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ABSTRACT

After reviewing the commonly used dispersion
relations, a systematic investigation of more generalized dis-~
persion relations on parametrized curves in the Mandelstam
plane for s~-u crossing symmetric amplitudes is made with
the aim of obtaining dispersion relations which receive con-
tributions from all three channels, however, in such a way
that knowledge of the absorptive parts is only required in
regions well inside the various Lehmann ellipses. In addition
we require that the dispersion relations receive no contribu-
tions from kinematic singularities arising from the parame-
trization and that they allow partial wave projections to be
made in a relatively simple manner. It is found that disper-
sion relations on hyperbolic curves in the Mandelstam plane
are a natural solution of the problem. The dispersion rela-
tions are written in a remarkably simple form similar to the
usual fixed t dispersion relation but with an additional t
channel contribution. As an interesting application, we de-
rive generalized partial wave dispersion relations for elastic
pion-nucleon scattering, where the left-hand cut contribution
is explicitly given by convergent partial wave series in the
crossed channels.

On leave of absence from the Institut flir Theoretische
Kernphysik, Universitdt Karlsruhe.

Ref.TH. 1590-CERN
27 November 1972



1. = INTRODUCTION

"The importance of dispersion relations in the
study of elementary particle reactions 1is
connected with the fact that we are dealing
with phenomena for which no detailed theory
exists."

A. Bohr, Boulder 1960

Lacking a detailed theory of elementary particle reactions, it
is important to supplement the general properties of amplitudes as incorporated
in dispersion relations with as much dynamical ianformation as possible to
obtain relationships between dynamical quantities. Relationships of this
nature can be used to check proposed models, self-consistency of experimental
data, or to calculate parameters unaccessible experimentally. Furthermore,
such relationships can be viewed as a system of equations from which the dy-

namical quantities could be solved in some sort of bootstrap method.

Among the most useful of such relationships are partial wave
dispersion relations 1 which relate a given partial wave amplitude to an
integral over unphysical cuts, and the more general partial wave relations 2)
which relate a given partial wave amplitude to integrals (involving definite
kernels) over all partial wave amplitudes of the same channel and perhaps over

partial wave amplitudes of the crossed channel.

The first partial wave relations were obtained more than fifteen
years ago by Oehme 5 from unsubtracted fixed momentum transfer dispersion
relations, but only recently a detailed study has been carried out 4) which
avoids the approximations made in the earlier work. These partial wave rela-
tions can be reformulated in a form similar to that of the normal partial
wave dispersion relatibns, but with the important difference that the gene-
ralized potential or driving force is now expressed as a convergent partial

wave series in the direct channel 5 .

Expressing the subtraction functions that are necessary for some

fixed momentum transfer dispersion relations by a fixed energy dispersion

6)

crossed channel into the partial wave relations. This is an important feature

relation has the advantage of introducing partial wave amplitudes from the
since a system of partial wave relations which does not involve partial wave
amplitudes of the crossed channel, e.g., W~ Nﬁ, could not have an approxi-
mate solution involving a small number of low partial wave amplitudes, if there
were important low mass resonances in the crossed channel. This results from the

fact that the simulation of a nearby crossed channel pole requires many direct



channel partial wave amplitudes. Consequently, in order to obtain partial
wave relations that have approximate solutions containing as few partial wave
amplitudes as possible, it is necessary to begin with dispersion relations

which contain crossed channel as well as direct channel contributions.

A fixed angle dispersion relation is one example of a dispersion
relation which contains contributions from both channels. In fact, such dis-
persion relations have already been written for the reactions T N - T N,

3 N-®N and NN - NN 7>. However, in projecting out partiél wave ampli-
tudes from these dispersion relations, one obtains terms containing integra-
tions over double spectral regions. While it is true that these undesired
integrals begin above the physical threshold in the crossed channel, e.g.,
Nﬁ, the assumption that they can be neglected is dubious and reduces the

resulting partial wave relations at best to approximate relationships.

Thus, our object is to find new dispersion relations which
contain both direct and crossed channel contributions that can be expanded
in convergent partial wave expansions. Mathematically, one is dealing with
an n parameter family of curves in the Mandelstam plane along which disper-
sion relations are to be written. To avoid problems of convergence, this
parametrization must be such that the curves needed at a given energy for

partial wave projections do not pass through double spectral regions.

In order to have mathematically simple equations, two more
constraints on the parametrization are required. First, it is important
that the angular integration necessary for the partial wave projection re-
sults in relatively simple kernels. Second, it is important that amplitudes
can easily be defined that do not contain kinematic cuts or singularities
resulting from the parametrization of the usual s, t and u Mandelstam
variables. The latter requirement is imposed to avoid the complicated
multi-sheet structure encountered in some parametrizations, e.g., fixed

angle.

This paper is organized as follows. In Section 2 we recall the
situation for fixed momentum transfer and fixed angle dispersion relations.
Then the mathematical implications of the proposed requirements are discussed
and a parametrization with the desired properties is found which can be applied
to elastic as well as to inelastic reactions. The parametrization turns out
to describe hyperbolas in ths Mandelstam plane. In Section 3 we write disper-

sion relations on these hyperbolas and investigate their general properties.
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As a specific example, we treat in Section 4 the case of elastic pion-nucleon
scattering. For this reaction, we also derive partial wave relations and
geheralized partial wave dispersion relations. ©Possible applications of the‘
hyperbola dispersion relations, some concluding remarks and a short discussion
for inelastic reactions are given in the last section. Whenever possible
arguments and algebra not pertinent to the body of the paper have been put

in the Appendices.

2. — KINEMATICS AND GENERALIZED CURVES IN THE MANDELSTAM PLANE

Throughout this paper, we take the direct or s channel reaction
to be a + b—= c +d and the t channel reaction to be a + c—b+d and

use the standard s, t and u Mandelstam variables with

2 E 8
S+tru =mirmiem o +m, =2, (2.1)

The cosines of the centre-of-mass scattering angles for the s

and t channels are given by
gz =[E-r@i-m)me-nd) /s 1 /e e

A [ Ty vy VA VA RS

where W = 4ppl and \)t = 4p,.pi (p and p' are the initial and final

centre-of-mass momenta in the appropriate channels).

We will be concerned with amplitudes which for fixed +t have
definite crossing properties under interchange of s and wu, i.e., under

change of sign of ) = s-u.

Before starting a general discussion of the parametrization of
the integration path for dispersion relations, it is useful to recall the

situation for fixed t and fixed angle dispersion relations.
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For fixed t dispersion relations, t 1is considered as a para-
meter and the path of integration is described by solving s-u = Y and
s+ u =Z -t for & and u as functions of V and the parameter +t,

ive.,

2s) =(Z-%) +V

(2.3)

2 u@mt)=(T-¢t) - v .

This, of course, is a trivial constraint for s and u and introduces no

kinematic singularities.

For fixed angle (GS) dispersion relations, zg is considered
as a parameter describing the path of integration. The independent variable

is taken to be s. Solving Eq. (2.1) and Eq. (2.2a) for t and u gives

2 £ (s12) =(Z-5) —(mg-m>)(mZ-my) [s + V2

(2.4)

2u(s; %) = (Z-5) +(mi-md)mZ-m2)/s —V, 2, .

Since \)s =‘4pspé as a function of s has in general square root branch
cuts, such a parametrization will introduce square root cuts and a possible
pole at s = 0 1into the amplitude. Except in the equal mass case, these

kinematic cuts lead to a muiti—sheet problem with its associated complica-
tions 7)’*). In addition, as‘pointed‘out in the Intrédﬁction;Aa fixed zé
curve that lies inside the physical s channel region unfortunately lies
completely outside the physiqal t channel region. Consequently, the va-
riation of Zg needed for a‘partial wave projection,introduées.cdntributiOns

from double spectral regions where partial wave expansions are not convergent.

As a final and illustrative example, consider fixed =z disper-

t
sion relations. Solving Eg. (2.1) and Eq. (2.2b) for s and u as functions

of t -and ‘the parameter Zyy gives
*) )
It is worth while, however, to mention that, for reactions with m, =m, or

m the kinematics simplifies in the special case of backward scatter-

=m
b a’
ing, e.g., z = -1, and useful backward dispersion relations 8) or more ge-

9)

neral "boundary" dispersion relations can be written.



2s(;2,) = (zZ-+) - ('m:- m:)(mf-m:) /+ + 2.V,

2% (+;2,) = (Z—-t—)-i-(m:'-'m:)(m:—m:)/-b —2,v, 0

Analogous to the fixed es case, the factor VY . in this parametrization

v
introduces kinematic cuts and a possible pole at t = 0 into the amplitudes.
But, as recently observed 9) for reactions where m =m, Or my =m,, \V/

is directly proportional to v and the assumed crossing properties of the

t
amplitudes allow one to work with amplitudes which are even functions of \

and thus free of kinematic cuts. In particular, the set of amplitudes

N A g AP =+Alvt)

A= _f‘_)_ 2 AGE)=-AlEvt)

are free of kinematic cuts. Consequently, this parametrization allows dis-

(2.6)

persion relations to be written for all amplitudes on a single kinematic

sheet.

Unfortunately, when a partial wave projection is performed,
fixed et dispersion relations, like fixed GS dispersion relations have
the undesirable feature of introducing contributions from double spectral
regions. In addition, the resulting kernels for the s channel partial

wave amplitudes are extremely complicated.

Thus, it is seen that the dispersion relations in common usage
either do not contain contributions from both direct and crossed channels
(fixed t dispersion relations) or contain contributions from double spectral
regions where partial wave expansions are invalid (fixed es and et dis-

persion relations).

As a result of this discussion we consider it worth while to
search for new dispersion relations written on more general curves in the
Mandelstam plane. In addition to containing contributions from both channels
but not from double spectral regions, it is of practical importance that the

parametrization does not introduce kinematic cuts into the amplitudes and
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allows partial wave projections involving reasuvnably uncomplicated kernels.
Consequently, the four tests for any proposed parametrized set of curves

are
a) curves pass through both direct and crossed channels ;

b) curves do not enter regions, e.g., double spectral regions, where partial

wave expansions are not valid ;

c) amplitudes can be easily defined that do not contain any kinematic cuts

introduced by the parametrization ;

d) the kernels resulting from the angular integration needed for the partial

wave projection are reasonably simple.

The choice of variables used to describe a dynamical system is
always very important. In order to present the dynamics in a manner as simple
as possible, it is necessary to select variables which best describe the sym-
metry of the problem being considered. Since we are working with amplitudes
which, for fixed t, have definite crossing properties under change of sign
of Y =s-u, it is clear that ) and t are the natural choice of va-
riables. Because any parametrization will reduce the number of independent
kinematic variables from two to one, it is convenient to take t as the
independent variable and to consider }) as a function of t and the curve

*)

parameters .

Once t 1is accepted as the natural independent variable, condi-

tions c) and d) can be put on a more mathematical footing by writing

, V= F('&;QQ,Q.,)...) ) (2.7)

where F is a function of t and in addition contains the real parameters

a a ... defining a curve in the Mandelstam plane.

o’ 71?

The constraint b), imposing that in the Mandelstam plane the
curves parametrized by F should not enter regions where a double spectral
function is non-zero, restricts the asymptotic behaviour of F. Geometrically,

it is apparent that

*
) This approach cannot be applied to fixed t dispersion relations but such

dispersion relations do not satisfy condition a).



: 4F | <
Kine d+‘4

uw .E (2.8)
t-o-r dt Z 4

are necessary conditions that the curves do not asymptotically enter double
spectral regions. If F(t) is assumed to be a rational function or a power

of such a function, then (2.8) implies

Rine %' = . (2.8'")

t->+00

From condition (2.8'), we infer

F ~ + + lower terms ,

4] —> 0o (2.9)

which implies that we must restrict ourselves to such curves whose asymptotes
(for t - 4+ ) are straight lines at constant s and constant u, respect-

ively.

The simplest possibility consists in assuming that the function
F 1is a rational function of +t. This choice, however, is not preferable if
one wants to build in explicitly the s-u crossing symmetry which involves
at fixed t the replacement VY - -} . To illustrate this point, let us
consider the most trivial example, which satisfies the asymptotic condition,

ice.,

V= F('t;qo) = Q, + t . (2.10)



Obviously, the curves {(2.10) define straight lines in the
Mandelstam plane at constant s or u and therefore lead to the familiar
fixed s or fixed wu dispersion relations with their limited range of
convergence *). Moreover, as is well known, the fixed s and fixed u
dispersion relations are not explicitly crossing symmetric under change of

sign of VY .

Thus we must look for a more general parametrization. Remember-
ing that crossing symmetry permits us to work with the crossing even ampli-
tudes (2.6), K(\)z,t), which are functions of \)2 and t, it is clear
that one will avoid the introduction of kinematic cuts into the amplitudes

if the only kinematic cuts are of the square root type, F = Aﬁz i.e.y

A
v=[( P a.,&,,...)) (2.11)

)

where now f - in order that the crossing properties be retained - cannot
be the square of a rational function. Consequently, Eq. (2.11) represents
a mathematical constraint on the parametrization, which, if satisfied, will
ensure condition c). In terms of t and the parameters aj contained in

f, the variables s and u can then be written

2s(t58) = (Z-t) + Q

(2.12)

2 w(tsp) = (Z-+) =V .

We discuss in Appendix D the general type of angular integrations
encountered in performing partial wave projections. Essentially condition d)
demands that t, when considered as a function of s and the parameters aj,
must be linear in the parameter b which is varied in projecting the partial

wave amplitudes for a given s, 1i.e.,

For example, in the case of U N scattering the fixed s dispersion rela-

tions only converge in the small strip —SH;;;S s < 4mic (similarly for fixed
10)
)

u dispersion relations . Nevertheless they have been used by several

b)’”) (0f course, in the case of T Scattering the fixed s or

authors
fixed wu dispersion relations are as useful as the usual fixed 1t dispersion

relations.)



t(s;y) = 3o b + A

where g and h can depedd on some of the aj's but are independent of the

combination of the parameters aj which form b.

It turns out (for details see Appendix D) that the only acceptable
function f satisfying the constraints a)-d) and the asymptotic condition
(2.8') is given by

:F = Q, 4-(1,,‘5 -I-‘bz (Cl:'# h-a.,) (2.13)

which together with (2.12) leads to

(S—Q—)(%-Qr)'=b (2.14)

and

-b=vg«b +z@, ) _ (2.15)

where

ﬂ" -.=,¢.,(s,¢) = 2 —$ —Qa (2.16)
5.‘1* (a,+2%)

b=A (o -kao). (2.17)

Equation (2.14) defines hyperbolas in the Mandelstam plane with "hyperbola

parameter" b and asymptotes s =a and u = a.
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Thus we cnnclude that hyperbolas appear as the natural solution
when one attempts to find curves that lead to dispersion relations involving
contributions from the direct as well as from the crossed channels but no
contributions from double spectral regions, that are free of complications
due to kinematic cuts and which result in partial wave relations with mana-
geable kernels. EI'he last result follows from the linear relation between
t and b, see Eq. (2.15).]

In terms of the parameters a and b we get

v (;0,b) =\ (£-t)*—#b CRID

25 (430,b) = (Z-4) +\ (-t~ kb
2 w(tja,b)= (Z-t)—\](-e--t,)’-_q.b ' )

(2.121)

where

+to=to(@) = T —2a. (2.18)
It is seen from Eg. (2.11') that for

L s+ <+,

‘bi‘ = ti‘ (Q) b) = ‘bo(a.) + 2rb— (2.19)

there is a kinematical cut such that V) 1is real for t <t_ and t > t, and
purely imaginary on the cut with ImV < 2,/5. The parametrization (2.11') there-
fore defines for t < t_ and t > t+ two branches of a hyperbola lying in the
real Mandelstam plane, whereas for t_< t < t+ it defines an analytic continua-
tion lying outside the real Mandelstam plane Eabove or below the line Re V= o,
i.e., the line s = u = %(z,— t)___[.
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3. = DISPERSION RELATIONS ON HYPERBOLAS

It was seen in the last section that along hyperbolic paths in
the Mandelstam plane, dispersion relations for crossing symmetric amplitudes
can be written on one kinematic sheet from which partial wave relations can
be projected involving both direct and crossed channel partial wave amplitu-

des with reasonably simple kernels.

Assuming that no subtractions are necessary and suppressing
isospin indices, the hyperbola dispersion relation for a crossing even ampli-

tude, A=A can be written in the general form

even’

A (%5a,b) A (£5a,b)

even

-

L2

Co '
- 4 Yd‘bl gmAum('k:a)b) . 4 gdt' quke,vu\(‘t Q)b) (3.1)
T t'-t +
where Agven represents possible Born terms and the first and second integrals

represent the t and s channel contributions, respectively (see also Fig. 2).

In writing Eq. (3.1), the amplitude was considered as a function
of t along a hyperbola defined by a and b according to Eq. (2.14). For
many purposes, however, it is convenient to eliminate b by means of the
usual Mandelstam variables, i.e., to consider b as a function of s and ¢
for a given a, b = b(s,t;a). This means that for given s and a, a family
of hyperbolas will be considered, where each member of the family is uniquely

defined by the value of t or zg- After some algebraic manipulations,
Eq. (3.1) can be written as

» ImeAeven (£, 20)
Aen (510450 = A *‘h:t vt

(3.2a)

Co

4 ! 4
ds 'JMA““(SH') s'-g +s'-'u.)—s'-a. )

+1
x
S

£

4
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where

‘ M
215[(&'-20.—2)2— '-I-ID(S;"‘}Q)] /V-b(*') (3.3a)

t' = g(s50) b(s,t;0) + R (s)a) (5.30)

and

b(s.’csé) = (s-a) (Z—a.- s —--b) . (3.4)

The remarkably simple form of the dispersion relation (3.2a) is
a direct consequence of condition d) or .of Eq. (2.15), t = gb + h, respect-
ively. It is interesting that the last integral of Eq. (3.22) looks like a
fixed 't dispersionrrelation (with a subtraction_ohly in the s chénnel at

- , *
s = a) apart from the dependence of the absorptive part on t' ‘).

The dispersion relation (3.2a) is written for the crossing even

amplitudes, =2 which means that the corresponding dispersion rela-

even’ ,
tion for the crossing odd amplitudes, 4 =V 4, is obtained from Eg. (3.2a)

by multiplying the 1ntegra.nds by the factor V/V' =V (s,t)/VY(s',t'), i.e.,

:) A (_tl 2/)
A t, ;0 A -+ ML T\ odd
.dd(s ) odd gd—t oY ': i

(3.2¢)
+4 gds'ﬂmA“(s t)() s'-s sf ‘§L_¢].

Using the fact that the two points (s,u) and (s' u') 1lie on the same hyper-

bola, i.e., (s-a)(u-a) = (s'-a)(u'-a), the hyperbola dispersion relation for

‘the odd amplitudes can be cast into the remarkably simple form

———— —— — i S —— ———————— — ——— — — — S —— T — —————— — " —— T ———— T —— — T — — —— —— —— T —— ————— T —— - ——

*)

This integral in the limit of |a| going to infinity formally reduces

to that of the fixed t dispersion relation.
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R o
A (stu5a) = AOM + %Sdt’ (’{3‘-)
L,

Ine A g (£)2)
U-t

(3.21)

M ﬁi’?:s'l’“" Add(s"*")[s?-s - siu.] o

Ste,

We notice that the last integral has exactly the same structure as in the usual

fixed t dispersion relation for a crossing odd amplitude.

Together with the partial wave relations which we shall derive in -
the next section, the hyperbola dispersion relations (3.2a,b) represent the
main result of our paper * . An important new feature of these dispersion
relations is that they incorporate both s and t channel contributions

without any "double counting".

= o e . S e o e S S S (B e o e e e o G e e o S g S S S e S e e e S s S g S e S e o S o e S S . e G B e D S0 S g S

*)

After completion of this paper, we became aware that dispersion relations
on hyperbolic curves have also been independently proposed by Greenberg

and Sandusky 12). The main differences between this paper and our work

are the following. i) The authors of Ref. 12) did not realize the drastic
simplification gained by eliminating the parameter b by means of the
Mandelstam variables, which lead us to the remarkably simple representa-
tions (3.2a) and (3.2b). ii) Due to the improvements mentioned under i),

we were able to derive relations for the partial wave amplitudes, Section 4,
which have not been discussed in Ref. 12). iii) Our derivation of the
hyperbola dispersion relations is more general showing the unique r8le

played by these dispersion relations.
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4 - PARTIAL WAVE RELATIONS AND MODIFIED PARTIAL WAVE DISPERSION RELATIONS

As an interesting application of the hyperbola dispersion rela-
tions, we consider in this section the derivation of the partial wave relations

for the elastic reaction TN T N. In the case of T®N scattering, we have
| A*
Aevm kS
B )

where A and B are the usual invariant amplitudes and the crossing even

*

(4.1)

and odd combinations are defined by
Ar = .”i [A(E’P) + A('IC"'F):\ etc. (4.2

The only Born term contributing to the amplitudes is the nucleon
exchange in the Bi amplitudes. Thus, the hyperbola dispersion relations

for the TGN amplitudes read

A+(Sv,’c,u;a) =1 (§°dS' ]WA.F(S')";')[S?—S "'s?-u - 3'4- e.]

CM*M‘)
oo +
A Sdt/ jrw.?k (.‘U)%;>
1
[e2
| 4 FoaonfA4__4
B st w;0) = G‘[ r:i-s- Aj_u] + igols'lm_ﬁ (s,tb[s._s P
(“""Mx?'

——— o — o T e e e e e o e e e o e e S e e e e S e e

: ;
) For details of the LN kinematics, see Refs. 1) or 2).
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A_(S,-t) \L;Q.) = %?ds' Ime A_(s';k') [ 31-5 - 34'-u,]

(MY

I A (B, 2)
3 S“' () e

‘I-m\,o

-— 2] 4 4 - 1
BGHua)=6 [M‘-s"'m-u. M2-Q

+ % C§‘: 3 WB-(S',i') [51—s+s;1-u" s?-m] Sd,tl JMB('& i:.t)( 4.3)
(meaQyt

where t' and z% are given in Eq. (%3.3), M is the nucleon mass and G

is the Y N coupling constant, i.e., G2/4t ~ 14.6 13).

Before we project partial wave relations from the hyperbola
dispersion relations, let us briefly discuss the question of possible sub-
tractions to these dispersion relations. It is usually assumed that the
minimum number of subtractions can be inferred from the Regge pole model.
Since the asymptote for hyperbola '‘dispersion relations is the line u = a,
the convergence is then determined by u channel Regge poles. This implies
that in reactions involving nucleons, no subtractions are expected since the
relevant trajectories have rather low intercepts. Obviously, this is a big
advantage'of the hyperbola dispersion relations over the fixed t disper-

sion relations where in some amplitudes subtractions are necessary.

In order to extract partial wave dispersion relations from the

dispersion relations (4.3), we expand the absorptive parts in the s and t
channels into the TN - N and WYX~ NN partial wave amplitudes, res-
pectively, and then project out the s channel partial wave amplitudes

(W) (corresponding to total angular momentum J = £ ++ and orbital
angular momentum £). As in oﬁr earlier work on fixed +t dispersion rela-
tions )’5), we consider the partial wave amplitudes in the W plane

= v§-= total centre-of-mass energy) rather than in the s plane which is
crucial in order to make use of the simplification due to the McDowell sym-

mﬂryrdaﬁon1“
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;?u(—w) - LW, (4.0)

where the partial wave amplitudes fZi(W) are defined by Eq. (A.1). We then
*
obtain the following partial wave relations (4 = 0,1 92y .e) )

:‘a o (W)= N ROES ¢w' { > 4K LAY ML. D

M-m.

¥ KZL' (w,-w) j”“’i(e'ﬂ) -(w')}

T
:g(e*‘)' "= N(e+ (W)~ §¢W'Z |< ('W) ')]Wim_(WD

R'=0

+ K,w( -WW )Mi(eh ) (WB}

YwZ{ (-w,u)‘amﬁw)

'mJ

"'Hu -W t‘)_&mfr (‘t') ’}' (4.5)

*)

In the following we do not write explicitly the dependence of the kernels

on the parameter a, which is kept fixed.
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Here the quantities Nii(W) represent the contributions to the
partial wave amplitudes fii(w) resulting from the nucleon Born terms in

(4.3). Explicit expressions for the N's are given in Appendix A.

The kernels sz,(W,W') couple each partial wave amplitude,
fZi(w)’ to the imaginary parts of the other s channel partial wave ampli-

tudes. The derivation of these kernels can be found in Appendix B.

Similarly, the kernels GzJ(W,t') and HzJ(W’t') couple each
s channel partial wave amplitude to the imaginary parts of the t channel
(i.e., TT— NN) partial wave amplitudes, fi(t), with total angular
momentum J and relative nucleon-antinucleon helicity (+ = parallel,
- = antiparallel helicities). According to Bose statistics (or crossing
symmetry) the summations over J in Eq. (4.5) run over even values of J
in the case of the crossing even amplitudes (upper index +, corresponding
to isospin zero exchange in the t channel) and over odd values of J in
the case of the crossing odd amplitudes (upper index -, corresponding to
isospin one exchange in the channel) * . A detailed discussion of the

t channel kernels is given in Appendix C.

In the derivation of the partial wave relations (4.5), the

hyperbola dispersion relations (4.3) have been evaluated for =1 <z_ < 1.

Geometrically, this means that the dispersion relations have been ev:luated

on a family of hyperbolas parametrized by b(s,zs= 1;58) < b < b(s,zs= -13a),
where b(s,zs= i1;a) define the hyperbolas that pass through the points

(s,zs= 1) and (S’Zs='_1>’ respectively. Since we have expanded the absorp-
tive parts in partial wave amplitudes, care must be taken that the hyperbolas
do not enter a double spectral region. Actually we are concerned here with

the large Lehmann ellipse 15), since it limits the region of convergence of

the absorptiVe parts. The boundary of the ellipse can be encountered even at
points where there are no double spectral functions due to the reflection or
mirror curve in the Z plane of the nearest double spectral boundary. There-
fore, there is in general some energy, smax’ vsuch that for s > Smax there
is no value of a for which the partial wave expansion converges. This implies
that the partial wave relations (4.5) obtained from hyperbola dispersion rela-
tions are valid only in the energy region below Snax” It is easy to see that
the value of Smax for a given reaction is always greater than that for a

fixed t dispersion relation. Estimates for s are given in Appendix E.

It is this fact which allows us to omit the ﬁpper indices <+ on the t

channel kernels.
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In the special case of YN scattering, smax is of the order of 105 msc
(corresponding to a pion lab. energy of 480 MeV), where the optimal value
) 2
of a 1is =117 m_ .
) 7
Obviously, the fact that a given s channel partial wave ampli-
tude in Eq. (4.5) is completely determined by the partial wave amplitudes of
the s and t channels is an important improvement over the situation for
the usual partial wave dispersion relations 1) where unphysical cut contri-

butions occur. Nevertheless, the kernels and H generate

KZZ" G,QJ 2

together all the well-known cuts in the complex s plane, i.e., the physical
cut s 2.(M4-m1c)2, the u channel cut s < (M--mw)2 and the 1t channel
cuts |s| = M2-m$= and s < 0, as can be seen from the explicit expressions
given in the Appendices B and C. In particular, we have the important result

that the s channel cut is generated by the kernel K

gu| + Kf.n' (W)W') ) (4.6)

has only the u channel cut. This leads us immedia-

20 in the following

way

K

" (W,W) =

where the kernel KLZ'

tely to a new kind of partial wave dispersion relations, which we call

generalized partial wave dispersion relations

+ 0o ]M,:?t (w') +
Re jg’,“(w).—.- %M%:w' w"?w +\4+(w) , @)

where the "left-hand cut cont?&butlon" Vi

Vo= N, )2 wzg CE, (W) g 1, ()

is now explicitly glven by

*)

Equation (4.7) may equally well be written in the s plane.
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While having all the desired left-hand cuts, the "generalized potential"

Vj; is not given by integrals over these unphysical cuts but by integrals

over the physical s and t channel regions.

Thus we conclude that by using the generalized partial wave dis-
persion relations (4.7) we are able to calculate uniquely, at least in prin-
ciple, the left-hand cut contribution from a knowledge only on the physical
cuts. This is not possible in the usual partial wave dispersion relations

with their unavoidable convergence problems.

5. - CONCLUDING REMARKS

In this paper we have considered generalized dispersion relations
for crossing symmetric amplitudes. After a discussion of the deficiencies of
the commonly used fixed variable dispersion relations, we proposed a set of
four properties which.if satisfied would avoid such deficiencies while retain-

ing the better features of previous dispersion relations.

A priori it is completely open whether there exists a solution
at all or whether there exist several solutions to the posed problem. Sur-
prisingly enough, it was found that the postulated constraints are restrictive
enough to favour a single solutior, namely the dispersion relations written on

hyperbolic curves in the Mandelstam plane.

For a useful and powerful application to physical problems, it
is cruciai that these hyperbola dispersion relations can be written in a
transparent form such as Egqs. (3.2a,b). The simplicity of Egs. (3.2a,b)
results from the hyperbolic parametrization satisfying the conditions given
in Section 2, i.e., the parametrization introduces no kinematic cuts into
the dispersion relation and results in the desired dependence of t on the
partial wave projection parameter, b, as seen in Eq. (2.15). As a parti-
cular interesting feature, we point out the similarity of the s and u
channel contributions to these dispersion relations with those to fixed t
dispersion relations and the explicit occurrence of the % channel contri-
butions to these dispersion relations that are not present in the usual fixed
t dispersion relations. Besides these contributions, which are very desi-

rable since they represent the physical exchange channels, there are no
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contributions, e.g., due to kinematical cuts, which could, if present, destroy
the~usefulness of the dispersion relations *). Another advantage of the
hyperbola dispersion relations is that they explicitly maintain the s-u
crossing symmetry, in contrast to most other fixed variable dispersion rela-
tions. Concerning the important gquestion of subtractions, the Regge pole
model implies that no subtractions are necessary in hyperbola dispersion
relations for reactions involving nucleons. Without doubt, the main

advantage of these new dispersion relations over the previous dispersion
relations consists in the large domain of convergence covering all three

channels.

In the second part of this paper, we considered elastic pion-
nucleon scattering in order to illustrate by an explicit example the useful
properties of these dispersion relations on hyperbolas. In particular, using
these dispersion relations, we obtained relations for partial wave amplitudes
of the € N channel. These so-called "partial wave relations'", which are
given in BEq. (4.5), have the important property that the analyticity of the
partial wave amplitudes is determined completely by the integral kernels,
given in Appendices B and C. Thus, since the kernels are known, the analytic
structure of the partial wave amplitudes can be inferred from these partial
wave relations. Since all three channels are explicitly present, the correct
analytic structure for the partial wave amplitudes is obtained within the region
of convergence which is shown in Appendix E to be at least the interval
19 m2

T
finite number of partial waves, one obtains not only the correct right-hand

'5 Re s < 105 mgc. In particular, in any approximation involving a

cut, Re s 2-(M4—m1=)2, but also the correct left-hand cut including the
*%
circle |s| = M2-m§= .  Furthermore, the partial wave relations derived

from the hyperbola dispersion relations contain s-u crossing symmetry.

Yu and Moravcsik 16) published recently a paper on dispersion relations

for fixed transverse momentum squared, Qi' = q2 sin2 es ;3 these dis-
persion relations illustrate nicely what happens if one discards condi-
tions b)~-d) of Section 2 ! [ﬁotice the close connection with the "counter-
example" discussed in Appendix D, since qi = ?(s,t)/4sq2:[

*¥%
) Recall that the circle cut is normally absent in the partial wave rela-
tions derived from fixed t dispersion relations 5), although it coulad

be produced by a "controlled" divergence of the direct channel partial

wave expansion in the t channel, as realized in the Veneziano model 17)
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This implies for example that the zero at s ~ M2 of the crossing-odd s
wave amplitude, f;+(s), which is known to be a rigorous consequence of the
s-u crossing symmetry , 1s produced by the kernels independent of the

input imaginary parts.

" The explicit knowledge of the kernels made it possible to

*
rewrite the partial wave relations (4.5) in the form

(Re%(s).__:‘&g ds't‘m‘;iﬁf? R ACK (5:1)

M+w )

which looks exactly like a partial wave dispersion relation 1). However,

while the so-called "potential" or "driving force", Vz(s), in a partial
wave dispersion relation is given by integrals over the unphysical, left-hand

cuts, i.e.,

V'?a.-zucsl) wave D.R. A g ie! dise iz(s’)

= oxi s'-S
ee_fk-haud cuts

(5.2)
S.
4 ) Jm. 2(s) Um (sY) _dl.SCig(s')
"Egds s'-s zgd | :ﬂls 2 t @ ols't s'-S

{2

| l=M
' (s1 = (M-m.‘/M)Z, s2=M2+ 2mTp), we obtained from the hyperbola dispersion

relations the representation

Oo

Hyperbola D.R. T
V ”ZS) ) = hucleon contr. + Sdt’Z{{eme\.s X ]u:F(t')
J

A
T
g

(5.3)

+ %(Sil mo{‘gemel,s X Imf, (s')}
(wen T

‘where one has to integrate only over physical cuts.

*
) For simplicity, in the following dlscussmn, we work in the s plane and
use the shorthand notation fl( s) for f (W)
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As mentioned in the previous paragraph, the relation (5.3) is
only valid for values of s inside the region of convergence. In order to
distinguish the relation (5.1) with v, given by Eq. (5.3%) from the usual
partial wave dispersion relations, we call it a "generalized" partial wave

dispersion relation.

It is well known that in the usual partial wave dispersion
relations there are a number of serious problems among which the most important
are : i) the left-hand cut discontinuities cannot be expressed along all. the
cuts by convergent partial wave expansions ; ii) in general one has to intro-
duce subtractions and thus unknown parameters ; iii) there exists no general
proof of these relations. As a result of these difficulties, the best use
of these relations is a semi-phenomenological approach, in which one tries
to deduce information about the left-hand cut term, Vz(s), from direct
channel experimental phase shifts. By this method, which has been extensively
used in the last decade by Hamilton and co-workers 1), one obtains informa-
tion on the nearest singularities, the so-called "long range forces" (e.g.,

? and €,exchanges) and some global information about the remaining cut
contributions, the so-called "short range forces". The critical point in this
approach concerns the analytic continuation from the real axis, where one has
the input information, to the circle cut, where one wants to extract the t
channel amplitudes. Without a doubt, some progress has been made recently 19)
by using the new analytic continuation techniques devised by Ciulli, Cutkosky
and others 20). Nevertheless, we believe that a Cauchy representatidn, i.e.,
a dispersion relation, still provides the best method for doing analytic
continuations. Independent of whether our belief is correct or not, it is
clear that the generalized partial wave dispersion relation given by

Eq. (5.1) together with Eq. (5.3) is a powerful tool which can be used to
calculate‘such guantities as the t channel discontinuity. Since the ¢t
channel kernels are explicitly known, one may hope to be able to disentangle
thé various partial waves in the K- NN channel. For instance, in the
case of the crossing-even amplitudes, it is easy to form combinations of the
direct channel partial wave amplitudes in which the J =T = O wave does not

contribute, and one can essentially determine the J = 2, T = O amplitude.

Another possible use of the generalized partial wave dispersion
relations consists in testing proposed € T prhase shifts. It is generally
assumed that the elastic unitarity relation connecting the IDIG-»INﬁ ampli-
tudes with the ToTC — NN amplitudes is valid not only up to +t = 16 mzw
but presumably up to tmax ~ 50 miF. This then allows an approximate calcu-

lation of the t channel contribution to Vz(s),



- 23 -

'MX Imx

\/ (s)=2 gd-l: Z_ g‘&eme\.s X Umi:r('t')}’ ) (5.4)

as a functlon of s{ On the other hand, it follows from the generalized

partial wave dispersion relations that V (s) is also approximately given

by

V&= Re9- RSTY gd 7 [femels Xy >

G Mmgy — wucleon contn
which can be calculated from direct channel T N — JU N phase shifts, the
pion nucleon coupling constant and some high energy model. Thus a comparison

of the two results provides a test for proposed W T phase shifts.

Finally we mention that partial wave dispersion relations have
been used during the last few years to constrain the energy dependence of the
phase shifts in analyzing the experimental data 21). Clearly, this requires

a knowledge of the potential V and one needs a parametrization of V

,

which is not only sufficiently :Ecurate but also reasonably simple. It éés
been found that such parametrizations require a large number of poles on the
left-hand cut (the actual number was of the order of 10-20) 22). Moreover,
since the discontinuity along the left-hand cut cannot in general be expanded
into partial waves, most of these poles have no simple physical interpreta-
tion. Considering this, it seems worth while to calculate Vz(s) from Eq.
(5.3) with its obvious physical meaning. For the higher waves, for example,
one expects a saturation of Eq. (5.3) with a small number of narrow resonan-

ces.

Although in this paper we have illustrated the usefulness of
dispersion relations on hyperbolas only for pion-nucleon scattering we must
point out that the applicability of these dispersion relations is by no means
restricted to this reaction. In fact, the general form of the hyperbola
dispersion relations, as given in Egs. (3.2a,b), holds for all binary reactions
with the appropriate modifications ; e.g., for KN scattering, one has to
include the unphysical cut running from the 'u:'\ to the KN threshold.

Even for inelastic reactions lLike photoproduction, there is no essential com-
plication. Explicit applications to other reactions than pion-nucleon scatter-

ing will be presented elsewhere.
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APPENDIX A =~ NUCLEON EXCHANGE

In order to calculate the nucleon exchange terms, Npi’ in the
partial wave relations (4.5) derived from the hyperbola dispersion relations

(4.3), we use the projection formula 2

‘%J‘") - o 5 (e[ A+ W-1)B, |
4 (E-M>[ A +(W+M>‘B£ "‘4] } (A.1)

which expresses the X N partial wave amplitudes fﬂi by the projections

of the invariant amplitudes

A
A, (9 ‘='_S 2, ) A(S'*’>) (8.2

- LA~
(B by analogy) The nucleon centre-of-mass energy, E, and the square of

the centre-of-mass three-momentum, q2, are given by

S-l-N\?'-'Mu:
2W (4.3)

[s- (M+'m,5)"] [S - (M- 'm,c)"]

E=EMW)=\M"+q* =

2 A2

9°=9 (s)= ey (8.4)
The result is

+ +
N,Q-_\_- =N9_¢)'FTDR ( X=0,4, 2)"')

-\ cem 20225 (W-M) (oe
.Nl-l' = NR.-!— ,FTDR + W a-M2 8,25 (‘Q 0)4)%1{.5.?

- _ E-M 2M2£7(WHM)
Nv.‘ - Nu-fFT'DR + Y, o — T 8 (2_=4,2,3)...)
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The subscript FTDR indicates that the corresponding expressions are identical
to the nucleon exchange contributions to the partial wave relations derived

2
from fixed t dispersion relations =

N =M Sy 2o 5;-2 Qu)]

2% FTDR

with
2
()= S-M"-2my
S 4 —— z [ ]
'3 Zq (a.7)
Here f2 is the reduced T N coupling constant, G‘ 161cM m 2f2, with
£2 ~o0.081 13,

It is seen that the nucleon exchange contributions derived from
the hyperbola dispersion relations and from the fixed ¢ dispersion relations
are identical, except for the f;+ and f;_ partial wave amplitudes, in
which case we have additional "contact term" contributions depending not only
on f2 but also on a. (Notice that these "contact terms" vanish in the

limit lal > @ .)

Finally, we notice that the nucleon exchange terms (A.5) satisfy

the McDowell symmetry relation (4.4), i.e.,

Np W) ==N g, (W) - (x:
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APPENDIX B - s AND wu CHANNEL EXCHANGE

For the derivation of the s and u channel exchange contribu-
tions to the partial wave relations (4.5), it is convenient, for the TGN

kinematics, to use a matrix notation used in Refs. 2) and 18).

the two "vectors"
ﬁ: ( A > B) (B.1)
%o = (‘ﬁu— ):ﬁ@m)-) ) (-2)

which allow us to cast the projection formulas (A.1) and (A.2) into the form
(l = 071’27'°°)

We define

fa W= (e, ‘Ex(w) ) ﬁ (s

(B.3)
-¥==-52111<3"55£>
where the projection kernel 1{2 is defined by
- I
rT r
‘L Jl)szA 49)!L+4
R (w )—_- | .
/vvv.( )%s rI | rI (B.4)
244, 2 24, 2

and (myn = 0,1,2,...)
“f (W,24)= 4—:;;, {(E*r M)CPM (2:)- (e- M)C?M(e,)’}

(B.5)

iy [P e R T 0]

We also need the inversion of Eq. (B.B), i.e., the partial wave expansion 2)’18)

NG S ISE NG

I

=-29*(1-%)

(B.6)



- 28 -

with I I
S'Q S'Q yer - Sl; e+
(w)%s) = T I
(B.
P~ S;;*ﬂ)z. — :S;‘d“) B.7)

an(w )= lncg Wl ! e (#5) +vé_':,\ = T (*53}

(B.8)

S e T

For the subsequent derivation of the partial wave relations (4.5)
it is crucial to notice that the kernels 1{2 and 5;2' are functions of W

and ) rather than of s and 1, satlsfylng the symmetry relations

(’B’("W)ag = -—-i (B(W)Z:s>
(B.9)

,§:.(_‘W)%s) = — ,§~ L(W)%s) i‘»

in agreement with the McDowell symmetry relation (4.4) which can be written as

2o (W) =— S, W) a0

é o 1 : (B.11) |
A — A O .

A~y

. Considering only the s and u channel terms, the hyperbola dispersion rela-
*

tions (4.3) can be written in the form (I =+ or -)

A(s,o‘ 43«'& (557 z)‘mA(s S

(B.12

*
) In the following, we sSuppress the dependence on a.
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where the matrix hi is given by
L 4

_ I
/e\.s = X\u' ﬁ: — £ /E‘-z éi (B.13)

with

A 4 1
&4:—&4(8,8')5 s'-s 2 s'-a

=1 4 4 4
Ao=h (35520 = 0 35, Y 3 T

e —2 (M24+mE
2=26s=1-2 22(2 2 (5.14)

To(she)=(1,-
§:=<lf) , §z=(l-°4>.

In order to derive partial wave relations from the hyperbola

dispersion relations (B.12), we expand the absorptive part into s channel
partial wave amplitudes by means of Eq. (B.6) and then project out the s
channel partial wave amplitudes by using the projection formula (B.3). This

leads us immediately to the partial wave relations

T L

:@A\@ngdwz K (w,w') I LWy | @
AAP

"O/\M-
M+m

The s and u channel kernels are défined by

Klfwl,wo-zw Sd%(R(w,%,)ﬂL ss5m) S (w 2) , 7
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where [see Eq. (3.30)]
/ /
=255

L= (s,S) = jl"' = %

+f

(B.
s'-s 2 (m+mg)—s—s’ 21

s'-a 2q'9-

0]‘2 = q2($'> .

Due to the symmetry relations (B.9) and the fact that hi depends

(6=(5(S.S")-=' A—ol +

on s and s' rather than on W and W' we obtain the symmetry rgfétions

M’:‘(:--w W) =— 98, M’-‘r‘(w w?)
) ——— )

AN

KU-')I(W)_W') - &LUI(W)WD §:~ )

1
which allow us to write the matrix KEL )1
A~

K, (0w K (v,-w)

22

(B.18)
in the form

K,u',I (B.19)

(w,W) =
I
ol G CATY - K:i, (-w,-w')

with

1 I g
Ki' (W)W'>EZW’Sd%s[(R:Q(w)%S)'24 (S)S')- %S) S (W;z;)] . (B.20)
-4 AN P~ "M 1

[@he subscript 11 indicates that we have to take the "11 element" of the
matrix appearing in the bracket in Eg. (B.20).]
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Using (B.19) we obtain immediately from Eq. (B.15) the partial

wave relations (4 = 0,1,2,. )

I
ai(w) de'Z K W) T £, )

2'=0

S and +m
o channel g

I
+ Ko W) T g1 (W) }
(B.21)

gdw'Z EKT (-w, ')TLw.;p ()

2'=0

I
:?(M)(-\—")
s and

A channel

M+m .
+ 'zc ('WJ'W')M‘;PU-M).EW')}

in agreement with the result already stated in Eq. (4.5).

Obviously, the s and u channel contributions (B.21) satisfy
the McDowell symmetry relation (4.4) which reflects the fact that in the W
plane there is only one independent kernel, Kil,, which is given from

Eqs (B.20) and (B.13) by

K hw)= R, (59 Sd%, ZW'{'R(W 2)S| (W’%s)]

20
(B.22)
- Igd%,'ﬁ (s,s';2 )1W [rR(w *3)6 Sz(w i's)]

With the deflnltlon

q>[0,m | b(w,w')] '—.'_-"%'—{\D(W,WD Qe + bWw-w)Q,,,

VWY A ey FDEWI Ay } (.29
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we derive from Egs. (B.5) and (B.8) *)

iR s, -4 et )] Sww))

(B.24)
ZW'F\(W,%QG Sz(w %s)] =3 c\)"’(%s)‘ﬁ = )‘ oW, W‘)]
with o "
g(w w‘) (w'+wW) E,:-M
| ?,(w,w') = (2M+w‘—w) %f;% . (p. 25)
Using (B.14) and defining the "angular kernels
2 ) = > Sd% (P(%s)CE (2>
(B.26)

\, =1 §4d (P‘*‘>('3’<"‘s>
22

we flnally get the folIOW1ng result for the s and u channel kernel

€=y = DL | S0w)] zqqu[vu.l?(ww)]

2¢! S -S +
<b[uwl X (W ﬂ
- s'-a (B.27)
K () <|>['U.w | 'X'(W W')]

22 FTDR s'-a

where

gtt(w,w') = 4;' [S(W,wn) + g(w,w')]

w! -
_ E+M tH . (B.28)
TOEHM \ w-m

* o
) Notice that the second kernel of Egq. (B.24) is just the crossing kernel

entering the partial wave crossing relations derived in Ref. 18).
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The kernel with the subscript FTDR has exactly the same structure
as the corresponding kernel derived from t dispersion relations 2 ; apart from '
the fact that the angular variable zg [@efined in Eq. (B.175] entering the
angular kernels (B.26) is different in the case of fixed t dispersion rela-

. 2
tions, where one has

2, FTDR) =X (FTDR)Z, + (3 (FTDR)

(B.29)
with
S (FTDR)= ,1 ) PETDR)=4- o (FTDR).
Only in the limit |a| — ® one obtains
Z's/ —_— Z‘s/ ("F'TDR) (B.31)

and therefore exactly the same kernels.

As in the case of the partial wave relations derived from fixed
t dispersion relations ?? one infers that the only cuts generated by the
partial wave relations (B.21) are caused by the denominator (s'.-—s)—1 and
the angular kernel V ., occurring in the kernel (B.27). While the function
Vg B (B.26), generates the cut -1 < z(s,s') < 1 and therefore [}ecause
of (B.14) and s' > (M*'m‘lt) ] the u channel cut -®» < s < (M- m.‘)
the - denominator (s'-—s) gives rise to the direct channel cut s 2:(M+-m1c)
Thus we conclude that the partial wave amplitudes represented by the partial
wave relations (B.21) have the correct cuts corresponding to s and u channel

exchange.

Considering explicitly that part of the kernel (B.27) which gene-
rates the direct channel cut, we obtain from Egs. (B 23) and (B 25)

w,w! \/u' (w,w")
K‘“'( ’ ) direct clmml, w'!'—-wW

(B.32)
| _E-M\
44w E+H

witw W 22! T BT Wen 2ly
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with
_w!EM _EN
Kw(w,w‘ﬁw ETeM e T ey Uewr o (3.53)

Obviously the direct channel cut is completely produced by the first term in

Eq. (B.%2) whose residue at the pole W'=#% is given by

few 00) = (W g = Laneor ] wiow
=4 o=, e (20 BB e] = See’

[ﬁere we used zé: Zgs which holds for W'=W as can be seen from Eq. (B.17X}

(B.34)

As a consequence we derive the following important property of

the kernel (B.27)

L(:ﬂ: ( ‘) S‘Q‘J ( ‘)

wWw!) = w,W 5.
Qel ) Y 12' ) ( 35)
where the kernel Kjg' contains only the wu channel cut s < (M-—m1c)2.

To derive explicit expressions for the angular kernels (B.26), we

23)

start from the expansion

(‘?—'s) Z G X

(B.36)
L (-4) (e+d)! y=d-2s | 536
Similarly 1 Q' ) &,
(‘Zs )=- %_ Z;?o Aoy Ay, X
Xl A- s/ (B.37)

2
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From Eq. (B.17) we infer
x! = o + %X

1- (x+p)_ sts s rs! =2 (MT+mg) (8.38)
S =S—a q,.q:a

W

and therefore

(as)--—Z(iw) Z( o« xP e

A'=o

Using (B.%6) and (B.39) we obtain after a trivial integration and using the

Saalschiitz identity 24)

- O(i - )2 (,.*.‘)7'
Azo ~F (I"‘""‘) (Q+pta)! (r«-l)'. (B.40)

the final expression

_(‘4) Lo
Mﬂl' -

2 A' =R ,A'f

-\

L 8! |
2 (A)E) Diay (oo 1
(€+,«+4)l(,,.-z).l T (Baan)

By means of Egs. (B.38) and (B.17), we deduce immediately the

asymptotic relations

U w ~ C‘u + O(qzuz) For se(ﬂwmt)z
u&, ~ ?\—21'4-2 +o<1|-22'+¥) Por s ->(M+M,;)

(B.42)
u@' U C'I—ZQ+ O (qi’22—> :gov- s'— o0

which in conjuction with the asymptotic relations (B.46) ensure the correct
threshold behaviour of the partial wave relations (B.21) and the convergence

at the upper limits of the integrals occurring in (B.21).
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In particular we obtain from (B.41)

M(,) = O 1—0? 2'&1

2 2
lu'n ey X ) quo. e+2 (ZQ-I-B)(S x (B-43)

W, gog =L [ass)o®+ (3 (2es8) B (24 .

Having evaluated the kernel ‘u'M," it is straightforward to

*
obtain the following expression for the kernel V Elefined in Eq. (B.26H )

\,, = £ Q@ Hhxep
g o] for 2' <2+

(B.44)

24

+1 24
LZ-:-;(Z"*‘)un e'['P;z(%)W..-.(*)-'R.(%)W,_,,(z)] Por £2'>042

where the functions Wn_1(z) are polynomials of degree n-1 defined by

Et‘or explicit expressions, see Ref. 5ﬂ

1
W, (=4 (de, @ TE) |
iy 22— 2

As before, one easily proves the asymptotic relations

| %‘L Vn. ~ (19.2 + O(('zu-z) ‘For s> (Mm,)z

(B.45)

12042 —2el+y
\I.u' N C' +O(G" ) :For- S'—>(M+M‘)z (B.46)

4

s!— no ,

Ve 77404

*
) For a derivation of Eq. (B.44) see Appendix III of Ref. 5).
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APPENDIX C - t CHANNEL EXCHANGE

Using again the matrix notation introduced in Appendix B we write
the t chanael terms of the hyperbola dispersion relations (4.3) in the fol-

lowing form (I =+ or -)

Roo| - 2 [ Bl ACD o

t"‘!?’ “-2) l*

with < , ’A:f o
I} — 4 I
:\K:i(sit; %t) 211 xt - 2‘ (o) 9\:_

v T=+
I T 4 for I=+ T T 5 P (c.2)
%,-’-X“(s,‘t,,‘ ls) = ) xts'xt(s’t ’. 2.’) =
v _#" T=- 1 10, T=-
and 1AL
/ !
o= K (sr#) =1 +% 1?1 2T -(Y%s*fS)

(c.3)

< 2 4 N
X=X(s.-e') Eiﬂ?{-—"l? (s-o) )P;.,%__Mz) =t - m

r_ & _ - 2,5 —5-
S=S(s,¢')5“’ Z+2.oj k(s-a)(2q* +Z -5 Q) .

2
op: Qe

Introducing the "vector"

T(41,47)
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where fi(t) are the JCYC~ NN partial wave amplitudes, we may write the

25)

t channel partial wave expansion in the matrix form

T T o)
A(e',z:>=§;_ T 2w )

where the sum goes over even J for I =+ and over odd J for I = and
T Uy Y7
T(‘t'z’) = ( |
o~ * 3,. | o w3
T-4 " (c.6)
33 =4 (?-T-Q-A)(P_;q;) ) QLJ-""a;; l:r(i:) '
<t
/
_3__ M 74 (-1- ) ("3 (i’
,r-— ()
Yz P, ~|T(I+A) 2 \T T(T+1) ¢

Expanding the t channel absorptive part of the hyperbola
dispersion relations (C.1) into partial wave amplitudes by means of Eg. (C.5)
and projecting out the s channel partial wave amplitudes by the projection

formula (B.3) we obtain the partial wave relations

:f, (w)=~—§d-e b G’ (w, ) Jme If— Ty , @D

44“;
where

2
27T 2 I J
G’ (w,t') -Sd%s R(W,_%s)/ﬁt(s,t}%,‘) l (t'2}) . (c.8)
—4 AANS ANA

Since ht and z% are functions of s rather than of W, we obtain from

i
(B.9) the symmetry relation

T, T eT,T |
G wv) = =5, G’ (w,t) (c.9)

Pa¥ %
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which guarantees that the +t channel contribution to the s channel partial
wave amplitudes also satisfies the McDowell symmetry (4.4). Equation (C.9)

enables us to write
Gy () H, o %)
2J3,T |
Glwe)y = (c.10)
AL~
- —w,t’ - -
GH( t') Hx:r( w,t)
and the partlal wave relations (C. 7) in the final form (2= 0,1,2,...)

£ o] -sfo Hlomontlomomslo]

£ clmmnl.

(c.11)
+
(w)

ery—| — 4 S@!ﬁiil{is} (LV"f):&“&Qt (tf)d—l4 (7Nwdﬁ):}h~;¥, (tt;}

<+ chawael “'M:

in accordance with Eq. (4.5).

In order to calculate the kernels GgJ and H let us define

13

With this definition we obtain after some algebra the final result

G;T(W,t') =" Y [A E*M]

' Al']. fat -
\—lu(w,t)= (:TGT{ [’Bu.l (E+m)(W w\)]

(C.13)

s Y[Cel €+M]}
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where

T
" 27+ (p{qi)
'7,"-411(5 )= 4Wq? pi2

and the "angular kernels" are defined by

A LI B2 T (3
AQT = %Sdis'x,‘(s,t.;i,) ’(i ) r(;‘)
=4

Xe—2s
’
A I o ,
3¢'T§ %SdE, 5‘3,(‘51*':%,) ta (23) ’P:r (=)
iy -2,

Cers TAM' + B 4

In the above expressions we have omitted the "crossing index"

(c.14)

(c.15)

on the left-

hand side, since the full content of crossing symmetry or Bose statistics is

already contained in the index J, which is explicitly seen by rewriting

Eq. (C.2) in the form

I 4 *0" T‘.‘ o)l)'f)o‘o

-\-‘;-. for T=4,3,8,...

k:l: % $or T=0,2,%,...
-

* 1 $or T=4,3,§,...

By virtue of the last statement and the decomposition

ll.- A 3 -": -+ -tE:-' '4

VX -2, Z 2] Y-
2
= (S%')!—-g-’—j
AR 2p: 9.
s-2(Mremg) +t

(c.16)

(c.17)
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we finally get (g = 0y1,25...)
8 ,
44% T2 Tpl2))
s
T e
A _=J
2T )

#0" T‘—- 0)2) ¥)~-‘

Nis

—1 -

4
-';Sd% P(2)?, (*e)"’tfg‘l% (%)’Pr(ﬂ)
1

S‘

L #°‘. Ts 4)3'5)...

(c.18)

-

Lfdz, (2 T(**) L.Sd ey RE/2

1 7.
PR SR

Remembering that z' = XZ + 8)2 Eq. (C.3), it is important to notice

that in the above 1ntegra1s only even powers of z% occur, which is crucial
in order to avoid a square root dependence on zg which would lead not only

to unwanted kinematic cuts but also to very complicated "angular kernels".

It is obvious that the t channel kernels (0.13) possess the
cut -1 < Xt(s,t') < 1, generated by the angular kernels (C.18). Thus the
partial wave relations (C.11) introduce in the s channel partial wave
amplitudes the cut -o < q2 < -m2 in the q2 plane, which translated into

the s plane gives rise to the circle cut |s| = v -m?'c and the cut s < O.

For the phenomenologically interesting WWT— NN partial wave
amplitudes (J < 2) we explicitly obtain from Egs. (C.13) and (C.18)
(f/ = 091’2,”')
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G = =z qu 1{(E-ﬁ-b‘\) Q}(*e) (E-M)Qz-m ,)}

Lo
G“,_1 =5 g (2s-Z+¥) G,eo +-2-E-‘\7:-'% 8“}
Gn - Z-S;-{ [(!:'-Z)2+Z(f‘\"-"‘l§)z+6s(-b‘-z +-s)] Gso
+ (s-—a.) (E +M) 8 %

H,_

_ ’ M(E"'M)
H,, = H‘ {Z;'“‘(’-s Z+¥)G, — W &,}
zz 46\13. S(Zs—Z-H:)Z_ (¢:19)
—M[(E-2) s (4:‘-:4-5)] G2 527 M(s 2 4w "J deo

Zz-:— \_l;_.g(em)(w-n) Qo) +(E-PW+4) Qo (x*)} (c.20)

Due to the asymptotic expansion

244

%iQQ("‘,) -—-L—t;-) . c’zl + O(qzu-z) 7 (c.21)

which is valid for q2 - 0, we see immediately that the t channel kernels
(C.19) lead to the correct threshold behaviour of the s channel partial wave

amplitudes for s — (M+ m,":)2
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APPENDIX D - PARAMETRIZATION OF CURVES IN THE MANDELSTAM PLANE

In order to avoid the introduction of kinematic cuts, we utilize

the crossing properties of the invariant amplitudes to write

Afa,
VES-u = [:F(*sao,au---)] ) (D.1)

where t 1is taken to be the independent variable, -® <t <®, and f is
a meromorphic function of t depending on the parameters {'aj} . To ensure

crossing symmetry explicitly, f 1is forbidden to be a perfect square.

From the condition that the curves (D.1) do not enter regions
where double spectral functions are non-zero, we derived in Section 2 the

asymptotic relation (2.8') which implies

2
Tom |22 g [E2) 2y (p.2)

t->+o0o + >t t*

Thus, for t — 4 , the curves defined by (D.1) have to be asymptotic to the

lines of constant s or u.

It is the purpose of this Appendix to show that the simplest

choice for f satisfying (D.2), i.e.,

2
:F = Qo +a&,t ++t (p.3)

which describes hyperbolic curves in the Mandelstam plane is the only solution

that satisfies conditions a)-d) of Section 2.

Obviously the parametrization (D.1) together with the asymptotic
condition (D.2) satisfies conditions a)-c). Consequently, we need to consi-
der the restrictions implied by condition d), which states that the kernels
resulting from the angular integration needed for the partial wave projection

should be reasonably simple.
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Previous investigations of fixed t dispersion relations 2),5)
and the hyperbola dispersion relations studied in this paper lead us to infer
that the kernels occurring in the partial wave relations derived from disper-
sion relations on general curves in the Mandelstam plane will contain angular

kernels of the form

1 /
1 {4z, GEIRET) (5.0

where zé = zs(s') is the corresponding angular variable along the curve

and G(zs) is a rational function of =z e.g., in Bg. (B.26) G(zs) = (z-—zs)-1.

’
In this integral s and s' are fixed jnd the variation of zg and zé, or
equivalently t and t', is provided by a variation of one or a combination
of the curve parameters { aj} . If we call this combination of parameters b
and consider b 1instead of z, as the integration variable, it is clear that
this integral will be simple only if b is a linear function of Zg+ Thus

condition d) can be written as

b= 2, + =+ )

wnere the functions ©f and P depend on s and those parameters of the

set q aj} which are held fixed during the angular integration.

It is perhaps useful for the sake of clearness to consider a
redefinition of the parameters {'ao,a1,...,aj} - g b,c1,...cj} such that
the coefficients oL and '3 may be considered to depend on f cj} but
not on b. If we also take into account the linear dependence of z, on t,

condition d') can be reformulated as

‘t(s;b,ca-) = 8,(8;(;3') b +/eu($;Qa°) . ar)
We will now show how this constraint supplemented with the con-

dition that f is not a perfect square limits £ to the form given in Eq.

(D.3). To do this we write f as a power series in t of the form

-n
L5000, )=t +t =%t . (0.5)
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If this expression is then substituted into the first line of Eq. (2.12)

we obtain

S*e2St =t Z aalbe) £

(D.6)

where S = 2s —Z . For a given set of curve parameters {aj} or {b,cj}
this equation relates s and t along the curve. The question is now what
restrictions are imposed on the set {eﬁ} if we assume a solution for t
of the form given by condition d"). In the following we will consider S

and b as independent variables and utilize the fact that g and h depend

on S but not on b.

The proof is separated into two parts depending on whether the
ratio h/g is dependent or independent of S. Let us first consider the

situation when the ratio depends on S. Then Eg. (D.6) takes the form

S"+2S (gb+8) =(abr) T (o) (30+2) " (o,

If we rewrite the coefficient of am+1(m21) as g (b+n/g) ™
and consider the point b = -h/g for an arbitrary S it is clear that
a must vanish at b = ~h/g. But this ratio depends on S and a is

m+1 m+1

independent of S, thus am+1(m;g) must be identically zero. Consequently,

only a_  and a, can be non-zero and we have obtained the solution (D.3).
In the case that the ratio h/g is independent of S the proof

is considerably more complicated. It is useful to notice that in this case

we can assume h to be zero since we can always define a new b Dby

b' = b+h/g and write t = g(s)b'. If we take this into account then Eq.

(D.6) takes the form

LRy |

Sz+ 28 9 b =§_° Q. (b)cé) ( &(S;Ca.) b>. ‘ (D.8)

If we consider any coefficient am+1(m2ﬂ), then the coefficients

g—m force each am+1 separately to be proportional to bm to cancel the

pole at b = 0. Consequently we can write
m

a,, (be))=a,,, b (m24)

where a_ .(b=0,c.) is finite.
m+1 J
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If in addition we realize that the left-hand side of Eg. (D.8) has only a
zero and first order term in b, we can expand a,s ay and the g%'s in
terms of new coefficients dn and e, which are independent of be. Thus

we obtain

-n+4

S'?'_'_Zg 8’ b -_—,hzso (J“Ccs) +2.b e..(cj) 8 ) (D,9)

which is equivalent to the relationship between S and g

S-Z ¢

and (D.10)

2

Zdn 8—-n+4 _ Z- e“ 8-05 .

h=0 h=0

Having concluded that the sum in Eq. (D.6) must be of the form
given in Eq. (p.9), we can use the relationships (D.10) to show in the case

that h/g 1is independent of S, that f must be of the form

po (bg) +Z (dr2be) g

n=0

= (bg +Z €, 8—""‘)z = (+ ++Z en(ble) )

w=0 n=o

This, of course, violates the condition that £ 1s not a perfect sgquare.
Consequently we must conclude that h/g must depend on S and that the
only allowed solution is given by Eq. (D.B).

In order to illustrate the complications arising when the fuaction
f has not the form (D.B), we give a simple example. Starting from the Kibble

poundary function

CP(S:*s)E lf‘S(r (4‘%:-)=l"t P:?: (4" Z’;) ) (De11)

we consider those curves along which the quantity tn?(s,zs) is constant,

le€ey

‘bm q) (s)%s) - C

(D.12)
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(¢ = constant). Using

\Y
¥ P 9e (p.13)

[see Bq. (C.3]] we obtain from (D.11) ana (D.12)

Z¢=

:?(t je)= («b—l;.M")({: L"'"“) _tm+4 * (D.14)

Due to the asymptotic condition (D.2) only the values n = “2,=1,03192y00
are allowed. Obviously, for n = -2 and -1 f 1is a polynomial leading to
hyperbolic curves, whereas for n = 0,1,2,... it has a pole of order n+l1 at

t = 0 leading to complicated curves in the Mandelstam plane.

Let us investigate the case n = 0 in more detail, i.e., the curves
?(s,t) =c¢ (c>0). These curves consist of five different "branches" defined
on the intervals (- ,0), (O,t1), (t1,t2), (t2’t3) and (ts,m ), where the
ti's (i= 1,2,3) are the solutions of the equation 4tpiqt = ¢. The correspond-

irg function £,

£ (¥5e)= (£-4m2)(%- “""‘«)"’ —= (D.15)

changes its sign from interval to interval, however, in such a way that branch
1 lies between the asymptotes u=-cC and t=0, i.e., completely inside the
physical region, branch 2 lies outside the real Mandelstam plane (ReV = 0,
In Y # O), branch 3 lies again in the Mandesltam plane, branch 4 lies outside
the Mandelstan plane (Re ¥ = 0, ImV # 0), and finally branch 5 lies in the

Mandelstam plane and starts at the point (V,t) = (0,t,) and goes asymptotic-

3
ally to the line s = -c. It is clear that a curve with such a complicated
structure is not particularly suited for writing down dispersion relations.

Purthermore, from the equality

CP(S,%;) '—"CP(S') 2:'s> =C (D.16)

[ —— Pl i e e e e o e e [P ————— A P . s

*
) Here (s Z ) is the point where one wants to evaluate the dispersion rela-
tion, and (s',zs) are the points over which one integrates in the disper-

sion relation written down on the curves defined by (D 15)
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one obtains

12 M 2
Z =1 -1 <4—2$> ¢ (D.17)

and therefore condition d") is violated.

It is interesting to notice that the case n = -2 in Egs. (D.12)

and (D.14) corresponds to the +t channel version of the Leader-Pennington
27)

<
n"=2 - 4'?" (1-%)

variable

< _t:. (D.18)
. 2 . 2
Thus keeping n, fixed, ng =c, we get the hyperbolas
(s+c)(uw+c) =
(D.19)

b=blc)= (M"——m’g)z +c(c+Z)

which have the interesting property of passing through the threshold
2
s = (M+r1 at t = 0.
(4 )

Finally, we should point out that in this paper we have always
considered the variable t in the interval -o< t < ® . If we would have
considered instead the finite interval t1 <t < tz,
the’ asymptotic condition (p.2). Consequently, if we allow the function f to

have M poles at t = 'I:n, we get as a generalization of the curves (2.14)

(s-ap(n-a) ll (¢-T.)= L bt
) (p.20)

m=4
where N 1is now no more restricted to be equal to M+ 1. In this case, the

function f 1is given by

N n
t

2 b,
i(t aQ,T ,...,b”...) G, 2‘.,.2“) -4 “" (D.21)

1 (t-bm)

w4

we would not have obtained
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Geometrically, one is dealing with curves which are closed in a finite region
of the Mandelstam plane leading to "finite contour dispersion relations", The
*

simplest case is obtained for M = 1, §¥ = 0, fl,"1 = by by = Cy deeey

(s-a) (w-a) (t-b)=cC o (D,22)

with

<
-x,‘(-t;a,b,c)-.-.(-l:-z-!-?.a.) -f_:-: ’ (5.0

As another example for a closed curve, we mention an ellipse in the (N ot)

plane (-b <t < b)

“ (%)z + (%)L’ 1 : | (D.24)

with
o (_ : &) |
:(; (¢;0)b) = ( b b*-% . (D.25)
——— o — —— - —— .-——-— e - ey B S T TP s W Py P T S G e 2 e Wt 0 D G T O oy e e S
*) After having finished this paper we saw & preprint by Auberson and Khuri 28),

where exactly the curves (D,22) are considered. The dispersion relations
on these curves - given in Eq. (4.13) of their preprint - contain extremely
complicated kernels, even for the invariant amplitudes { This is just what

we expect from the discussion in this paper.



APPENDIX E - (CONVERGENCE OF THE PARTIAL WAVE RELATIONS

In the derivation of the partial wave relations (4.5) the hyper-

bola dispersion relations (4.3) have been evaluated on a family of hyperbolas,

(S—&,)(’M.—O.>= b ) (B.1)

whére a 1is considered a fixed parameter and the "hyperbola parameter" b

varies, at a given energy s, in the interval
b(s,%sd;a) < ‘D < b(S,?_-s=-4,'G> ’ (E.2)

In order that the partial wave expansions of the absorptive parts
are convergent, it 1s necessary at all times to ensure that the hyperbolas

defined by Egs. (E.1) and (E.2) remain well inside the ellipse of convergence.

*
), the

direct channel absorptive parts of the TON amplitudes are analytic (for

Assuming the validity of the Mandelstam representation

given s) in the complex t plane, apart from cuts on the real axis for

t Z'CIf(s) and t < ’cM( where the "boundary curves" 'C' (s) are given
in Ref. 25). Since for > (M+ mx) one has "b' (s) 2 A,mE and

'lel(s) < —86m2x, the nearest boundary is 'U (s),

(ow: (1+25)  for (s % 80nE

T, () =1 (5.5)
S+3(M%-my)

Lmz {4 +lw [5-(s2me)][s-(-2me3] for S 280mg

e e S e e o S T e = o = o o o S . o e o o o T S e o o o e o = o e o B o o e o e e o o e e o e e S s S B S S e e T

Actually we only use "Mandelstam analyticity", i.e., we assume that the
analytlc properties of the amplitudes are exactly those given by the
Mandelstam representation irrespective of the question of a finite number

of subtractions, etc.
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and therefore the ellipse of convergence of the absorptive parts is

M 2 M
E (S) = g 0] ) = ""q ’ ‘C+ (S)} . (E.4)
This implies convergence for real t ia the interval

~)

'C_t\(s) < +t < T:: (s) , (E.5)

where

~J

ti‘ (> =-— ""ﬂz — ’U'_:.* ©)  (B.6)

o~ M

and  (s) < -26m for s > (M+—m1r)2

2
T
Consequently, for fixed a there exist two (uniquely defined)

"limiting hyperbolas", characterized by their hyperbola parameters bi = bi(a),
which are tangent at some points to the boundaries 1: (s) and 1:%(5), res-—
pectively. Thus the partial wave expansions of the absorptive parts converge

on the wnole set of hyperbolas satisfying

b, < b(s,2;0) < b. @) . -

The two limiting hyperbolas define two energies, s =s, .(a),
¥ 1,2 1,2

determined as solutions of the equations

b(Sm) Zs=x4; °~> bi(a), (E.8)

‘with the property that for fixed a and S > S a) = min{s1 a),sz(a)}

there does not exist a family of hyperbolas voverlng the whole phxﬁlcal

angular range -1 = zg < 1 and satisfying the "convergence condition" (EeT) e

__...___—______—_.—-_________..._.._..__—____-___.___—___—_...__.____.__—..____—__..——-_.—__—--

*) . A . 2
We only consider the solutions with 9(a) >.(M+-m1c) .
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The absolute highest energy, Smax’ up to which the partial

wave relations (4.5) converge is then obtained by varying the parameter a

[georietrically, it is clear that & has to be smaller than (M-—m":)z:],

Soer = mex s} 5

leading to an optimal value for a.

(E.9)

In order to calculate S ax’ we have to find the two hyperbolas

tangent to the boundaries 1:%(5) and 1:¥Rs). Demanding that a given

hyperbola goes through the two points (s,tyu) and (s',t',u'), one can

eliminate the parameter b with the result

o su-s'u'
1! -+

(E.10)

Thus the two hyperbolas going through the forward and backward points
(syz =1) and (s,zs= -1),

respectively, and touching the boundaries at
(s b, =
+7 7+

'Elf(s_*_), u, E-Z—s_)*_—t+) and (s_,t_ = 'E’Ii[(s_), u_ EZ-S_—‘F_),

. . *

respectively, are given by

s (Z-S) — S+,
t4

., ‘=’—Q+ (S) =

(M‘.nz)z-—S- U | (B.11)
_=Q_(s
a > ll-q"-i-'t_

To obtain an approximate value for S
max

ty=42mg , W+ =0

**)
, Wwe set

*

) Here we have used the identity s(Z-s+ 4q2) = (M2—m.2‘)2
*%

) It is easily seen that the points (E.12) lie below and above the boundaries

M(s) and (s), respectively, thus leading to a lower estimate for
+ — ———

S .
max
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in Eq. (E.11) and solve the equation a+(s) = a _(s). A graphical solution
gives Smax(estimate) ~ 105 m2 , Wnere the corresponding value of a 1is
~ =117 m2_.
- T

- Thus we conclude that the partial wave relations (4.5) are conver-—
gent at least up to e = 105 m%c which is somewhat larger than the corres-

. . 2 : : .
ponding value Smax = 98 "y for the partial wave relations derived from

fixed t dispersion relations 2 .
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