European Design Study Towards a TeV Linear Collider

WP 6: Metrology and Stabilisation (METSTB)

Coordinator: Jean 'Yannis' Karyotakis, LAPP

Task 1: Survey and Alignment

- Provide Metrology and Alignment process for the complete collider (3step process)
- Step 1: Rapidly perform collider reference survey with maximal automation (Metrology, RTRS=Rapid Tunnel Reference Surveyor)
- Step 2: Survey collider components against reference (automated stake-out instrument(s))
- Step 3: Adjust collider geometry allowing save insertion of beams (Alignment)
- Provide rapid, accurate measure of geometry after adjustment with minimal reduction of up-time (Diagnostic function)

Task 2: Stabilisation

- Mechanically stabilise most critical components (FF, possibly other parts of BDS, i.e. chromaticity correction section)
- Find optimal combinations of,
 - passive measures (damping, foundations, site choice)
 - sensors (optical, inertial),
 - actuators (piezo, electro-static, motor, ?),
 - feed-back algorithms (multiple sensors, frequency range, synch. with other feedback system)
 - vibration models (6D solid, internal degrees of freedom, vibration FEA)
- Demonstrate system performance on realistic geometry FFmock up

Synergies between tasks:

 Combine survey technology (FSI) with optical stabilisation sensors to give accurate absolute FF placement

- Task 3: Ground Motion Spectra Cataloguing
 - Perform ground motion studies at potential LC sites around the world
 - Develop state-of-the-art spectrum measurement system with nm resolution
 - Develop software for analysis
 - Characterise vibration spectra with respect to identified vibration sources (e.g. 'cultural' noise)
 - Provide public database of spectra measurements for the LC community

provides important input to simulations performed as part of WP6: ILPS

EUROTeV Open Meeting, CCLRC Daresbury Lab.

- Relevance for the LC
 - Survey and Alignment:
 - First use in tunnel construction, determine settling, place component pedestals
 - Second use in component placement
 - Continuous use during operation to track drifts and other position related problems
 - Stabilisation
 - First impact in choice of site. How much vibration can we suppress with active and passive measures?
 - How many feedback systems do we need and how do they interact?
 - Influence on FF magnet design (vibration modes and sources)
 - FF stability is critical for luminosity stabilisation
 - Accurate FF placement reduces time from beam on to max lumi
- Technological Importance

METSTB Participating Institutes

- DESY:
 - Task 1: Survey and Alignment
 - GeLiS (Rapid Tunnel Reference Surveyor) based on stretched wire and hydrostatic levelling system
 - Monitor tunnel/component motion
 - Task 3: Ground motion spectra
 - perform measurements
 - develop software
 - characterise spectra (in collaboration with TU Harbourg)

METSTB Participating Institutes

- LAPP: ??? This needs beefing up by Yannis
 - Task 2: Stabilisation
 - Inertial sensor development
 - Inherit CERN equipment to set up common stabilisation test bed
 - Develop feedback algorithms (engineering department at LAPP)
 - Expertise in ???
 - ???

METSTB Participating Institutes

- Oxford:
 - Task 1: Survey and Alignment
 - Develop complete sensing system for RTRS based on
 - FSI: Frequency Scanning Interferometry for absolute distance measurements
 - LSM: Laser Straightness Monitors
 - Culminate in prototype RTRS operational in DESY test tunnel
 - Aim to be usable in X-FEL
 - Develop automatic stake out instrument
 - Develop additional diagnostic functions for RTRS (vibration monitors, RTRS = remote controlled, mobile, multi-purpose diagnostics platform)
 - Task 2: Stabilisation
 - Optical sensor development (M-FSI = Michelson interferometry combined with FSI)
 - Fast, cost effective custom readout and DAQ
 - Push frequency reach of sensors up (Aim > 10 kHz)
 - Integrate into feedback systems and mock-up FF quad

Task 1: Survey and Alignment: Oxford contributions only

Year	05				06				07			
Quarter	1	2	3	4	1	2	3	4	1	2	3	4
Prototype train development:												
 Light amplification studies 	==											
- Single Line studies in lab.	==	==	==									
 Custom readout development 	==		==									
 Integration of FSI with LSM in lab 			=									
- 3-car prototype-runs in test tunnel						==	==					
- 5-car prototype construction								==	==	==		
Calibrations			==	=		=						
Performance simulations	==	==	==									
Off-line software	==	==	==									
On-line software	==	==	==			==						
Stake out Instrument								==	==	==	==	
Diagnostics enhancements									==	==	==	==

Jean Karyotakis

EUROTeV Open Meeting, CCLRC Daresbury Lab.

Task 2: Stabilisation (Oxford contributions only)

Year		05				06				07			
Quarter		1	2	3	4	1	2	3	4	1	2	3	4
M-FSI stabilisation prototype	Ox												
- Evaluate requirements and status quo	Ох	==											
- Michelson laser stabilisation design	Ох	==	==										
- Short single line M-FSI studies in lab.	Ох	==	==	==	==	==							
- Custom M-FSI readout and DAQ	Ох		==	==	==	==							
- Laser frequency stabilisation	Ох			==	==	==	==	==	==				
- Michelson phase measurement	Ох			==	==	==	==	==					
- Verify nm scale at LAPP/CERN/DESY	Ох				==								
- First line with feedback loop closed	Ох							==	==				
- Six DOF short line prototype in test bed	Ох								==	==	==		
- SIX DOF long line prototype in test bed	Ох										==	==	==

Task 2: Stabilisation

Year		05				06				07			
Quarter		1	2	3	4	1	2	3	4	1	2	3	4
Inertial sensors	LAPP												

EUROTeV Open Meeting, CCLRC Daresbury Lab.

• Task 2: GM measurements

Year		05				06				07			
Quarter		1	2	3	4	1	2	3	4	1	2	3	4
Procurement	DESY	==	==										
Software developement	DESY		==	==	==	==	==	==	==				
Measurements (~3 / year)	DESY		==	==	==	==	==	==	==	==	==		
spectra characterisation	UHB			==	==	==	==	==	==	==	==	==	
Set up DB server(s)	DESY		==	==									
Prepare final report												==	==

METSTB: Budget 1: MANPOWER

total person years	TASK # Survey a Alignme	rvey and		TASK #2 Stabilisation		#3 a	Total cost k€		
	tot	req	tot	req	tot	req	tot	req	
Oxford	17.25		9.0	3.0			1881.5	164.6	
DESY	6				9	3	904.5	198.0	
LAPP			?	?			?	?	
total MP	23.25		?	?	9	3	2786	362.6	

Jean Karyotakis

EUROTeV Open Meeting, CCLRC Daresbury Lab.

METSTB: Budget 2: MATERIALS

k€	TASK Surve Alignn	y and	TASK Stabil	(#2 lisation	TASK #3 GM Spectra		Total Co	st
	tot	req	tot	req	tot	req	tot	req
Oxford	230		195	117			425	117
DESY	600				270	100	870	100
LAPP			?	?			?	?
total cost							1295	217

EUROTeV Open Meeting, CCLRC Daresbury Lab.

METSTB: Budget 3: TRAVEL

k€	-	SK #1 rvey and gnment		TASK #2 Stabilisation		#3 ectra	Total Cost		
	tot	req	tot	req			tot	req	
Oxford	60.6	16	30	20.5			127.2	36.5	
DESY	18	18			60	20	78	38	
LAPP			?	?			?	?	
total cost							205.2	74.5	

BUDGET #4: Summary ???

k€	Total Budget	EU requested budget				
MANPOWER	2786	362.6				
MATERIALS	1295	217				
TRAVEL	205.2	74.5				
TOTAL	4286.2	654.1				

need Jannis numbers here!!

EUROTeV Open Meeting, CCLRC Daresbury Lab.