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ABSTRACT

We show that some multi-Reggeon contri-
butions to the two-particle inclusive cross-
section cancel in the sum rule relating the one
and two-particle cross-sections. As a result the
vanishing of the triple Pomeron coupling, at zero
Pomeron mass, does not require a similar vanishing
of that part of the Pomeron-Reggeon-particle ver-
tex giving the Pomeron coupling in the total

cross-section,
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Unitarity decoupling theorems for a zero mass Pomeron with unit
intercept are potentially very serious. If total cross-sections are Pomeron
. ) . o . 1),2
dominated then the inclusive triple Pomeron vertex must vanish )’ ). If the

3)-5)

Pomeron-Reggeon-particle vertex is then also required to vanish , and if
this in turn requires the Pomeron to decouple from total cross-sections b),
then it would appear that unitarity does not allow what experiment suggests,

that is a Pomeron with unit intercept.

In fact the implications of the results of Refs. 3)=-5) are much
less serious. In a previous paper 7) it has been shown that if the Pomeron-

Reggeon-particle vertex V(t1,t2,12) is written in the form

a(t)

V(“ut’z:’?) = Yid Vi (bitayn) + ﬂ.d?(ka) V, (k,6.7)

(1)

then the results of Refs. 3) and 4) require only that V, vanish at t2 =0

if o(P(O) = 1. ©Since V1 contains the poles at e(R(t;) = integer, this
gives no constraint on the Pomeron contribution t> the total cross-section.
It was stated in Ref. 7) that the results of Ref. 5) also only require the
vanishing of V2. In this paper we shall show that at the "planar'" level
(when cuts are clearly not involved), the multi-Pomeron-Reggeon contribution
to the two-particle inclusive cross-section which contains oaly V1, cancels
in the integration over the momentumn of one produced particle which is neces-
sary to obtain the one-particle cross-section. This confirms that the results
of Ref. 5) do not require the vaaishing of V1.
We begin by outlining the argument given by Jones, Low, Tye,
Veneziano and Young in Ref. 5) which councludes that V(t1,t2,12) vanishes
at t2 = 0. Tbig consider the sum rule which relates the one and two-particle
cross-sections “/ which is written pictorially in Fig. 1. On taking the limit
s = (pa+ pb)2 - o, we = (pa+ Py~ pc)2 - ®, with s/MD - ®», the leading
behaviour of the left-hand side con.ains the triple Pomeron coupling
r;pp(t,t,o), which vanishes at t = (pa—pc)z = 0. On taking the same limit
inside the integral on the right-hand side (with a specific choice of integra-

tion variables), the integrand has the form of a triple-Pomeron limit of the

Our notation is the same as that of Ref. 7), but in Ref. b), v and V

are interchangéd relative to our notation.



eight-particle amplitude, represented by the diagram of Fig. 2. After
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extracting ‘the resulting integral can be written

in the form

PR
farpafay -0y "B (x5, 1y, 4) .

where B is a triple Pomeron/two-particle amplitude. Asymptotically,
1-y = #2/M° where M° = (pa+ pbvpc-pd)Q, and @ is a Toller angle.
It is then concluded_that since B 1is positive (being obtained from the
leading asymptotic behaviour of an inclusive cross-section) the vanishing
of I" implies the vanishing of B at t = 0. In the limit y = 1
(MZ/MZ‘_ @) B is approximated by its Regge form (see Fig. 3)

(“":).“R(E)IV(%M)\: '\_,:R,,(F.E. o) (3)

where 12f-1 is asymptotically linearly related to cosf. At t = 0, the
vanishing of B implies V(0,%t, M) = 0.
I 2

We explicitly show below, however, that at least one part of IV ’

namely |V1|2, gives no contribution to the triple Pomeron coupling when
integrated over the whole region of the phase space relevant to Fig. 2, and
therefore there can be no constraint on it. The implications of this result

for the above argument will be discussed at the end.

To discuss separately the contributions of V1 and V2 to the

eight-particle amplitude, it is necessary to decompose this amplitude into

a sum of terms, each of which has simultaneous discontinuities in only spe-

8)

cific combinations of invariants, as required by the Steinmann relations .

This can be done using the multiple Sommerfeld-Watson representation of the

9)-11)

amplitude , as was done for the six-particle amplitude in Ref. 7). We

shall not give the details here but simply concentrate on the results of this
decomposition. In addition to the variables already defined, we write

s, = (pb- pd)z, s, = (pa-pd)2, 55 = (pc-kpd)z. Taking account of the oppo-

site, 1€, prescriptions which must be used for the equivalent variables on

opposite sides of the Mg_ discontinuity, we find that the part of thes ampli-
tude which has an M2 discontinuity and contains

2%

V,(VY) has singularities in M°, s, (U

* * *
1 , s1) but not s, S (s2, s3)

* . e . * % 2 2% *
V2(V2) has singularities in s, S (s2, s3) but not M°, s, (M ,s1)
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The consistency of this singularity structure can easily be checked
by going to the particle poles in O(R(f) and ¢ P(t). '

To carry out the phase space integration over we find it con-

p
d

. - * :)

venient to use as a complete set of variables external variables MZ, s/M”~

(1 -y)_1. Then in the limit

and t, and integration variables E, 02 and 2z

w2, s/u° - ® with t, T,7 , z fixed we find

Fiz'“"z-.r1

2 . o
, B~ (127 )M, gpes  ~ -y $/n2 (4)

We shall use the energy component of the inclusive sum rules in the rest frame
of (pa+ pb-pc). This is simply related to the component chosen in Ref. 5)

by a Lorentz transformation. In our frame is simply proportional to y

pdo
and so the phase space integration becomes

gd"’p‘l Pao & (PF-m3) — ‘SSAanazi’(\Qz)" H—"‘Q(H) (5)
where

H= -9 (u-z")r - 'f‘_(t-l—:-'Q*'mﬁ)z + b}
(6)

and J is a Jacobian depending only oan external masses.

Since we are only interested in the way the leading behaviour
(as z - ® ) contributes to the sum rule, we can replace (1-z-1) by unity
in (5) and (b) and also extend the lower limit of the =z integration down to

zero. Equation (2) now becomes
-]
T (atdn H* o(H) (dz 2797 B (45,2,n)
-]

*) The Feynman variables used in Ref.,5) are appropriafe to the case when the
particles a and c¢ have equal masses. However, in this case M2 cannot
be taken large when t = O (in the physical region). To carry through the
argument of Ref. 5) it is strictly necessary to consider unequal.masses.
This has been done in deriving the relations (4)-(6). The Sudakov veriables

introduced in Ref. 12), Section 2.3, were used in this derivation.



Since B is defined as the asymptotic limit of an M2 discontinuity, it ~an
be written as a discontinuity across the 2z plane cut implied by this M2

cut. This cut will extend from 2z =0 to + ® . It now follows from the

*
Steinmann relations that the part of B which contains only V1 and V1
has only this cut in the 2z plane and no others, since it has no singular-

ities in M° and s,- The contribution of this part of the amplitude to (7)

can therefore be written in the form

5 (dedy HS0(H) (dz =72 A(e,5,2,7)
AR

| (8)
where the contour C encircles the entire cut of the amplitude A. Since
otp(0) = 1 there are no other singularities in the z plane in the inte-
grand of (8), and the contour C can be completed with the circle at infi-
nity toAgive zero. The convergence at infinity is guaranteed by the Regge
power behaviour of A *). The vanishing of (8) will in fact oaly be true
for the "planar" part of the amplitude without simultaneous right and left-
hand cuts in Mz. However, the non-planar part of the eight-particle ampli-
tude will inevitably give rise not only to triple-Pomeron behaviour (of the
six-particle amplitude), but also to behaviour involving Regge cuts. In this
case, it is clearly no longer possible to neglect cuts as in Ref. 5). Those
or V; (or both) will have extra singularities

2 ¥
. s ‘ . 2 2
in the =z plane arising from cuts in M~, M~ ,

parts of B containing V
Sy ST, which will prevent
the closure of the contour. The vanishing of these contributions to the
triple-Pomeron vertex can be produced by a zero in V2 alone.

Our results then suggest that there is an inconsistency in the
argument of Ref. 5). We believe that the cause of this is the commuting of
the external limit MR, s/M2 - ® with the phase-space integration. It is
well-known that the assumption that leading behaviours in particular regions
of phase-space integrate up to give the full leading behaviour can lead to
erroneous conclusions. The recason lies in the neglect of non-leading con-
tributions. These can be negative and also can persist over far larger
regions of phase‘space‘fhan the leading behaviour and so contribute to the
same order of asymptotic behaviour of the complete intcgral. We have studied
the planar ladder model in Feynman diagrams as an example of this phenomenon,

and will briefly describe our results below. We also note that a similar
% _ _ -
) ,~ %p(0)-2+2ex, (t)

The asymptotic behaviour ~ would only pose a problem if

the Reggeons were in fact Pomerons. However, the vanishing of the triple

Pomeron coupling at t =0 neatly avoids this difficulty.
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situation occurs in the isolation of contributions to the two-Reggeon cut

13) leading contributions of order s cut

through s channel unitarity
are positive but occur over only a finite region of phase space ; there are
also non-leading contributions which can be negative and which persist over
a volume of phase space O0(s). Therefore, the complete two-Reggeon cut can
be negative. That it actually is negative can be shown by working in the t

channel 14).

The six-particle amplitude for the Feynman diagram model we have
considered is shown in Fig. 4, sums over the numbers of rungs of the diffe-
rent ladders being implied. This is the simplest set of diagrams whose M2
discontinuity, when constructed through the sum rule, will involve eight-
particle amplitudes with the multi-Reggeon behaviour of Fig. 3. That the
model has the triple-Pomeron zero is guaranteed by its planarity and the
consequent nonsense zero 15). It seems that in this model the cancellations
between leading and non-leading terms in the various limits are such that
not only is B(0,%,1/1-y,8) # O but also neither V, V, nor V, vanish

2 1
at t = 0.

In taking the M2 discontinuity of this diagram many different
cuts have to be taken, three examples of which are shown in Fig. 4. Any one
cut represents many contributions from the integral over the eight-point
function by taking particle d to be any one of the lines intersected by
the cut. In the contributions in which 4 1is the particle exchanged between

the ladders, both C and C evidently imply the multi-Reggeon behaviour

1 2
of Fig. 3, with, however, 02 giving a non-leading contribution relative
to C1. Integrating this behaviour over pd would lead to a Regge cut

behaviour for Fig. 4 which we know is absent because of its planarity. In

fact the non-leading contributions from cuts like 02 completely cancel the

leading vehaviour from 01. The situation parallels that of the cancellation
of the AFS cut 16). The cuts C? also imply other types of contribution
where particle d is one of the other lines intersected by C2 some of

which have the behaviour of Fig. 2 but not Fig. 3. These non-leading contri-
butions are not cancelled and persist over large regions of phase space.
Finally there are the cuts of the form 03 which involve non-leading contri-
butions as far as the external Reggeons are concerned. It seems essentially
that the cuts 03 give non-leading contributions which allow B not to vanish

and the cuts C1 and 02 conspire to allow V2 not to vanish.
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A more complete analysis of this model will be given elsewhere.

K *
It is difficult to assess the significance of V not vanishing ) since we

2
cannot be sure of the positivity of the model and clearly it is essential
for some of the cancellations that the particle d be "inside" the Reggeon

in the very specific manner of the ladder model.

In conclusion, we have shown that the argument of Ref. 5) can at

most put a constraint on V and this has no consequence for Pomeron cou-

9
plings in‘total‘cross-sectisns. As we have said the cancellation we have
found resembles in some respects the AFS cancellation in s channel unitari-
ty, which is, of course, critical in the study of Regge cuts. If the inclu-
sive sum rules are to be used for a systematic study of Regge singularities
then clearly cancellations of this sort must be properly uaderstood first.

It would seem that this could only be done by a complete partial wave analysis
which effectively diagonalizes the sum rules. The cancellation we have found

would then presumably appear via some sort of nonsense zero. However, we

have as yet made little progress in understanding the problem from this point

of view,
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% v
) In this context it is perhaps important to note that in the dual resonance
model V2 does vanish but V1 does not 17).
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