)

—/ W) (1) (@)dA(2) = (f - B)(@).
G
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(v)==(iii). We show J is a right ideal. Let h € J and k € LY(G, M;). For any f €
H,(G,M,), we have f -k € H,(G, M,) and

ek ) =1 ([ @ @)

(/ [ k@)

h,f k) = 0.

Hence h x k € J.
O
To conclude the section, we discuss bounded o-harmonic functions in the context of
Riemannian symmetric spaces. Let X be a Riemannian symmetric space and let A be the
Laplace-Beltrami operator on X. A C? function f : X — R is harmonic if Af =0. A
complex-valued function on X is harmonic if its real and imaginary parts are harmonic.
Let X be a simply connected Riemannian symmetric space. Then X is a product

X =Xox Xy x X_

where X is Euclidean, X is of compact type and X _ is of non-compact type [22, p.244].
Since Xy and X have non-negative sectional curvatures, the bounded harmonic func-
tions on these manifolds are constant by a result of Yau [43], and we need only consider
symmetric spaces of non-compact type.

Let X = H\G be a Riemannian symmetric space of non-compact type, represented
as a homogeneous space H\G of a semisimple Lie group G by a maximal compact
subgroup H. An example is the symmetric space S0(n)\SL(n,R). Furstenberg [20] has
shown that there is an absolutely continuous H-invariant probability measure ¢ on G
such that a bounded function f on X = H\G is harmonic if, and only if, the inverted

function fis o-harmonic, where we define
f(Ha)= f(Ha")  (Ha€ H\G).

Let H(X,C) = {f € L*(X,C) : Af = 0} be the space of bounded harmonic functions
on X. Then the map f € H(X,C) — f € Hy(X,C) ={h € L®(X,C) : hxo =h}isa
surjective linear isometry and we have readily the following result.

Corollary 4.11 H(X,C) is a unital abelian C*-algebra.

Proof. Since o is a probability measure, H,(X,C) contains constant functions. Since it
is the range of a contraction projection P : L*°(X,C) — H,(X,C), by Proposition 4.1
and Corollary 4.2, H,(X,C) is an abelian C*-algebra with product f - g = P(fg).

O

Remark 4.12 Let M be the pure state space of the C*-algebra H(X,C) = H,(X,C).
Then H (X, C) is isometric to the space C(M) of continuous functions on M which gives
a Poisson representation of H (X, C), with M as the Poisson boundary. The construction
is similar to [8, Proposition 2.2.13].
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Let {2 = H\G be a homogeneous space. A measure o € M (G, M,,) is said to be
H-invariant if it satisfies do(hk) = do(h) for all k € H. Following [21], we say that G
acts amenably on 2 if there is a right invariant mean on L ({2, C), in which case, we also
say that {2 is G-amenable. We now show when (2 must be G-amenable if it admits the
Liouville theorem. We note that Example 4.4 shows that H,(G, M,) = {0} can occur for
non-amenable groups G. However, if ¢ is a probability measure on G, then the constant
function f(-) = I € M, is o-harmonic on (2.

Theorem 4.13 Let 2 = H\G be a homogeneous space where H is compact. Let o €
M(G, M,,) be a positive H-invariant measure with ||o|| = 1. If all o-harmonic L (£2, M,,)-
function on 2 are constant, not all 0, then (2 is G-amenable.

Proof. Given f € L*>(2, M,), we have f € H,(§2, M,) if, and only if, foq € H,(G, M,,)
where ¢ : G — H\G is the quotient map. Hence H,(G, M,,) is non-zero; but we show it
contains only constant functions. Let F' € H,(G, M,,) and define a function f : 2 — M,
by

f(Ha):/HF(ha)dh

where dh is the normalized Haar measure on the compact group H. Then f is o-harmonic
on §2:

(f * 0)(Ha) = / f(Hay™")do(y)

/ / (hay YYdo(y)dh
_ / (ha)dh = f(Ha).
H
Hence f is constant by hypothesis and in particular,
/ Fha)dh = / Fihydh  (acG).
H H

By H-invariance of o, we have

F(e)

F(y™")do(y)

/H F(hy™")dhdo(y)

/ F(h)dhdo(y
H

F(h)dh) o(G).

I
N~~~

H

Applying the above result to the left translate F'(a-) of F', we obtain

Fla) = ( /H F(ah)dh) 0@  (ac@)

which gives F'(ah) = F(a) for all h € H. Therefore we can define a function ¢ : 2 — M,
by
o(Ha) = F(a™") (a € G).
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Then ¢(Ha) = F(a) is o-harmonic on {2 and hence constant. Therefore F' is constant.
Now, by [6, Corollary 19], G is amenable and hence H is G-amenable.
O
As noted above, on a Riemannian symmetric space X = H\G of non-compact type,
the bounded harmonic functions are the functions {f : f € H,(X,C)}, for some H-
invariant probability measure o on G. We see from Theorem 4.13 that H (X, C) contains
non-constant functions.

5. Fourier algebras of homogeneous spaces

In this section, we study harmonic functionals on the Fourier algebras of homogeneous
spaces and extend the results for groups in [8, Chapter 3] to this setting. Let H be a closed
subgroup of a locally compact group G. As in [16], one can define the Fourier algebra
A(H\@) and the Fourier-Stieltjes algebra B(H \G) associated to the homogeneous space
H\G. This extends the notion of the Fourier algebra A(G) and Fourier-Stieltjes algebra
B(G) of a group G. The harmonic functionals on A(G) have been studied in [8]. We
define harmonic functionals on A(H\G) and extend the results in [8] to A(H\G).

Let G be a locally compact group. We recall that the Fourier-Stieltjes algebra
B(G) is a commutative Banach algebra consisting of complex-valued coefficient func-
tions (7(-)¢,n) on G, where 7 is a continuous unitary representation of G on a Hilbert
space H; and &, € H,, and the multiplication in B(G) is pointwise. As a Banach space,
B(G) can be identified with the dual of the group C*-algebra C*(G) of G. The Fourier
algebra A(G) is the subspace of B(G), consisting of coefficient functions (p(-)&,n) where
p is the right regular representation of G. In fact, A(G) is a closed ideal of B(G) and
its dual A(G)* is isometrically isomorphic to the group von Neumann algebra VN (G)
which is the ultra weak closure of the linear span of p(G) in the algebra L£(L?(G)) of
bounded operators on L?(G).

Let H be a closed subgroup of G and let ¢ : G — H\G be the canonical right coset
map. As in [16], we define the following closed subalgebras of B(G) :

B(H\G) ={u € B(G) : u(hz) = u(z), YV € G,h € H};
A(H\G) = {u € B(H\G) : q(supp u) is compact in H\G} "~

where ‘=’ denotes the closure in the norm topology of B(G). These algebras are called
respectively the Fourier-Stieltjes and Fourier algebras of the homogeneous space H\G.
If H is normal, then B(H\G) and A(H\G) are just the Fourier-Stieltjes and Fourier
algebras of the quotient group H\G.

Evidently, both B(H\G) and A(H\G) identify naturally as subalgebras, but not
closed unless H has finite index, of the C*-algebra C,(H\G) of bounded complex contin-
uous functions on the homogeneous space H\G. We will use this identification whenever
it is convenient.

To introduce harmonic functionals on A(H\G), our first task is to identify the dual
space A(H\G)*. We begin by recalling the following basic results which have been proved
in [16]. We note that, in [16], the algebras A(H\G) and B(H\G) are defined for the left
coset space G/H, but the results carry to our setting of the right coset space H\G.

Lemma 5.1 Let H be a closed subgroup of G. Then A(H\G) is a closed ideal of B(H\G)
and we have
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(i) A(H\G) = B(H\G) if, and only if, H\G is compact.
(ii) A(H\G) N A(G) # {0} if, and only if, H is compact.
Given that H is compact, then A(H\G) is a regular Banach algebra whose spec-

trum is homeomorphic to H\G. Further, G is amenable if, and only if, A(H\G) has an
approzimate identity {uq} with ||ual < 1.

Let C*(G) be the group C*-algebra of G. We can identify the dual B(G)* with the
enveloping von Neumann algebra W*(G) of C*(G). We denote the dual pairing between
B(G) and W*(G) by (-,) : B(G) x W*(G) — C. There is a continuous monomorphism
w: G — W*(QG) such that

(u,w(a)) =u(a) (ue B(G),acq)
and w(G) is w*-dense in W*(G) (cf. [13,14]). For each v € B(G) and T € W*(G), we
define T - u € B(G) by

(T-u,S) = (u,ST) (S €W Q)).

Then w(a) - u is just the right translate u, of u for @ € G. Since B(H\G) and A(H\G)
are both right translation invariant in B(G), and since w(G) is w*-dense in W*(G), we
see that B(H\G) and A(H\G) are left invariant subspaces of B(G) with respect to the
above product T - u:

T-B(H\G) C B(H\G); T-A(H\G) C A(H\G) (T e W*"(Q)).
Hence, by [38, p. 124], there are projections pp, qg € W*(G) such that B(H\G) =
B(G) o qg and A(H\G) = B(G) o pg where u o py is defined by

(wopm,S) = (u,puS) (S €W (G))

for v € B(G). Taking duals, we have the following description of the dual spaces
B(H\G)* and A(H\G)*.
Lemma 5.2 Let H be a closed subgroup of G. Then there are projections pg and qm in
W*(G) such that A(H\G)* = pgW*(G) and B(H\G)* = quW*(G).

We note that, by the work of Takesaki and Tatsuuma [39], the closed right trans-
lation invariant x-subalgebras of A(G) are exactly the algebras A(H\G) with compact
subgroups H C G in which case we have

A(H\G) = prA(G) (5.1)
for some projection p§, € V.N(G) and
A(\G)* = pgVN(G) (52)
(see also [25, Theorem 5.3.5] for a similar result for the left coset space G/H).

Motivated by the fact that the dual A(G)* identifies with the group von Neumann
algebra VN (G), we will denote A(H\G)* by VN(H\G) which is a right ideal of W*(G)
and hence a JW*-subtriple of W*(G). If H is a normal subgroup of G, then both B(H\G)
and A(H\G) are also right invariant subspaces of B(G), and therefore py and gg are
central projections in W*(G). Likewise we define C*(H\G) := qgC*(G). Then we have
CH(H\G)" = (4nC*(G))" = B(G) o qyy = BH\G).
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Remark 5.3 We have A
Also (B(G)opyey) N (B(G
case pyeypu = 0 and A(G
H is non-compact as A(G

—~

G) = B(G) o py) where py.y is a central projection in W*(G).
opg) = A(G)NA(H\G) = {0} if H is non-compact in which
opy = B(G) o (pgeypn) = {0}. Likewise A(G) o gy = {0} if
N B(H\G) = {0}.

~ ~— ~—

We are now ready to introduce the harmonic functionals of A(H\G). Let o €
B(H\G) and let
I;(H\G) = {op —p:pc A(H\G)}~

where ‘7 denotes the norm closure. Evidently I,(H\G) is a closed ideal of A(H\G). Let
(-,-) : A(H\G) x VN(H\G) — C be the dual pairing of A(H\G)* = VN(H\G). Since
A(H\Q) is an ideal of B(H\G), we can define an action of B(H\G) on VN (H\G) as
follows. For 0 € B(H\G) and T € VN(H\G), we define 0 - T € VN(H\G) by

(p,0-T)=(0p,T) (v € AH\G)). (5.3)
It is readily verified that the annihilator of I,(H\G) is given by

I,(H\G)t ={T e VN(H\G) : (I,(H\G),T) = 0}
={T e VNH\G):0-T=T}.

We call the elements in I, (H\G)* the o-harmonic functionals of A(H\G) and we denote
A(\G); = I,(H\G)".

We first show that A(H\G)j is a JW*-triple.

Proposition 5.4 Let 0 € B(H\G) with ||o|| = 1. Then there exists a contractive pro-
jection P, : VN(H\G) — A(H\G): such that Py(¢-T) = ¢ - P,(T) for ¢ € A(H\G)
and T € VN(H\G). In particular, A(H\G)? is a JW*-triple.

Proof. The arguments are similar to those for the case of H = {e} given in [8, Proposition
3.3.1]. We sketch the construction of P,. Let L(VN(H\G)) be the locally convex space
of bounded linear maps from VN(H\G) to itself, equipped with the weak*-operator
topology. For n =1,2,..., define A,, : VN(H\G) — VN(H\G) by

Ap(T) =0" - T.

Let K be the closed convex hull of {A, : n = 1,2,...} in L(VN(H\G)) and define
a continuous affine map @ : K — K by #(A) = o - A. By compactness of K and the
Markov-Kakutani fixed point theorem, there exists P, € K such that #(P,) = P, which
is the required projection.

Finally VN(H\G) = pgW*(G) is a JW*-triple as it is a right ideal of a von Neu-
mann algebra and it follows that A(H\G)}, being the range of a contractive projection
on JW*-triple, is also a JW*-triple, by [28].

O

We refer to [8, 3.3] for examples in which the above projection P, is weak* contin-
uous.

Corollary 5.5 Let 0 € B(H\G) with ||o|| = 1. If VN(H\G) is of type j for j =1, I or
111, and if the projection P, : VN(H\G) — A(H\QG)}: is weak* continuous, then each
direct summand of A(H\G)?% is a JW*-triple of type k with k < j.
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Proof. By Proposition 3.1.
g

Remark 5.6 If H = {e}, then A(H\G)} is always a right ideal of a von Neumann
algebra. To see this, let 0 € B(G) with ||o|| = 1 and let

Z(l,)={x € G:0(x) =1}

be the zero set of I, := I,({e}\G) C A(G). If Z(I,) = 0, then I, = A(G) and
A({e\G): = I} = VN(G). If Z(1,) # 0, ple a € Z(I,) and let v = £,-10 be the
left translate of o. We have ||y|| = v(e) = 1 and K = {z € G : y(z) = 1} is a closed
subgroup of G by [23, 32.7].

Write I, = I,({e}\G). Its zero set Z(I,) is the group K. By [8, 3.2.10], IJ- is the
von Neumann subalgebra V N (G) of VN (G), generated by {p(z) : x € Z(I,)} = {p( ) :
r € K}, where p is the right regular representation of G. We have Z(I,) = a 'K and
I = {p(z) : 2 € a 'K} = pla ) {p(z) : z € K} = p(a ')V Ng(G). We make this
observation following a suggestion of V. Losert and M. Leinert. More generally, for any
compact subgroup H, we have

L(H\G)" ={T € pj;VN(G) : 0 - T =T} C Iy = VNg(G)
where p§; is the projection in (5.2). Therefore
L,(H\G)* = piVN(G) N VNE(G) = p;V Nk (G).

Likewise
L,(H\G)" = pjVN(G)
it Z(I,) = 0 while
L(H\G)* = pi(pla™)VNK(G))
if there exists a € Z(I;) as above.

We note that the case Z(I,) = () can occur as the following simple example shows.

Example 5.7 Let G = {a, e} and consider the complex measure p = 15 + .58, where
d; denotes the point mass at x € G. It is easily seen that there is no nonzero function
f : G — C satisfying the convolution equation f* u = f. Let o € A(G) (G) be the
Fourier transform of s. Then I- = {0}, in other words, I, = A(G’) and Z(I,) = 0.

We now study the ideal I,(H\G) whose annihilator in VN(H\G) is the space
of o-harmonic functionals. As a non-commutative analogue of the Liouville theorem
for harmonic functions, we are interested in the question of triviality of A(H\G): =
I,(H\G)™". In the special case of H = {e}, we have shown in [8, Proposition 3.2.7] that
one has A({e}\G); = CI for some positive definite 0 € B(G) with o(e) = 1 only if G
is first countable. We will prove similar results for compact subgroups H C G. For this,
we first need to develop some relevant results on topological means on V. N(H\G) which
are closely related to the amenability of the homogeneous space H\G.

We note that, in Lemma 3.2.4 and hence the proof of (i7) = (i) in Proposition 3.2.7
of [8], the group G is required to be second countable.

Let H be a closed subgroup of G and let

A(H\G)o = {p € A(H\G) : p(e) = 0}
S(H\G) = {p € A(H\G) : [l = (¢, pm) = 1}
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where VN(H\G) = pgW*(G) as in Lemma 5.2, and (¢,pg) = (p,prw(e)) = (po
pr,w(e)) = (p,w(e)) = p(e). We note that S(H\G) is a commutative semigroup with
pointwise multiplication.

A functional m € VN(H\G)* is called a mean if m(pg) = ||m|| = 1. A mean m is
called a topological invariant mean if

(90 : T? m) = <T7m>
for all p € A(H\G) and T € VN(H\G), where ¢ - T € VN(H\G) is defined in (5.3).

Lemma 5.8 Let G be a locally compact group and H be a closed subgroup of G. Let m
be a linear functional on pgyW*(G) such that m(py) = 1 = ||m||. Then there exists a net
(1a) in S(H\G) such that (1q) converges to m in the weak®-topology.

Proof. Write p = pg. Define m : W*(G) — C by m(T) = m(pT). Then m(I) =
m(p) =1 = [|m]|, so m is a state of W*(G). By the Cauchy-Schwarz inequality, m (7'(I —
p)) = m((I — p)T) = 0 for each T € W*(G) because m(I — p) = 0. Hence m(T) =
m(Tp) = m(pT) = m(pTp). Consequently m is supported by p and we may regard
m : pW*(G)p — C as a state on pW*(G)p. Let ¢, : pW*(G)p — C be normal states

such that @, Y  on pW*p. Define @ : W*(G) — pW*(G)p by @(T) = pTp. We have
Yoo ®: W*(G) = C and

(¢a © @)(T) = pa(pTp) = m(pTp) = m(T) = m(pT).
Define v, : pW*(G) — C by
$a(pT) = (pa © @)(pT).
Then 9a(p) = (¢a © D)(p) = Pa(p) =1 and
[Yall < llpa o @l < 1.
Hence ||¢o|| = 1, and ¢, € S(H\G). Also
$a(pT) = (pa © @)(pT) = m(pT)
SO Pq w3 .
We now extend Renauld’s result in [32] to homogeneous spaces.

Lemma 5.9 Let H be a closed subgroup of G. Then there exists a topological invariant
mean on VN (H\G). Also, there exists a net (o) in S(H\G) such that ||¢ap — ol = 0
for each ¢ € S(H\QG).

Proof. Let K = {m € VN(H\G)* : m(pg) = ||m|| = 1} which is a w*-compact convex
set in VN (H\G)*. For each ¢ € S(H\G), we can define an affine map m, : K = K by

(T,mp(m)) = (p-T,m) (T €VNH\G)).

This map is well-defined since |7 ,(m)| < ||m|| < 1 and n,(m)(pu) = (¢ - pu,m) =

(pm,m) = 1 where ¢ € S(H\G) implies ¢ - py = pp as (Y, - pu) = (pY,pn) =
P(e) = (¢, pp) for all p € A(H\G). By the Markov-Kakutani fixed-point theorem, the
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commuting family {m, : ¢ € S(H\G)} has a fixed-point m € K which is the required
topological invariant mean.

Now fix a topological invariant mean m on VN (H\G) = pgW*(G). Then m(pg-)
is a state on the von Neumann algebra W*(G). By Lemma 5.8, we can find a net (¢,)
in S(H\G) w*-converging to m(pm-).

We now use an idea of I. Namioka. Let & = A(H\G)%"\%) be the product space
with the product topology 7. Define a map 7 : S(H\G) — £ by

(W) (@) =~y (p,9 € S(H\G)).

Since (o) w*-converges to m and m is a topological invariant mean, we have 7(¢,) — 0
in the weak topology of £, that is, 0 is in the weak closure of W(S(H\G)) and hence in the

7-closure of 7(S(H\G)). Therefore there is a net (14) in S(H\G) such that m(1a) = 0,
that is, ||pa — Yall — 0 for all ¢ € S(H\G).
O
A closed subgroup H of G is called neutral if for every neighbourhood U of the
identity e € G, there exists a neighbourhood V' of e such that VH C HU (cf. [33]). We
note that normal, open or compact subgroups are neutral, as well as all closed subgroups
of a SIN-group.

Lemma 5.10 Let H be a neutral subgroup of G. Then there is a net (04) in S(H\G)
such that supp o, | H.

Proof. Let U be a neighbourhood base of e consisting of compact sets. Let U € U. Then
one can find a compact symmetric neighbourhood V' of e such that VH = HV and
V2 C U. 1t suffices to show that there exists oy € S(H\G) with supp oy C HU which
gives the required net (oy)yey. The existence follows directly from an argument in the
proof of Proposition 2.2 in [17].
O
The following generalizes Proposition 3.5 and Corollary 3.6 in [16].

Corollary 5.11 Let Hy and Hy be neutral subgroups of G. Then A(H1\G) = A(H2\G)
if, and only if, Hy = Hy. Also, B(H,\G) = B(H2\QG) if, and only if, H = Ho.

Given T € VN(G), the support of T, supp(T'), is defined to be the set of those
elements = € G such that p(z) is the w*-limit of a net (¢, - T') with ¢, € A(G), where
p is the right regular representation of G.

Lemma 5.12 Let H be a compact subgroup of G. Then A(H\G)y is the closed linear
span of |J{I, : 0 € S(H\G)}, where I, = I,(H\G).

Proof. Clearly A(H\G)o contains the closed linear span I of |J{I, : 0 € S(H\G)}. It
suffices to show that I+ has dimension 1 in A(H\G)* = p4V N(G), that is, I+ = Cp%;,
where p§; is the projection in (5.2).

Let T € I'*. Then 0 - T = T for all 0 € S(H\G). By Lemma 5.10, there is a net
(0q) in S(H\G) such that supp o, | H. By [14, Proposition 4.8], we have supp (T") =
supp (04 - T) C supp o, and it follows that supp T' C H. By [39, Theorem 3], T belongs
to the w*-closed linear span of {p(h) : h € H}. Take a linear combination Y A,p(hq).

«
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For any ¢ € A(H\G), we have

(32 Aaplha) ) = D~ Aalips plha)
=Y Aap(ha)
= awle)
= Xale.p%)

= <(Pa Z Aap?{> :
It follows that T' = Ap§; for some A € C which completes the proof.

a
We now prove results on the triviality of A(H\G)}.

Proposition 5.13 Let H be a compact subgroup of a second countable group G. Then
there ezists some o € S(H\G) such that I,(H\G) = A(H\G)o and hence A(H\G)% =
Cp§; .

Proof. Tt suffices to prove the first assertion since it implies that A(H\G)%: = I,(H\G)* =
A(H\G)y = Cp;. By Lemma 5.9, there is a net (¢,) in S(H\G) such that ||op, — @l —
0 for all o € S(H\G). So ||(cp — ¢)pall = ll¢(cva — @a)l| = 0 for o € S(H\G) and
p € A(H\G). Let ¢ > 0 and ¢1,...,p, € A(H\G)p. From what we have just obtained
and Lemma 5.12, one can find pg € S(H\G) such that ||p;eg| < e fori=1,...,n. It
follows from pgp; — ¢; € I, (H\G) that

d(pi, Loy (H\G)) = inf {|lg; — 9|l : ¥ € L,,(H\G)} < e
fori=1,2,...,n.

Since G is second countable, A(G) is norm separable and so is A(H\G). So the
conditions in Lemma 1.1 in [42] are satisfied and by Remark 3 of [42], we have A(H\G)y =
I,(H\G) for some o € S(H\G).

O
Lemma 5.14 Let H be a compact subgroup of G and let 0 € B(H\QG) be positive definite
with o(e) = 1. The following conditions are equivalent:
(1) A(H\G); = Cpiy;
(i) © € H whenever o(x) = 1.
Proof. (i) = (ii). Let o(z) = 1. Then for any ¢ € A(H\G), we have

(g0 p(2)) = (09, p(x)) = () = (p, p(2)).

Therefore o - p(z) = p(z) and p(x)p} € A(H\G)} gives p(z)p§; = Ap§; for some X\ € C.
By [14, Lemma 3.2], we can pick ¢ € A(G) such that ¢(H) = ¢(Hz) = {1}. Define

70 = [ wi-jan.

Then ) € A(H\G) and (z) = ¢(e) = 1. Hence 1 = p(z) = (¢, p(z)) = (, p(x)p;) =
X, pG) = Mp(e) gives A = 1. Consequently € H for otherwise one can find ¢ €
A(H\@) such that ¢(z) # ¢(e) [16, Theorem 4.1] which leads to the contradiction

(o(@)pr, ) # P> )-
(i) = (i). The proof is similar to that of Lemma 3.2.6 in [8].
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O

Proposition 5.15 Let H be a compact subgroup of G. If A(H\G)} = Cp§; for some
positive definite o € B(H\G) with o(e) =1, then H\G is first countable.

Proof. By Lemma 5.14, o(xz) = 1 implies € H. We note that, for any net (Hz,) in a
compact neighbourhood of H in H\G, the net (Hz,) converges to H in the homogeneous
space H\G if, and only if, o(z,) — o(e) = 1. Indeed, if Hx,, -+ H, then there is a subnet
Hzg — Hx for some « ¢ H. Therefore liﬂm o(zg) =o(x) # 1.

Now let C be a compact neighbourhood of H in H\G. Let K = {r,o: Ha € C} be
the right translates of o by C. Then K is a norm compact subset of A(H\G) and therefore
has a norm dense sequence (1),,) such that a net (Hz,) converges to Hz in C if and only
if ¥, (xo) = ¢n(z) for all n. So C is metrizable. This proves the first countability of H\G.

O

The above result generalizes [8, Proposition 3.2.7]. We note that, in [8, Proposition
3.2.7], the proof of (i) = (ii) requires that the net (z,) there to be taken from a compact
neighbourhood of the identity e, as in the above arguments.

We now discuss the existence of bounded approximate identity in I,(H\G) and
A(H\G). We recall the first Arens multiplication on A(H\G)*™* = VN(H\G)* as follows.
Let m,n € A(H\G)** and T € VN(H\G). We define mon € A(H\G)** by

(T,mon)=(n-T,m) (T€VNH\G))
where n.- T € VN(H\G) is defined by
(pn-T)=(T,p-n) (€ AH\G))
and ¢ -n € A(H\G)* is given by
(S;p-m)=(p-S,n) (S€VNEH\G))

with ¢ - S € VN(H\G) as defined in (5.3).
We note that (pg, mon) = m(pg)n(pm) where VN (H\G) = pgW*(G) as in Lemma
5.2.

Lemma 5.16 Let H be a closed subgroup of G and let m € A(H\G)** be a topological
invariant mean on VN(H\G). Then we have nom = m for eachn € A(H\G)** satisfying

ln|l = n(pw) = 1.

Proof. By Lemma 5.8, we can find a net (¢,) in A(H\G) with ||pa|| = va(pr) = 1 and
w*-converging to n. Hence n o m = w*-lim ¢, o m = m by topological invariance of m.
o
g

Theorem 5.17 Let H be a closed subgroup of G. The following conditions are equivalent:

(i) A(H\G) has a bounded approzimate identity;
(ii) A(H\G)o has a bounded approzimate identity.
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Proof. (i) = (ii). Let {¢} be a bounded approximate identity in A(H\G) and let
0 € A(H\G)** be a weak* cluster point of {¢4}. Pick ¢y € A(H\G)** such that [|¢] =
P(pg) = 1. Then

(Pa o) (pr) = Ya(Pm)Y(Pr) = Yalpm)

implies #(py) = 1. Let m be a topological invariant mean on VN (H\G) and let 6 = 6—m.
Let

Jo = {n € A(H\G)" : n(pn) = 0}.

We have A(H\G)o C Jp and it suffices to show that A(H\G){* = Jy has a right identity
(cf. [4, p.146]). We first show that

nom=2~0

for all n € J.
Recall that A(H\G)* = pgW*(G) and write p = py. For any n € W*(G)*, we
define a linear functional L,n on W*(G) by

Lyn() = n(p).

If n is positive, the Cauchy-Schwarz inequality implies that ||L,n|| = n(p). Now let
n € A(H\G)** and define n € W*(G)* by n(-) = n(p-). Then 7 is a linear combina-
tion of positive linear functionals on W*(G) and Lyn = n. It follows that n is a lin-

ear combination ) a;L,n; where, after normalizing, each positive functional n; satisfies
i

|Lpni|| = 1 = n;(p). By Lemma 5.16, we have (L,n;) om = m for all i. Consequently, for
each n € Jy, we have n(p) = > o; and nom = Y «;(Lyn; om) =Y a;m = 0. Therefore

nod =mno(f —m)=mnof =mn since 0 is a right identity of A(H\G)**. As 0 € Jy, we
have shown that Jy has a right identity J.

(ii) = (i). Since the closed ideal A(H\G)p has co-dimension 1 in A(H\G), the result
follows from the fact that a Banach algebra A has a bounded approximate identity if it
has a closed ideal Z having one, as well as the quotient A/Z.

O

Remark 5.18 If H is compact, condition (i) above is equivalent to the amenability
of the homogeneous space H\G (see [16, Theorem 4.2]). If H = {e}, condition (ii) is
equivalent to the amenability of G as shown in [30].

Lemma 5.19 Let H be a closed subgroup of G such that A(H\G) has a bounded approz-
imate identity. Then I,(H\G) also has a bounded approzimate identity for o € B(H\QG)
with ||o|| = 1.

n
Proof. Let {¢o} be a bounded approximate identity in A(H\G). Let o, = L > o* for
k=1

n=1,2,.... Then ||lo,]| <1 and {¢q — 0n@a}an is a bounded approximate identity in
I,(H\G).
O

Theorem 5.20 Let H be a compact subgroup of a second countable group G. Then
G is amenable if and only if I,(H\G) has a bounded approzimate identity for each
o € B(H\G) with ||o|| = 1.
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Proof. Since H is compact, amenability of G is equivalent to that of H\G, which is in
turn equivalent to the existence of a bounded approximate identity in A(H\G) (cf. [16]).
Therefore necessity follows from Lemma 5.19. Conversely, by the proof of Proposition
5.13, we have A(H\G)¢ = I,(H\G) for some 0 € B(H\G) with ||o|| = 1. So A(H\G)o
has a bounded approximate identity. Hence A(H\G) has a bounded approximate identity
by Theorem 5.17.

g

We conclude with further results on topological invariant means on VN (H\G).

Lemma 5.21 Let H be an open subgroup of G. Then VN(H\G) has a topological in-
variant mean in A(H\G).

Proof. Since H is open, the characteristic function 1y belongs to B(G). We have
q(supply) = H and ||1g|| =1 = 1g(e) and therefore 15 € S(H\G) and 1 is a mean
on VN(H\G). Moreover 1y is a topological invariant mean since ply = lpy for all
v € S(H\G).

g

Proposition 5.22 Let H be a neutral subgroup of G. Then VIN(H\G) has a topological
invariant mean in A(H\G) if, and only if, H is open.

Proof. We only need to show the necessity. Let m € A(H\G) be a topological invariant
mean on VN(H\G). Suppose H is not open. Then there exists z ¢ H such that m(z) # 0.
We can find a compact neighbourhood U of e such that z ¢ HU. As in the proof of
Lemma 5.10, there exists o € S(H\G) with supp o0 C HU. As om = m, we have
m(x) = o(x)m(x) = 0 which is a contradiction. So H is open.
g
Our final result concerns the uniqueness of a topological invariant mean on VN (H\G)
when H is compact in which case, we first show that the net (1,) in Lemma 5.9 has a
more explicit construction.

Lemma 5.23 Let H be a compact subgroup of G and let U be a neighbourhood base of
e consisting of compact sets. For each U € U, let oy € S(H\G) satisfy supp oy C UH.
Then we have ||Yoy — oy|| = 0 as U — {e}, for each ¢ € S(H\G).

Proof. We first show that S(H\G) N C.(H\G) is norm dense in S(H\G). Let Py :
A(G) — A(H\G) be the contractive projection

(Pup)la) = [ plha)dn
as defined in [16, Theorem 3.3]. We note that Py (A(G) N PY(G)) C S(H\G) and
supp (Prrp) C H(supp ), where P!(G) is the set of all positive definite functions on
G having value 1 at e. Now let p € S(H\G) and let (¢,) be a sequence in A(G) N
PY(G) N C(G) such that [lon — ¢l 4y = 0. Then Ppp, € S(H\G) N C.(H\G) and
1 Pron — ollacgne) — 0.

Let ¢ € S(H\G). We show |¢oy — oyl] — 0. Let ¢ > 0. Pick ¢ € S(H\G) N
C.(H\G) such that || —¢'|| < 5. Let K = supp ¢’ C G. By regularity of A(H\G) [16,
Theorem 4.1], we can find ¢ € A(H\G) such that ¢ {1} = K. Since ¢'(e) =1 and e €
K, we have (¢'—)(e) = 0. By [14, p.229], there exists ) € A(G) such that ||’ —p—n|| < 5
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and n(V) = {0} for some neighbourhood V' of e. We have ||9)' — ¢ — Pgn|| < 5. Hence
for every U € U satisfying U C V N K, we have oy = oy and ogn = 0 which gives

lpou —oull < (¥ — ¢ )oull + ¢ ov — ov|
€ /
<§+M¢—n—wmﬂ<&

We end with the following result which extends a result in [32] for groups.

Proposition 5.24 Let H be a compact subgroup of a second countable group G. If
VN(H\G) has a unique topological invariant mean, then H is open.

Proof. Since G is second countable, A(H\G) is norm separable and from Lemma 5.23,
we can choose a sequence (o,,) in S(H\G) such that

lpon — onll =0

for each ¢ € S(H\G). Let m be a topological invariant mean. As every weak cluster
point of (0y,) in A(H\G)** is a topological invariant mean on VN(H\G), m must be
the only cluster point by uniqueness. We note that A(G) and hence A(H\G) is weakly
sequentially complete. It follows that (o,) converges weakly to m and m € A(H\G).
Hence H is open by Proposition 5.22.
g
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