Rie b es

CERN LIBRARIES, GENEVA

T

CM-P00058471 Ref.TH.1557-CERN

DEEP INELASTIC PHENOMENOLOGY AND LIGHT CONE PHYSICS

T

Richard A. Brandt
CERN - Geneva
and

Department of Physics
New York University, N.Y.

Lectures given at

The International School of Subnuclear Physics
Erice, Italy
7 July - 29 July, 1972

The Niels Bohr Institute 1972 High Energy Symposium
Copenhagen, Denmark
7 August - 18 August, 1372

f.TH.1557-CERN
September 1972



TABLE OF CONTENTS

II.

DEEP INELASTIC PHENOMENOLOGY

A. Introduction . . . .

A.1 Kinematics . .
A.2 Scaling . . . .
A.3 Causality . . .
B. Local Properties . .
B.1 Regge behaviour

B.2 Resonance averaging

B.3 Threshold behaviour

C. Global properties .

C.1 Mixed pole . .
C.2 Causality . . .
Ce3 Area =« « « o«

LIGHT CONE PHYSICS . .

A. Electroproduction and the light cone

A1
A.2 Consequences .

A.3 Model . . . . .

B. Models for light cone expansions

.

Light cone dominance

.

B.1

B.2 TFree field results

B.3 Perturbation theory and Thirring model

C. Canonical formalism

001

Lessons from SLAC

.

Operator product expansions

.

.

.

and

C.2 Canonical light cone expansions

C.3%3 Reducible scale invariance

D. Massive lepton pair production

D.1 Preliminaries .

D.2 Model calculations

D.3 Light cone Regge analysis

FOOTNOTES AND REFERENCES

.

.

.

scale

- e

« o

invariance.

.

DA

12
19
24
27
27
30
35

37
37
37
40
43
46
46
47
49
50
50
51
58
63
63
65
69

75



DEEP INELASTIC PHENOMENOTLOGY

This Chapter will be devoted to a review of our present understanding
of inelastic electron-nucleon scattering phenomenology. In this phenomeno-
logical approach, we shall not attempt to "explain" the experimental data in
terms of some underlying physical theory, but shall simply attempt to summa=—
rize and parametrize these data. Fundamental physical principles, such as
Poincaré invariance and causality, and theoretical ideas, such as scaling,
Regge behaviour, and duality, will of course be heavily used in these para=
metrizations. It will be particularly stressed how the Regge and duality
céoncepts borrowed from purely hadronic physics are extremely useful in this
analysis. Indeed, the success of these concepts here is perhaps even more
striking than in hadronic physics because of the extra variable (photon mass)
involvedi The field theoretic causality principle will be seen to play an
important réle in relating the hadronic concepts to behaviours in the electro=

production scaling (deep inelastic) limit,

A, Introduction

A.1 Kinematics R

We begin as usual with a review of the relevant kinematics. Because

of the large number of such reviews already in the existing literature 1)—5),
a brief summary will suffice here.
The total electron—proton cross—section in order C<2 can be written

. ,,"_Xz N o R . L@ (1)
"0(“ (JL'_'_’ = E . h’/l’/".kr(‘\/) (4= ":7* + c)\\y'\,((){)v'),/}{,/ﬂ = | 7

T &
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-

where E, E' and 6 are, respectively, the electron initial energy, final

energy, and scattering angle

S

w = Lé_l = —4FE st & (2)

~

is the square of the momentum transferred to electron, and

Vo= f—E—E', (3)

Throughout this section, we take the initial proton to be at rest and to

have mass 1, so that the four-momentum p is



ot = (l)O)C/)Qii)w (4)

The process is illustrated in Fig. 1.

The structure functions Wi can be defined from the forward spin-

averaged current-proton scattering amplitude (Fig. 2)

Toy =< So(ﬁx t‘i[ﬁ'x@(,xiu)ﬁ/f”:\);(x)) oy le )Nf> + /ﬁj%ﬁnéd
(5)

il

VA —’L>T/<w>—(f,,b EL )T (10, v)

by

Wy =+ B T =37 e [, T30

| (6)
) - ) = (g - B 1),

so that
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The positivity condition

W, = o

(8)

follows from (6). The transverse and longitudinal cross—sections O—’T and

6?5 are related to the W, by

W= & (\/—&lﬂl%

Ll (e §
(9)
W - GErv-ix)
=7 g (V)
Equation (5) becomes the physical Compton amplitude for o - O and we

have



/ VIy , o xlay
W ’ W, e S I (10)

where O}T is the total photon-proton cross—section.

It is convenient to introduce additional functions Vi defined by

\/\va = B’”]Z{i— v({; 1y + e ﬁf) * %M”VL]\/l(M)u)
G S AVICIE

Comparison with (6) gives

(11)

W . A

N W= ®\V —pi\V (12)

g,

We will be mainly concerned with the amplitude Wz@{,v ). The

product YV W2 will often occur and so we call it simply W :

Woov) = VW, 6v) . (1)

W will vanish when the s channel variable
RIS . P
s = (prg) = H+ v +| (14)

is less than the nucleon mass squared 1, the lowest mass intermediate state,
i.e., when M +2) < 0. The contributions of the nucleon intermediate state
are the Born diagrams shown in Fig. 3. For electroproduction ot is always

negative and for convenience we will always choose )}/ to be positive

H =0 v 2 O, (15)

Negative values of V' can be reached via the crossing relation

Wixv) = + \/\/(M)—V), e



The most prominent feature of the electroproduction data is its
exhibition of scaling. The structure function WO(,V ) is dimensionless and
so, if masses are in some sense unimportant for large ¢f and V , 1t might
be expected to approach a function of only the dimensionless ratio

- A
2= = = 5 (17)

in the Bjorken (4) 1limit |[A|->wo with /7 fixed 6)

\/\/(K)V)‘ A Fle). (18)

We will often write F(w) instead of F((@) - this should cause no confusion.

7)’8), the scaling behaviour (18) is well satisfied, beginning

Experimentally
at the surprisingly low values }{ ~ =2 GeV2, Yy ~ 3 GeV2 (precocious asymp=—
topia) (see Fige. 4). We will here assume that (18) is exactly satisfied and
study some of its consequences. Note that since W vanishes for L) < [r(/zl,
F  vanishes for /-’j < 1. In Chapter II, we will review some attempts to under-

stand the dynamical reasons for scalinge.

The experimental scaling data are shown in Fig. 4. A numerical fit is

provided by the form 9)

~ 3 At A
Fle) = ;‘Li (- %) " (19)

with a,
data taken for |A| > 2 Gev®, 5> 2 GeV) for A <7, where (19) fits
the data with ﬁ<2:=619 for 397 degrees of freedom 10 . We can therefore

take

=1.650, a2=1.325, a3==—10399. There are only scaling data (i.e.,

Fle) = /E(f)) |2 pe 7. (20)

A plot of this function is shown in Fig. 5.

Scaling is found to set in even earlier if the scaling variable /?

is replaced by the new variable 7),9),11)

r=r- 3 e

With (21), scaling begins at |H| ~ 1 GeV°. TUsing (21) is therefore

convenient since it increases the amount of scaling data. Since



F(e) = Floy - Fe) + o (=)

the use of (21) amounts to keeping some non-leading terms in the A limit.

This will be discussed in Section II.A.2. Note that the distinction between
(@ and (@' is only important for small 4 and small 2 , i.e., in the

threshold region /S ~ 1 for [H]| < 5. A fit to the data of the form (19)

using ' gives a}=0.687, a,=1.773, a ==2.242 10).

2 3

In discussing the scaling curve, it is convenient to divide it into
several different pieces which emphasize distinct characteristics. We will
call the large @ ((7 > 16, see Section I.B.1) region the Regge region,
the small {7 region the threshold region (1 < ﬁ < 2), and the region
2 < @ < 5 will be called the resonance region. We will see that F(F )
has Regge—like behaviour in the Regge region, has form—factor-like behaviour
in the threshold region, and is correlated to the s channel resonances in
the resonance region. We will refer to such properties of the scaling curve,
which have to do with its behaviour in a restricted range of A, as local
properties. These will be considered in Section I.B. There are other
properties, typically integralé of the form IT)QC F’—n[i(f7)—.o. , which
have to do with the entire scaling curve. We call such properties global
properties. These will be discussed in Section I.C.

The amplitude T2 [Eq. (52] whose absorptive part is W2 need not

scale even if W2 does. We have the dispersion relation

&0
—_— . i | / 1,” \ . .
Tow) = 4 [ Wl e, e

(ﬁ)”— Vit =y =

the convergence of the integral being suggested by Regge theory and by
experiment (see Section I.B.1). If the additive polynomial is absent, then

T2 should scale as

VT nv) > Gle) . (24)

We will have occasion to make the extra assumption (24). It is consistent

with, but not implied by, the present data. If (24) is valid, we have

(T Fle)
Glr) =+ gckp'L—ﬁ:/—;;z g (25)



Simple dimensional analysis suggests that the second structure

function W1(X ,V ) should obey the scaling law 6

W) —a Fe) (26)
7)

not known nearly so well as W2 since most of the data are taken at small

This behaviour also seems to be experimentally correct , although W1 is

angles [éf., Eq. (12]. We will therefore consider only W2 in this review.

We have so far discussed only electron-proton scattering. There is

also some electron-neutron scaling data 7)’8). The quality of the neutron

data is not equal to that of the proton data, and deuteron correction sub-

1
tleties may also be present 2). Scaling is expected to be valid also for

neutrons and the data are consistent with this. In the scaling region, the
13)

r_-(m)(f)) e (l*T;)E([’) (27)

EN

simple relation

8)

seems to be valid ~’. It is hoped that (27) is not valid down to /O =1

because of the bound

ANOVIINERE - (29)
14)

suggested by some theoretical considerations . The present data are

consistent with (28).

The scaling laws described above can be simply illustrated in free
field theories. Consider a free scalar field theory. The amplitude Tf
for the scattering of a scalar current (N(Pz) from the scalar particle is

given by the Feynman diagrams of Fig. 3 (with no form factor at the vertices).

Essentially
- p ] _ PR
o= - = 2
lﬁ(”>V) A+ 2V +4¢ i HA=-2V —a ¢ [ R VLY (29)
and

Weln,v) = = &17;(/(,»/) = Slreav) = §lr-2v) = aeew) S av), (50)

We have the explicit scaling laws



V‘T;(,cﬂ)\i)“Tﬁ C"ka’) = 7,_1—[—__ ) (31)

Vb — Fle) = 5 [p-0 #5ee)] .

For free scalar or spinor theories with vector currents (<F+;A9’ or

*’? %/) essentially the same functions result for the amplitudes T and
M ’ y 2

W2°

A.3 Causality

The principle of causality is basic to a field theoretic description
and its constraints will be extremely useful to us. The causality require-—

ment on the local electromagnetic currents,

L%Lx)) J;(O)] =0 for xX<O ) (33)
is reflected through (22) into‘constraints on the structure functions
Wi(x,b)). These constraints can best be met and exploited by representing the
Wi in a manifestly causal form. We will therefore Work1¥ith a manifestly
causal integral representation - the DGS representation ~’., Although not
a strict consequence of quantum field theory, the representation is correct

15)

in every order of perturbation theory We could equally well employ the

rigorous JLD representation 16), but this is less convenient.

Although W,, , as defined by (22), is the Fourier transform of a

causal commutator, the Wi will not in general be causal because of the

K= factors in (22). This is why the V. were introduced in (27) 7).

The Fourier transform of (6) is
W, = 37 <pllow, Hellp

=ags c(p R, LE) - L e VG px) O

’(‘D?ﬂufg/v‘;v)i\'/o(xl)lg'x)"

where

Vilny) = \fgiorx et V™ joex ). (35)



Note that
VoG —px) = = Vo pax). (36)

~

The Vi are locally related to W

v 9 and it can be shown that the

Vi are themselves causal 18). Thus we have the DGS representations 19)

0 L
L) = Lc?a L{% g7 (a,b) §(#+abv—a)e(w+b) . (37)

In configuration space these become
0

A . :
2 A i X Y "‘/(b 2
\/(’()F‘X)=—m§iaff65:(q)b)e -

L\(X’)cur b) P

(38)

where

FAGha) = G A e T ) e (39)

=

is the usual mass a. free field commutator function :

Alkra) =0 for x*<c . (39)

We shall always take 17 > 41 so that %vﬁj+-b) can be replaced by +1

in (37). We can now use (12) to write representations for the W, 17)

°o |
W, = e db o te,b) Slrrabu-a), -

o )
W, = [ falamen) - vioap)liecat-a).

We emphasize here that the above representations incorporate, in
addition to causality, the constraints arising from the spectrum of the
allowed intermediate states. These spectral conditions restrict the supports
of the spectral functions G‘i(a,b), as embodied in the integration limits
in (37). These constraints, specifically the boundedness of the b integra-

tion range, will be crucial to our analysis.



The reasons for the validity of (37) are apparent from the x space
representation (38), which expresses V(Xz,p-x) in what is essentially a
Fourier representation in the pex variable and a Bessel representation in
the X2 variable. The Bessel functions Zﬁ(xi/42), 0 < /M2 < ®, are
complete for sufficiently smooth distributions f(xz) which vanish for
x2 < 0. The completeness of the exponentials e—ibx-p actually requires
that the b integration in (38) run from -o» to +m. It is the spectral
conditions which allow the integration range to be restricted to =1 < b < 1.
It is clear from (37) that this restriction is sufficient to guarantee the
vanishing of V@K ,V) for [p | < [K/2

for all Fourier transforms of causal commutations obeying the spectral condi-

. The generality of the restrictions

tions is shown in Ref, 15).

To gain familiarity with the representations (37) and (40), we consider
again the free field function (30). The function (30) can clearly be repre-—

sented as (37) with spectral function

)61 + Sbe]. (42)

The representation of the form (40) has the spectral function

, /, »
6f (e, b) = Slaye(v-1) (43)
as can be seen by explicitly performing the a and b integrations.

The causal representation for W = v W2 we will use is thus

o |
W) = HVJ;f)aWEO*(a)b)swf abv - ) (44)

where we have dropped the index 2 on O . It may not seem that (44)
accomplishes much since it expresses the a priori unknown function WO{,V)
of two variables in terms of the new unknown function (Y—(a,b) of two
variables. However, in attempting to describe the experimental data for
WO{,V ), a parametrization must be made and it is very likely that an
arbitrary parametrization will not be consistent with causality. If a
parametrization is instead made for 0_'(a,b), the resulting parametrization
for W(X,V) obtained from (44) will be guaranteed to be consistent with
causality (and spectrum conditions). This then is the virtue of doing
phenomenology in terms of (44). Another important advantage of using (44)
is that it provides relations between the behaviour of W in different

limits. Several examples of this will be given below.



- 10 =

If we were to consider also negative ' , we must use

1

Wiy v) = ach@a_fcfb T () b) b+ Abv-a) eV +b). (45)
Note that the crossing relation (16) gives
Tla,b) = 0 (uw,-b), (46)
so that

T layb) = T (ayibp (47)

The b integration in (44) can be explicitly performed using the

6 function, which gives

T ¢ e (48)
b = 2y )

to obtain
> - M
. - X
Wix,v) = %Lm (e, 42 ) (49)

with the understanding that ¢ (a,b) vanishes for |b| > 1. The form of
(49) and the precocity of the scaling limit strongly suggest that 6-(a,b)
decreases rapidly for large a. Indeed, without this rapid decrease for
large a, (49) would only be consistent with the scaling behaviour (18) if
Cf(a,b) had very pathological behaviour. The mere existence of the equal

time commutator [ﬁi(on§2,Jj(OI] is in fact effectively enough to guarantee

a sufficient decrease. We will therefore always make this,K assumption 17)’20):
T (. b) — .
(b)) =7 O fast (50)
In the A limit, (49) gives
A i .
\W (V) ——> o |da (@) o) (51)
A PN )
and so, to obtain the scaling behaviour (18), we must have 17)
EJLLO“(ZCL)W) = <, O« o & | | (52)

Given (52), (18) will be satisfied with 17)



Fle) = - —,"f—j&a 7 (e, e ) , (53)
where

6_/<CL)W) - gw g—(&)bu) (54-)

The condition (52), a consequence of scaling, is the first restriction on

6 (a,b) we have deduced from the data.

9)

The simplest ! integral representation for

Tlew) = v T, Ge0) o (55)
ol .
' _ ) 0 (« b)
T(M)\)) N M\/Joc‘u(.;ibﬂflbu)-a +4e (56)

An additive polynomial is in principle also allowed, but its presence would
violate scaling and so we shall assume it is not present, With (52), (56)

gives the scaling behaviour (24) with

Clw) fgb .__LQL(CL . (57)

b—uo)

As we will see in Section I.B.3, 6~(a,i1)==0 and so (57) can be written

- o

) - = Al e

The absorptive part of (58) is (53).

The spectral function (43) in the free field model clearly obeys (52)
and the structure function (32) satisfies (53). Equations (56) and (57) are

also explicitly verified in the free field case.
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B. ILocal properties

B.1 Regge behaviour

The first local property of the scaling curve we shall consider is its
Regge behaviour. We assume Regge behaviour for Wt A/) in the Regge (R)
limit ) -» ® with #€ fixed :

W (t,v) =g Apln) + (av) "’*/’T(x) (59)
Here we have included the Pomeron (P) and tensor meson (T==f0+A2) Regge
pole contributions with t=0 intercepts O(P==1 X . O(A =% 2

It is clear from (44) and (48) that the behaviour of W(}( V) in the R
limit is controlled by the behaviour of T (a,b) in the b-0 limit. In

order to obtain (59), we must take 17),22)
: . . i/
5 (a)b) 7557 Op W) b + )b . (60)

Note that (52) requires

NJ?ao*(a = f_c@ar(a) = C (61)
. P ‘ T

Then (44) gives the behaviour (59) with 17)

(Bolrt) = gtea (a) An(u- %)
(62)
o0 2
fBr )= Fldoia) (a-0)™
The representations (62) obtained for the Regge residue function
imply the expected result that the residues are analytic functions of A
apart f§om right=hand cuts. It further follows from (50) and (61)=(62)
17
that

/;E(K) o gaQa (e = Bp

- (63)
Br10) 5o (o0 [dagr e = (0"
1) 5 F JdeTrla)a = Bt

1%

The large 4 behaviours of the residues are thus specified. It is of course

possible that [7"}., and/or BT vanish.



- 13 =

An important further consequence of our analysis is that the small b

behaviour (60) of Oﬂq(a,b) determines, via the representation (53), the

large /9 behaviour of F(P ). Equations (60) and (61) give 17)’23)
Fle) 57 Be + P 81 = kel - (64)

We thus obtain a commutativity between the large 4 behaviour of the R
limit and the large (@ behaviour of the A 1limit. This can be summarized

in the commutative diagram

\x\/(«*‘ﬂf) R > Apr) +(;u)'7~ﬁT(ﬂ)
A Xx—wx (65)
=(p) -5
It is at present not possible to reliably compare (64) with experiment

because of the absence of scaling data for large /9 o [ihe data for /9 > 7

correspond to values of M which are too small to be in the scaling region

and so are artificially decreased by the kinematical vanishing of W@(,V)
at ¥ = O;] This difficulty can be overcome if one is willing to make a

simple parametrization of the residues (62). We will take

: Al - -
Bplr) =2 — == Fe gT(H)’(_K:ML)'/aﬁ‘T? (e6)

which is the simplest parametrization consistent with scaling, [Z6BI] and the
linear vanishing of W(x,v) at > = 0, Egs. (66) correspond to the para-
metrizations

(67)

yan

o) = 28,5 (a—nur),  gra) 2 4f ¢ (aznt),

in the representation (62). Note that precocity suggests that /Mz < %{GeV2

in order that the scaling limit (63) is approximately obtained for |[H]| ~ 1
or 2 GeV2.

Using (66), the Regge behaviour (59) can be compared with all of the
data for all V and || 10) 1t was asked for which \/ and 4 are (59)
and (66) valid and for which (constant) values of ﬁ;P’(gT’ and /442. It

was found that (59) and (66) give an excellent fit to all of the data for

L =zpe 2 6 (68)



with the values
Mt E 039, Bp = C.29 ,  ABr = 0.2%. (69)

The fit is shown in PFig. 6.

Let us now comment on the result of this fit. The value 0.25 for 2
is quite consistent with the precocity requirement discussed above. The value
16 for the magnitude po of /) above which the Regge behaviour (64) sets
in may seem rather large. The reasonability of this value can, however, be
understood as follows. The Compton amplitude }(1_)1% [: lr( |_1W(M,Vﬂ is known
to be well approximated by the Regge form (59) for y > )jo = 2 GeV2 25)’26).
Using (44) with (60), (63) and (67) gives

Qo= e (70)

as the value of /2 above which F(2) is well approximated by the Regge

form (64) 10). It is thus the small mass /AL which determines when Regge
behaviour sets in for F(/’ ). Numerically, (70) gives precisely »ﬂo = 16.
The general magnitude of ﬂo is, in fact, independent of the particular
approximation (67) and such a large value of po could have been anticipated
a _priori. With this value of ﬂo, the values of 6P and GT in (691)
are seen (Fig. 6) to be such that the Regge asymptotic form FR(p)= HP"'p-?ﬂT
everywhere lies above the scaling curve F(ﬂ) 27). ‘

In the R 1limit, the amplitude T()J,\}) whose absorptive part is

W(X,\)) will also receive contributions from the Pomeron and tensor meson

Regge poles. 1In addition, T can have a J=0 fixed pole 28)’29) contri-
bution. Thus
Tyu) =7 G000 + @v) 2V 00 + 07 (=012 e ) (71)

where 7 P(?)‘(), XT(J( ), and —)'(XF(M’) 30) are, respectively, the Pomeron,

tensor, and fixed pole residues. We have for ¢ < O

%T‘ﬂmib}_(ﬂ)) Y ), 7,:(){)} = {_/32(,4)) 6T(H)) o} . (72)

We assume that T, as well as W, scales and the validity of (56).

Then, just as for W, we obtain commutativity as in (65), so that

Wet), Tp (), 00} 55 1o, 11 7 | (73)
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for some constants TP’ .XT’ XF Clearly
i
?ME\O/E‘)XT?Xlzﬁ = {68767703- (74)

If X P T(F(cn) # 0, +then there is a J=1 fixed pole in deep inelastic
electroproduction. Similarly, if XF(O);éO, then there is a J=1 fixed

pole in Compton scattering.

Let us now see explicitly how the behaviours (71)—(74) arise from the
integral representation (56) for T(K,V ). To this end, we consider a class
of model functions (V > 1)

00

{ | '
Tw)(}()b’) = xv S&Jf‘? O—Ld)(a')b) (M F2bu —a *’it)—l Y (75)
where
6_(0()<¢L)b7 = GZCCL)lbIO( ) x 20, (76)
with
\%a]
SAQ O:;(CL} = & (77)

o}

and (50( (a) of rapid decrease for a-—- in order to have scaling. For
K > 1, the bV term in the denominator in (75) dominates for large V)
and we obtain Elsing (77ﬂ

o)
)
T(O( (}()\}) R 7 9:)3 o\I—' [)CMOZ(CL)Q? (O(>l)’ (78)

We thus get a decrease in the R 1imit at least as fast as \Y) _1. If
Ig) da 0y (a)a#0, we have a J=0 fixed pole with a residue linear in K.
Clearly, w(“) = 1T| Im T(O\) 3 0/v so that W will not have this v‘1

behaviour.

Consider next the range O <X< 1. 1In this case the large ) behaviour
of (75) can be obtained by changing integration variables from b to
x = 20V (o —a)—1. The result is

-4 bl
\ (K,\)) R 7 ( \))0( CO( Ldago(\(a)(a—}() - AV DO(’ Ldao&(ﬂ)a‘ 7 (79)

(o<x<l),



where
N | TAX
_ X - —~
Cx = S./")‘lxl (x+1) " = e ! ”
N-—)OO -N ‘OAMTTOQ (80)
! I
= — -+ R
l% X —x™>
So now T(CN) exhibits leading Regge pole behaviour. In particular, we get
the tensor meson trajectory behaviour in (71) for & =%, as in (60).

Taking 0 1(a)= G‘T(a), (79) gives an expression for Y{T(&() whose
R
absorptive part for H < 0 1is (;T(r(), as given in (62). T(c<) also

exhibits @ J=0 fixed pole with residue linear in € .

For K =0, (79) does not give the Pomeron exchange behaviour in (71)
because, according to (77), the coefficient vanishes. The Pomeron behaviour
is actually provided by the term (Té(a)ﬁnb in the small b 1limit, as in
(60). The actual large Y Dbehaviour of T ) s simply obtained by
explicitly performing the b integral in (75).  The result is

T(c)(ﬂ;v‘) ? :‘% Lda 0g ()~ . (81)

We therefore obtain again a J =1 fixed pole behaviour with residue linear

in Jf .

The final case to be considered is (KX = 1. Explicitly performing

the. b integration gives

TWoew) = 2 laoriw) (2580 ) + 222 (58] . (o0

We see that, in order to have pure Regge pole behaviour, we require the two

conditions
Samr,m -—*fdamu)q = O (83)
and not just (77). Taking (83), we obtain

T ) g7 5 [ ) () Dalare) + e

This is again a J =0 fixed pole behaviour, but now the residue is not
simply a polynomial in H . The residue has a non-vanishing discontinuity
for X >0 [ﬁnless cr‘1(a) vanishes identicalli]. Note, however, that

because of (83), T L vanishes in the A 1limit



_T-(l)(ﬂ)v) ‘__A__ﬁ O. (85)

Note also that, since (84) has no discontinuity for X <0, the fixed pole
asymptotic behaviour is not exhibited by W<1). It is, in fact, not possible
for W +to have the fixed pole behaviour if T has pure Regge pole behaviour.
A non-pure Regge term of the form »)_1Ln\) in T would be required to
produce a \}—1 term in W. We will not consider such possibilities since
such contributions are absent or at worst small at t=0 1in hadronic

31)

reactions .

From the above examples, it follows that the most general form of

6‘(a,b) consistent with (71) and our other assumptions is

Tlayh) = 0@ + 05 () dalb] + 67 @bl o (@) + G, b) L8
where
7 (a,b) =55~ O- (87)
Then (71) is satisfied with

Blee) = wu'%jd(x Op (4) A (=) (88)

W) = »C, ldecote) (a- '
(89)

V00 = [daf 5 A G ) ()BT dala-n) (50
~ [ F@ p)b* e

Although W does not have the J=0 fixed pole asymptotic contribution,
the value of the fixed pole residue —)(Xﬁ(x ) in T can be obtained from
W in the usual way. The quantity T(A,V)- ¥p(H )- (2\))—_'7‘(*() satisfies

the unsubtracted dispersion relation
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= &‘(&v’ [\/\/(%,\/“)*,QE(M)—(&V’)_iﬁT(ﬂz](V"— v’)"z . v
(o

Taking the y - ® 1limit, using (71), gives
* - i
-—:lf;ﬂvhvw,u) — Bplx) — (V) */ZTw)] = K (H)) (92)

which expresses the fixed pole residue in terms of W. Note that the absence
of »)_1 terms in W guarantees the existence of the integral in (92). As
a special case of (92), we can consider its scaling limit. We divide (92) by
ot and let -3¢ > ® [recalling that W(A,V) wvanishes for 2} < |p»¢|_]

to obtain

Jarlewr-6,- p730,1 = -7 )

Note that, although F(p7) vanishes for (2 < 1, the integral in (93) must
extend down to 2 =0 since the Regge subtraction do not vanish for 0 <P< 1.
Since (92) is a global relation, we shall postpone a phenomenological discussion

of it until Section I.C.1.

The free field functions (29)—(32) again provide simple illustrations

of these considerations. We have

VTl = — 14 ) 2

and so Tf possesses a J=0 fixed pole, but of course does not contain the
Pomeron or tensor trajectories. The residue —}(}%(){)::—%- is linear in
H and real. The fixed pole is not present in the absorptive part Wf which
decreases faster than any inverse power in the R 1limit. Note also that (92)

and (93) are satisfied.

So far in this section we have only dealt with electron-proton scatter—
ing. There are also electron-neutron data, however, and, although its

accuracy is poorer, we will record here the results of a fit of the form (64)

(m) {m £ (m m
F (F)W 63’ +p‘*T’E 3 )(p). (95)

Here a superscript (n) is used to denote the neutron functions. An analysis

of the type described above yields 10)



ﬂ(w = 0.149 /’):)—’9— O.‘l’7) (96)

with the same /AA2 as in (69) Comparlson of (96) and (69) shows a striking
difference between /gP and /5P . This discrepancy is surprising since
the Pomeron is supposed to have zero isospin so that /?Pn should be the
same as /3P Although this discrepancy may be simply the result of poor
neutron data, it is interesting to speculate on what would happen if A?

and (5 n were really as different as is indicated by (69) and (96). A
possible explanation of this difference could be that there is a J=1 fixed
pole with non-zero isospin contributing. We suggested a mechanism of this
sort several years ago, based on a new universality principle 32) 33) We
predicted from this that the double helicity flip scaling function Fab(ﬁ))

for the process B(p)+J2 (q)—+B(p)+Jb(q) [where 7%, a=1-8, are the SU(3)
currents and B 1is a member of the %+ baryon octeﬁ] has the highly symmetric

asymptotic behaviour

i

ab o abe e ab
FB (F) — 7 d D(B \/\/5 (97)

where D; = <B(p)lSC|B(p)>, with SC(X) the scalar current in U(12), is a
good SU(3) nonet described by F~3/7, Dx-1/7, p° ()2 For electro-

production off protons and neutrons, (97) gives

\/\/_EQQ = 7‘— (GF+20 +12 (3 )/11)) Q. 2y (98)

and
Q&
W, = FT +I)+(1(—) D) ~ 0.23 ., (99

The experimental results are [;(p) = 0.29 and ' /?£n) = 0.19, in agreement

with (98) and (99) within the experimental errors.

B.2 Resonance averaging

Duality is perhaps the most important new concept to be introduced in

particle physics in receat. years, in spite of the fact that its precise meaning,

34)

beyond finite energy sum rules y remains unclear. It is sufficient for our

present purposes to take duality to be the semi-local averaging, over several
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resonance widths, of the absorptive part of an amplitude by the low energy
extrapolation of its high energy behaviour. Particularly successful in hadron

35)

physics is the two-component duality framework , in which the ordinary
Regge exchange extrapolation averages the resonances and the Pomeron exchange
36), the

situation is, on the one hand, greatly complicated by the occurrence of non-—

extrapolation averages the background. For semi-=hadronic processes

Regge behaviours and, on the other hand, is greatly enriched by the occurrence

of off-shell phenomena such as scaling.

To obtain a first glimpse of the resonance averaging phenomena in
electroproduction, consider again the scaling curve F((7) in Fig. 5.
Consider a fixed (not too large) value of A in the scaling region (I}f, >
1 GeV2 if the Q' variable is used). Then, for sufficiently small Y2
the corresponding value -r%}(/o of ) will be too small to be in the scaling
region or, equivalently, the corresponding value —}((p -1)+1 of s will be
too small to be out of the resonance region. The behaviour of W(;(,V) =
= W(H ,-5XP) for these /A values will therefore not be the same as that of
F(P) since P() must be obtained from the large A and large ))
behaviour of W(X ,V). Rather, W(A{ ,—3X[?) will exhibit bumps corresponding
to the many s channel resonances present. The striking empirical observation
is that this resonant behaviour of W(X ,—%)QO) is strongly correlated with
the smooth scaling curve F(P ). F(P ) is observed to average the resonance
peaks of W(&(,-%X[?) in a semi-local way. This is illustrated in Fig. 7.
The same type of behaviour is obtained for other values of H . As l)(l is
increased, a given resonance slides along the scaling curve to threshold (P=1)
and seems to decrease in magnitude at about the same rate as the scaling curve

itself is decreasing.

The first detailed study of the duality properties of the electroproduction
data was undertaken by Bloom and Gilman 37)’38).
a fixed 4¢ in the scaling region 39) [so that 6 P(){ )N_/;P, A T(H ) ~ I}( I%ﬁT,
and U/F(ﬂ )AJ I}] and subtract (93) from (92). Then replace the upper limit

of the Yy integral by some large N +to obtain

To derive their sum rule, take

anx

[dp[win,-txp) - F()] = o (100)
o]

4

This relation becomes an identity for IN l—*m for any N=N(s ). For large
A (i.e., for y in the scaling region or s = ¥ +2V +1 above the resonance
region), the integrand approaches zero by scaling. For smaller Vi (s in the

resonance region), F(f’) was observed to average the resonance peaks of
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WX ,-R€) in a semi-local way 37). The relation (100) of course guarantees

that P(Q ) will provide a global average of W(X ,—5X [ ). The observed
semi=local averaging is much stronger and does not follow simply from (100).
The observed averaging means that (100) is valid even for smaller N. The

mysterious principle responsible for this is referred to as "duality".

This apparent manifestation of duality is quite different from strong-
interaction duality. For purely hadronic reactions, the one or two leading
Regge pole exchanges provide a good semi-local average to the low energy
amplitude. The low energy extrapolations of the Pomeron and tensor Regge
exchange contributions to W, on the contrary, look nothing like the correct
low energy behaviour of W. For the scaling data, for example, the Pomeron

is constant and the tensors increase like [ "% as /3 decreases to 1,

whereas the scaling curve vanishes like ({7—1)3 for small (7 ~ 1,

From a purely phenomenological point of view, it would be difficult to
guess that it is the scaling extrapolation F(f)) and not the Regge extra-
polation

\

Rleyw) = Bpli + (av) *8r0) (101)

which averages W. 1In fact, we have the commutative diagram (65) so that
both F((O) and R(¥ ,—3M ) are approximately equal to Wi »—3XpP) for
large /9 ( y{ 1in scaling region), but only F(/?) remains correlated for
smaller A . In fact,

\V\/QH)'-LXP) - R(ﬂ)—,_,yp)) o o, (102)
whereas
lW(x,-L2e) — Flp)] 5.7 €y (103)

with 5?4 small but non-zero for finite 3¢ . Note the contrast with purely
hadronic duality, where only the R 1limit is possible, and where R and W

are correlated.

It is of course the presence of the fixed pole in (92) and (93) which

ruins the correlation between W and R. DLet us ask if, nevertheless, some

aspect of (two—component) duality is not in fact present in (92) or (93) 40).

EFor notational simplicity, we will usually work with the scaling limit,
Eq. (93). The analogous equations for finite X will be obvious.] To this

41)

R .
end, we decompose F(ﬁ7) into its resonance contribution F ((D) and its

background contribution FB((O) and write



i
N

(:E(P> Pp E(P) = P_i(f-,- . (104)

Then (93) becomes

A
4elFe - P -Ee) - Blel] - -, (105

or

ik

AL
R B ]

ol F — —=(r) = [— — 106
Ldpb_ (p) + F(P) - E02) = R (p) I (106)
for large A. We now ask whether (106) can be decomposed into two non-trivial
independent equations. A possible answer is suggested if one defines a
function FF((J) which satisfies

A

SOC;F[—E(F) 2 -1 (107)

and write (106) as

A : ' _
o
We propose the following decomposition of (108) 40) :
A A
goclp[i_:R(p)- Fwe] = © ) (109)

LAdp[FB(P)—\E‘(/’)-E(F)] = 0O (110)

We are thus following purely hadronic duality in correlating the resonances
with the tensor exchanges, but the background is now correlated with the sum
of the Pomeron and fixed—pole exchanges. These correlations provide for a
universal treatment of purely hadronic and semi-hadronic processes, since

‘KF is zero for on-shell scattering.

The idea is, roughly speaking, to take FF(()) to behave like ‘GF‘9_1
in the observed ) region, say 1 <(< 10, [:GF < 0 1is to be chosen consis=—
tently with (107I] although such a form should not survive in the Regge region.
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The viability of (109) and (110) 1s then illustrated if Figs. 8 and 9.
Figure 8 shows how FT(p) = ﬂ 2. p averages the resonances F (ﬁ) 42)
. ~1
and Fig. 9 shows how the sum FP(P)+FT( p)+FF( P) ~ /P+F 6‘1""/3 /JF

reproduces the gross features of F((O ).

In order to clarify the role played by F (,0 ), we follow the usual
34) | ana cast (93), with cut-off
/\ > /\0= 16, 1into the approximate statement

derivation of finite energy sum rules

A
N . g T _ -l
/\LdPF(P) = Lp + ABLA A (111)

Just as the usual finite energy sum rules suggest that the integrand at low
energy is approximated by the simplest functional form that can yield correctly
the right-hand side, so here we make the ansatz that F(/O) for 1 < (0 < /\o

behaves on the average like
) = Bp + 5-,—/0_’—" + FF(F’)) (112)

where FF(p) represents a simulated contribution from the fixed pole. Th1e
authentic contribution from a fixed pole in the real part of the form

to F(p) is of course proportional to %(P ), which does not survive in
the Regge régime. As long as the finite energy sum rule (111) is maintained,
one is free, however, to modify the functional form that is supposed to inter-
polate the actual small /7 behaviour of F(p) according to the suggestive

form of (111). In order not to wreck (111), FF(p) must satisfy the equality

A
gociﬁf‘;-(") = Te | (113)

for all /\ > /\ . It is also desirable to impose the condition that %‘J(/?)
should vanish 1dentlcally below the threshold p = 1. The simplest possibi-
lity for FF( p) 1is thus 40)

4
_&‘6’2 ‘\‘,6_{_[) 7—) 9 FOW O<'/)< | 3

— - (114)
=) = %;gv, ’ for 1< p A,

O : cthevw(se
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The constant C is determined by the condition of correct fixed pole residue
to be C==- {F"' BP+2/$T. Using the values of .XF’V NQP, and 6,1, in
Section I.B.1, this function is plotted in Fig. 10. F(ﬁ’) is seen to provide
an acceptable average to F(/7) 43)‘ Better averages, incorporating cons—

traints of locality, are given in Ref. 40).

We conclude this section by noting that the unification of FF(f’) and
FP((°) in (110) suggests that the Pomeron is a fixed pole. This possibility
has been suggested many times in spite of possible unitarity difficulties, and
is consistent with the rather flat Pomeron slope usually observed. It is
further supported by the discussion of neutron electroproduction given at the

end of Section B.1.

B.3 Threshold behaviour

It follows from (19) that the best description of F(£) near threshold

is given by
. 3
F(e) w50 alp-1" . (115)

There have been many attempts to correlate this threshold behaviour with the
large of behaviour of the nucleon resonance excitation form factors Gn()() 37)’442
Eﬁere GO()() is the elastic form factor, G1(&() is the N-N¥ transition form
factor, etc;] Such a correlation is expected mathematically since a given

resonance contribution is at a fixed mass2 s=K +2V +1 = P{ I(F)‘1)+1 and so

. It is also expected empirically because as

moves to A ~ 1 for large |H
IK.I increases the resonances are observed to not disappear relative to some
background but to slide down the scaling curve while maintaining an approximately

fixed fractional contribution 37).

We parametrize the excitation form factors by
-d
X M
GM(K) A CM(\—TM> (116)

The usually obtained relation of (116) to the threshold behaviour (P-—1)p of

F(P) is

g~d _ P'!‘l . (117)

M

44)

This relation was first obtained in parton models and later in resonance

37),45)

saturation models if a universal fall=off rate (dn==const.) is assumed.

Bquation (117) is in good agreement with the data (d==2, p==3).
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To see quantitatively how resonances can build up a part of the scaling
curve, it is convenient to work with narrow resonance models 45 [ierhaps
dual 46)]. In a narrow resonance model, the contribution WR of the resonances

to W is exhibited as an explicit sum; e.g8.,

\A/R(K)V) = UZ:TW/M(M)S(K+&\J+I —sm)) (118)
where s = is the mass-squared of the nth resonance, and
W, (1) = 3:[@(”)]1» (119)
If (118) scales,
'\/\/"‘)(A)V)T? FR(P) , | (120)

and has the threshold behaviour

FF () P YIR(P-')P , (121)

then the relation (118) is usually obtained. The sum in (118) is usually
converted into a continuous integral over s, with specified level densities,

coupling parameters g(s), and form factor constants d(s), r(s) :

\A/R(.ﬂ,v) I Vfcls Gls,®) §(r+av+1 -5)

(122)

= VvG(eravely #).

It is now convenient to define the F 1limit 40) in which |HA| andy
become large with fixed mass s=X +2V +1. We have
i -Y(s)

\/\/QLK)V) —F H(S) (-x) 5 Yi) = ade) =1 . (123)
The proposed duality 40) between the resonances and tensor exchanges requires
that

R : -
W) —g— @) T4L(<) (124)
and

FRe) == "8y . (125)
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We can show that the above constraints on W
tructing a simple explicit model function
form

are consistent by cons-—
WR 40)

We take the factorized

W) = 2xev A LOA, (tr2v) A (av )
and the asymptotic behaviours

(126)
A (%) =——— c. T
A C—> o0

, L=l- 3. (127)
The above constraints uniquely specify the X, : 0(1 -5,
o(3=-—2-f. Thus

\:/R(”)V) _ 7 A,(ﬂ)(%V)"‘ll

) (an)
i?*GTP”%é-O’

= Fitp)
= /-\l(.s)o»("l(x-.s)'l‘“y

(128)
as required.

7
An example is 40

This example has a fixed pole, but it is simple to remedy this.

G " (-0 (Pt 7).

(129)
As a further consequence of locality, we can give a model independent
derivation of the relation (117) and of related results 40
behaviour

We assume the

F 1limit.

W, s-0) =5 H(s) (o)
in the

(130)
Thus we are assuming that resonances dominate the
and that the form factor of the mass squared=s
for large IK

controlled by the behaviour of

F limit

(=X )'%E\J(S)“]

resonance 1is
Referring to (44), we see that the F 1limit of W is

7 1+)(—1(s—a)+ eee . We assume the behaviour

0 (a,b) for b)—>1, since b=(a-o‘()/2)/-b_—|>
47

5
6 (a,b) T=7T> T@li=b6)",

(131)



and obtain 48)

W) —F— “i(**‘)'_gfoéa ACCCL)(S*@)S; (132)

and so Y (s)= § -1, independent of s. Our assumptions thus imply a
universal fall—off rate for excitation form factors, and we have not even

assumed non-trivial scaling. Scaling gives

o0
: S .
HG) w57 8°7 46 [da v a (133)
O
2 § ) ) )
and so I:Gs(-){ﬂ ~ (—s/y{) for =) >> s >> 1. This result is consistent
with experiment and had been previously suggested 49). Finally, (53) now gives

Fleo) o577 (l-w)g—ltg{dcmm)m) (134)
(8]

which is the desired result. Its experimental verification is yet further
support for locality. What we have done here is to establish, in a large class
of models, the commutativity of the large s behaviour of the F 1limit and
the small (1—00) behaviour of the A 1limit 40). This is strictly analogous
to the commutativity of the large M behaviour of the R 1limit and the small

(© behaviour of the A 1imit discussed in Section B.1.

C. Global properties

C.1 TFixed pole

The first global relation for electroproduction we shall consider is
the expression (92) for the J=0 fixed pole residue = Y(J(¥). The finite-
ness of the (a(:o) real photon amplitude guarantees the existence of

'{F(O) = SF (it may possibly vanish) and scaling requires the existence of

¥p()

Il

)’F. It is therefore tempting to speculate that

Y= ) L Constant = R/ S (155)

This would follow in particular if, as has been suggested, all fixed pole
residues are polynomials., A consequence of (135) would be the absence of a
J=0 <fixed pole in photoproduction amplitudes. [ihe (particle P) photo=

production fixed pole Regge residues are the residues of the (P) single
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particle poles in the photon mass variable. See Fig. 11a and 11b. The double
particle pole residue (Fig. 110) is a purely hadronic amplitude and therefore,
by unitarity, cannot contribute to the fixed pole residue;] If (135) were
correct, 7{%(3{) would have no discontinuities and so would not contribute
to photoproduction. Conversely, if there are no fixed poles in photoproduction

amplitudes, it of course follows that ]f}(r() is a polynomial SO)o
There is a number of reasons for expecting the validity of (135) :

a) The best known (and only really theoretically well founded) fixed pole, the

d=1 right signature fixed pole in [SU(B) antisymmetrié} current—hadron

scattering whose existence is guaranteed by current algebra 29), has a

residue which is independent of the current masses (i.e., is constant in

X).

b) More generallyS any integral fixed pole arising solely from a light cone

51 52)

singularity will have a polynomial residue .

53)

c) There are, in fact, indications from studies of Feynman diagrams

54)

and
from potential scattering that fixed poles are not present in photo=

production.

d) The representation (90) shows that, whereas it is easy to obtain a
constant contribution to ]{F(x ) [irom 6:(a,biL a non=polynomial
contribution only arises if the special term 671(a)[b| satisfying the
special condition (83) is present, and this contingency seems somewhat

contrived.

In spite of all this, we will now see that the wvalidity of (135) is
almost definitely excluded by the present data. To evaluate ]/F from (93),
we use the explicit fit (19) for 1 < (' < 7, the Regge behaviour (64) for
P> 16==(90, and a straight line extrapolation in between 100 his gives 55

e = o+ k. (136)

The positive sign here is already indicated in Fig. 6 which shows that the
integrand (93) is everywhere negative. The value of 7{5(0):: §F has been
determined from the (real) Compton scattering by several groups and the

result is 25),26)

¢~ -1 (137)
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56)

The value g)F==—1 is precisely the Born contribution to the fixed pole and
so (137) says that the Born term is the only surviving contribution. Equations
(136) and (137) clearly contradict (135) and so we are led to the conclusion

that the fixed pole residue is not a constant 51 (or any polynomial) and that

there are fixed poles in photoproduction.

Let us now ask how things must change if this conclusion is to be
avoided. The sign and magnitude of (137) is quite definite if one insists on
keeping CK!D=-%’ or for hadrons. If this gglue is given up, then the data
are consistent with %F as small as zero . It seems, of course, very

unlikely that O(T % % and so we must maintain (137) 58)

. Concerning Y(F’
it has been shown that the present scaling data (f)< 7) do not rule out a
parametrization which gives ¥ p= -1 so that the fixed pole residue is
59) ,
t

indeed constan An example is

(c.i2) + (0.462)e™ "™ + (¢oa)p™ > | (138)

However, the fit (138) is extremely alarming. It has a non=leading piece
F)—% with a residue which is ~40 times bigger than that of the Pomeron !

If such a thing occurred, then asymptotic statements could never be made or
tested in physics. The value of, say, A;P could certainly be made as one
likes from any (finite) set of data if non-leading terms with sufficiently
large coefficients are introduced. For example, a term (50)f7~5/2 cannot
be excluded but would appreciably change the residues in (138). Furthermore,
a fit of the form (138) would be in gross disagreement with the non-scaling
data (which, unlike the scaling data, exists in the Regge region) if para-
metrizations of the form (66) are used. We conclude therefore that if a Regge
type fit at present energies makes any sense at all, the difference between
(136) and (137) us a real one and so YF(K)#const. 60).

The conclusion that there is a fixed pole in some photoproduction
amplitude is, of course, an immediate consequence of Im’UE(}f);éO. The
precocity phenomenon and light cone controlled mass dispersion relation
techniques 61) imply the much more specific assertion that there is a fixed
pole in the /7 photoproduction amplitude 62). The magnitude is predicted to

be

(oo =AY, = (6~ 7/;)) (139)

NP‘—ﬂﬂpl
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where jﬂp ~ 2.5 is the usual 7 - /2 junction and M° ~ 2 GeV2. The

prediction is therefore A%O ~ =21, The prediction should be checked

experimentally in the near future.

We would like to conclude by noting some further support for the non-

polynomial character of the fixed pole residue. Testa 63) has derived the
interesting relation (in our notation)

2 7 S~

fop T XD = 7[: ) (140)

based on an assumed pole dominance in the complex angular momentum plane and
a spinor structure for SU(B) X SU(B) currents. The numbers (136) and (69)
give ~+2 for the right side and ~+1 for the left side. We consider this
agreement to be satisfactory in view of the approximate nature of (140).

Equation (140) is badly violated if YF is negative.

C.2 Causality

The next global guantity to be considered is the integral
> 1 _
c . _ dev
[ = [efFer-4e] = 2[Feo-s5) .
. ! o]
!

Are there any theoretical expectations for the value of I ? We will first

show that I vanishes as a consequence of assumptions, mainly causality, in-

troduced above 64). The important assumptions are :

2) causality -~ the validity of (47);
b) scaling — the validity of (52);
c) Regge behaviour of O—(a,b) - the validity of (60).

We will afterwards discuss what happens if these assumptions are weakened.

Let us suppose that a crossing even amplitude W(X ﬂ/> satisfies

locality
[

_ o 1 |
witv) = HVJ‘MS b (a,b) §(s + abv —c) €(vib) (141)

satisfies scaling, W V) 7 F(cu), and has the Regge behaviour

Wl = gLy F €>0 (142)



then,
=
L Wheyy) = <, (143)
and so
|<iw =
&’CJF:(W) = O, (144)

The proof is immediate :

o )

dafc!bot(a,b)j? = C. (145)

o

T

oo L —
g F W) = »

o)

The existence of the Db integral in (145) is crucial and follows from (142),
which gives gz(a,b) 638 bi‘. The vanishing of (145) follows from the
consequence Jg)daﬁz(a,b)==0 of scaling. If scaling were not assumed, but
0(a,b) remains integrable, (145) would have the form (const).  and
would still be useful. Note that (143) is not a superconvergence relation,

since W(}(,\/)\/-1 is odd in V .
In order to apply these results to (44), we must first subtract off

the Pomeron contribution. The subtraction must be effected in a local way.

To this end, we define the local Pomeron contribution 64)

\/\/B)(x,v)t—.)«v Ld‘af&bOE(a)U)Mb))\(b)S(M+va—a)%(v+b)) (146)

where  A\(b) 1is any function which satisfies

AG) =7 ) F O(b’”“)) )(b)b—_,j(s‘iy o, >0, (147)

We nave Wy o (M V) 3 (0 )+0(1/y ) and so W= W-Wp o satisfies the
conditions (141) and (142) and we have

(o
{ d\f}‘[W(%W“WB,A(XnVﬂ = O, (128)
o -

The relation (148) has the pleasant features of finite energy sum rules which
enable one to correlate large and small energy nehaviour. Equation (148) is
particularly effective when used in conjunction with specific fits such as

(66).
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We will only be concerned here with the scaling limit of (148). It
follows from (146) and (60)-(63) that

W o) =5 BpAlew) = /3, 2w) + WX @) acw]
_ ,, (149)

and so (148) gives
j‘ %[[:(W)" 69/\(wﬂ " (150)

where F(co) vanishes for (o > 1. Taking WMw) =6(1-w) gives the

interesting and useful result

g;\,%[}(m— 5| = o. (151)

To obtain the scaling limit sum rule (151) more simply, we use (53)

and (54) to write

S.%{:‘:.(W)GG'J = [)Jw&["?ig:lﬁ‘(a)w)% ~ Ap Mw] . (152)

o

This expression vanishes because the bracket vanishes at the end point (o =1
by (131) and at the end point b = 0 by (60) and (63). [The assumption
0’(a,1)==0 needed here is implicit in the first derivation in our use of the

discontinuous A(w) =0(1-w).]

Our result (151), although simple in appearance, is in fact very
restrictive. Since F(w ) >0, an immediate consequence is that AgP
cannot vanish unless F(u)) vanishes everywhere. Thus non-trivial scaling
requires a Pomeron ! To compare it with experiment, we use the fit (69) to the

small o (< 1/16) region, the f£it (19) to the large wO region (w > 1/7),

and a linear connection for 1/16 <W< 1/7. The result is 64)
-
JisfFer—4] = o0z (153)

O expt

The sum rule (151) is thus in striking agreement with the data. To emphasize
the non-trivial nature of (151) and also to get an idea of how small (153)
should be to be significant, we note that not a single model for F(LO)  yet

exhibited (of which we are aware) satisfies (151).
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The models are classified into :

a) parton models 65);
b) resonance dominance models 45);
c) dual models 46);

66)

d) partial sums of field theoretic perturbation series and

e) none of the above 67).

The dual models c) tend to give 1 for the proton locality integral (151), while
a), c) and d) agree on a value of 1/% for the proton-neutron difference. All

of them fail to satisfy the Pomeron subtracted sum rule (151).

In the free field case [Eqs. (29)—(322], we have WfCK,V )-ﬁ 0 (faster
than any power) and so /4 ,.=0. Since

jc%lf(w) =1, (154)

the sum rule (151) is strongly violated in this free field theory. The large-
ness of (154) compared to zero again indicates the significance of the experi-
mental result (153). It is of interest to ask which of our assumptions is

violated in the free field case. Since

G la,b) = ) el-lol) 7557 S(a) # O (155)

it is assumption c), the validity of (60), which is violated. [For the
scaling limit derivation (152), the condition 0‘£(a,1)==0 is also violated,
corresponding to the (unphysical) constant form factors in the free field

theory. This, however, is of no importance for the present discussionJ

It follows from Eq. (86) that the existence of a constant term o’o(a)
in J° (a,b) for b=0 1is the only way in which (60) can be violated if one
has the correct Regge and scaling behaviour for W. The contribution of such
a term is easily incorporated into our analysis. We will see that it changes

(151), but in a pathological way. To see this, assume (86) and define

L
\/\/w)(ﬂ, v) = )(VJJCL{C“)@Z(Q)S(K-F dbv )
°o (156)

o (Xt V(=)
= —i‘LciaU;(a) = g[jocla a0 (@),
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the absorptive part of (75) for x = O. Because O‘O(a) is assumed to
decrease fast for large a, we see that W O)(}(,U ) vanishes fast in both

the R and A limits :

i > O . (157)

w(0)

WLO)Lk()V)

We can repeat our analysis above provided , 1n addition to WP’ is

subtracted out :
A o2

! .
N ) ' . o 3 A "
g %)‘b/\/()‘l”’) — \/\/U«)(K,V.) —_ \A/E(,{)V)] = }(L L b[d’(a,b)“\)a (a)—OE(a)Jw;b]L
o) 1%
(158)
— CD'
It may seem that, in view of (157), the A 1limit of (158) gives us
back our old result (151). This is not the case, however, because the A

limit of the (existing) integral

0 w)
(©) — Lo
JQ;\M”()()U) = %{—(da 5 () e (-a) (159)
o v ‘o
cannot be taken inside the integration. Indeed, the integral of the (vanishing)
A 1imit of W(O> is zero, whereas the A 1limit of the integral gives
ool o0
iV e . . 4
j N ) —> =3 | du e . (160)
oV A e

The correct sum rule is therefore

® = e
L%LLW(”'“)— \'v_’g(mv)] = %Ldu NOPRCEY) (161)

and, in the A 1limit,

(50

C%U:(w)—ﬂf] = —-(‘?:LJuog(a)cc i (162)

The result (162) also follows immediately from (152) and (86). Equation (162)
is satisfied by the free field functions. DNote that the right-hand side is,
according to (90), a (constant) piece of TKEXJ().
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The constant piece o"o(a) of @ (a,b) 1is not needed for anything
and our result (151) follows in the simplest situation when it is not present.
The experimental result (153) seems to tell us that this simplest possibility

is the one obeyed in nature 68)

The final global quantity we shall consider is the area integral

L = 1(-‘%}:(,0) = ;Lfawﬂw) . | (163)
1 [a)
L 1is the area under the scaling curve F(w) between ¢ = -1 and WO =

In any canonical model with spin & charged fields, it satisfies
(%;(} - R ) = fcl K<7°”_JW ©lpyas)- (164)

The numerical value of L has been estimated theoretically in Ref. 69) by

exploiting the canonical field equations and commutation relations in the

70)

gluon model together with a Reggeized theory of symmetry breaking. The

result can be stated as -

b

v<) \ C(t)c. [
LB = fﬁpﬁ.,‘% (r) = —‘FJ EB . . (165)

Here ng(/}) is the double helicity flip scaling function for B(p)+Ja(q) -

- B(p)+JP(q), where (3% : a=1-8) are the SU(3) currents and B is a
member of the -12—+ baryon octet, and dabcEg is the coefficient of pip.j in

the equal time commutator

54” <3(f)”__‘/ (0,x), . (07__] B(ﬁ>>

E. is a good SU(3) nonet described by f~1/7, d~-1/3, E°x1/373. For

B
electroproduction (Ja=Jb=JQ=J3+(1/J3)J8) off protons (B:p) and

¥

neutrons (B:n), (165) gives

32

(c,ﬁ rad) +(3)ET = o3l (166)

and

QR AN s
L = -5 ~(3)7E° = 0.2+ (167)
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Numerically, the evaluation)of (165) proceeds according to the de-
- - =QQ 10
composition EE‘((O ) = FP,n( e 1]

7 e

lﬁ,dﬁﬂf')w 2 lf,émf(mp*nf?clm?mwH,%,o@(f)p--L) (168)

where
Fip) = Em +[Rue)-Fn]-£2— . (169)

I:Numerically, we find the unexpected result that F(7) =FR(16) to three

decimal places for both p and n.] The results are 10)
X i 170
LPP 2 0.13 +006 +00¢ = .33 (170)
and
exp U , - .~ ‘
LM = O104 + .05 4 0.0> = ©.2) . (171)

In view of the experimental uncertainties, the agreement with (166) and (167)

is quite good.



LIGHT CONE PHYSICS

In this Chapter we proceed from the purely phenomenological analysis
of Chapter I, and attempt to understand the observed behaviour in electro=-
production in terms of some underlying dynamical formalism. The formalism
we will develop here is the theory of operator product expansions (OPE's) near

71) Because of the numerous

the light cone (LC) with canonical singularities
exciting reviews 1)=5) of the fundamentals of the subject, we will be sketchy

in parts and concentrate mainly on some recent developments.

A, Electroproduction and the light cone

To obtain a first glimpse of the LC, we consider again the integral

representation (I.40) for W2(ﬂ~,V). The Fourier transformed equation reads

A v , b X v
W, U x-p) = deafdbo*ga,b)ALx;u+bl) e PXf (1)
The behaviour of Ll(x;/xz) near the ﬁC (x240) is 72)
Al w2) —> 3= €060 - F 170y + O6Y] (2)

Because of (I.52), the S (X2) term in (2) does not contribute in (1) and so

the leading behaviour of (1) near the LC is

AN o . Y
WL (k) x-p) —> O [dafib o a,6) (55) e 20) @ “OXP, ()
Performing the indicated differentiations in (3), we obtain 17)
W, x5 ) — S0 B ep) ek (8)

where

I{()) = jﬁf&af&bﬁ‘(a)b)a(i-w)«) e o (5)

(6)

= - o [dafdbo (e, a7 ‘”\)
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where we used ¢ (a,1)=0 [Eq. (1.131)] in obtaining (6) from (5) by in-

tegration by parts. Equation (4) exhibits the form of the leading ILC singular-
ity of v“vz.
the leading LC singularity would be 6 '(Xz) instead of 8 (xg).

We note that if the scaling requirement (I.52) were not imposed,

The coefficient (6) of the leading LC singularity is readily recogni-

zable from the representation (I.53) for F(u)). We have 17)
f[dre™ L) = aF(e) (7)
~ —L A
£00) = T‘T‘Jclu)@— F(eo) (8)

A

It follows that the leading LC singularity of W2 uniquely determines the

A 1imit of W2; i.e., the scaling function, In fact, if we substitute in

W, (tyv) = JJ*X S W, (x? x-/ﬂ) (9)
the leading LC singularity (4) and use (8) and the relation
fa% e @ e = Sl@) el (10)

with Q=q—-Yl p, we obtain

2 Jdy Flp) §(n =1y +97) €(Gu) (1)

which approaches 1/ F(«) in the A 1limit. It follows that the leading
IC singularity of W2 dominates the integral in (9) in the A 1limit 17),

The LC dominance of the A 1limit can be understood much more generally 17).

Consider an arbitrary scalar absorptive part

W) = Jdtx e T ol [doa), el > - (12

Choose the frame [recall p=(1,0)]

if.z(v)o,o)/_—ﬁuL~M)) (13)

and note that in the A 1limit

- 7V o+ o+ O (14)



so that
gox ——> (o = XDV + x e0 - (15)

Now, since ) — @, the exponential in (12) will be highly oscillatory

unless X Xz 1/V « It will also be highly oscillatory if x becomes much

3 3
larger than (»3—1. [Ehese statements ignore the region where the two terms
in (15) cancel. See Ref. 5) for arguments which dispose of this region;]
Therefore, the region of configuration space which is expected to be important
in the A limit satisfies (22==x$+x§)

2 R S X
Xt = (Ko—x3)(Xo+X3) — X5 ~ T 5 X (16)
Since the integrand in (12) vanishes by causality for x2 <0, we are left
with

+ i

~ —_— —> (17)
X Tl @

as the dominating region in x space in the A limit.

The above argument is of.course not rigorous. It is only meant to be
suggestive. The reader is referred to ﬁef. 5) for a discussion of some weakw
nesses in the argument and for attempts to improve it. At the present time,
however, LC dominance is only a plausibility. Because it seems both experi-
mentally correct and theoretically interesting, we will henceforth assume LC

dominance of the A 1limit and its generalization.

Given the validity of the above phase arguments, it may appear that
causality is necessary to obtain LC dominance. This requirement is, however,
only apparent in the above discussion because of our use of the single Lorentz
frame in which (13) is valid. By exploiting the full Lorentz invariance, phase
arguments can be given which establish LC dominance also for nonwcausal ampli-

tudes 61)’71)0

By working similarly with the representation (I.41) for W1, we

obtain a leading LC behaviour of the form 17)

N y ~
W, O xp) —= §) €00 £ (x-p ), (18)

and the representations (I.38) give 17)
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N
N4 U0 xp) —> G e(xa) Ky (x- p, (19)
CAUL) Xf?’_7 5(x2) é(x,,)}(,(x,,o'), (20)

Substitution into (I.34) giVes‘the leading LC behaviour of the matrix element
<P|E;M.(X)’Jv (Oz]lp> 73). The details can be found in Ref. 17).

A.2 Consequences

In this section we shall recall several consequences of the LC domi-
nance of the A 1limit., The first is a new derivation of the connection between
the A and R 1limits, the second is a simple interpretation of the /9'
variable, and the third is a configuration space picture of high energy

scattering.

To begin, we consider again the scalar amplitude (12). The leading LC

singularity structure

<pllgeo, 31 5557 s et ) Fix-p) (21)
inplics the scaling law
Wit v) —r 7 F(w) (22)
with

F(w) = ,.;Jd,\ e—wa(k) . (23)

Given the Regge—like behaviour

Fw) 5557 Awo™ "7l (24)
it follows from (23) that 17)
o &
’CU)W Aggg ; (25)

where



5—“: (e T2 >r7(“*"> . (o)

Thus the behaviour of f(j\) for large ,A is determined by the Regge

behaviour of W :

/ . i X

\A/(ﬁ)») "ﬁ‘> A0 (av)" . (27)
These observations can actually be used to rederive the connection

between (24) and (27) 17). The Regge behaviour (27) should hold provided

Vv o>> A

Section II.A.1 again give LC domineances [bf., Eq. (171] and so we have

. If we also take Iy(| >> 1, then the phase arguments of

N
v x| >71

/*; ] \A>/\}’f/:l\/: Ny
=lhe ). (28)
Comparison with (27) then requires (25) and

/30*7 }:;;7’(<W)‘a-'/3, (29)

The behaviour (25) in turn applied in (23) then implies (24) and so the

commutativity is again established.

It is useful to compare the above analysis with the analysis based on

integral representations 17). For the present scalar case, we have

) -

Win,v) = ‘jdu_)

o -

Iab T (o) S+ aby —a) (30)

We assume as before that 0—(a,b) vanishes rapidly for large a. The

behaviour

T, b) T T bl (51)

gives (27) with

/3 () ::f:.{u.(’(a)(a—ﬂ)’d—‘] (32)

so that (29) is satisfied with

A = Jdagw) - (53)
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The scaling behaviour (22) is also obtained, with

) = jdafﬂ&)w’) (34)

and so (24) follows from (31) and (33). Finally, the Fourier transform of
(30) gives the leading IC behaviour (21) with

, N —.bA
£02) :—jﬁ%—fdadbcr(a)b)e, 5 (35)

from which (25) immediately follows if use is made of (31).

We proceed to discuss the non-leading contributions to the A 1limit

(20) T4)575),

In the canonical framework, we have

W) =g Fleo) + v Ew) + SR (<) o (36)
In general, the first non-leadin- term LJ_1F1(MJ) rece ives contributions
from two distinct sources — the leading contribution of the first non-leading

LC singularity [é(xz) ﬁ(xo)fq(x-pi] and the first non-leading contributions
of the leading LC singularity. The latter contribution is easily computable

from the form

we = S e o) e Fixep) (57)

of the leading LC contribution to W. Using (23), (36) gives

W, =5~ (avr 2w VE) + OGR) (38)
where
L = & ;fi; (39)

76)

is the contributing root of # =2by +b°=0 to order 1/y The

variable CblL

effectively the same in the relevant threshold region «W ~ 1 as the variable

which has emerged from the leading LC contribution is

W= L= we =y CG3) (40)

af AV
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which provided the early scaling. The first source of contributions to
x;-1F1(a) is thus empirically very small and the relevance of the variable

(40) means that the leading LC singularity dominates already at l)f’ =1 GeV2.

Equation (38) gives

ot —
> (

AW lav) 5 Fle) = S P =37 Fle)

For the physical case of vector currents, the corresponding statement is 74)

ol 5= (- 358) Bl - 53 ) + Oy, 02

We see that the leading LC contribution is not quite the simple replacement
W W', DNevertheless, the form (42) fits the data as well as the simpler
F(ug'). The natural aprcarance of empirically accurate corrections to scaling

iy further testament to the advantages of a configuration space approach.

A consequence of the behaviour (25) is that the leading LC singularity
(21) determines the +t =0 intercept ™ of the leading Regge trajectory.
The LC thus provides a configuration space picture of high energy behaviour
at t=0. Regge theory also describes what happens away from t=0 and these

constraints can be similarly imposed 77). It is found that the coefficient of

x (1) 77)578)

the leading LC singularity determines the entire trajectory function

In this section we shall show how the so=called "non-perturbative parton

79)

model™ illustrates the scaling and LC behaviour discussed above. This model

includes as special cases the usual naIve parton model 80) and the multiperi-
pheral model 81). For simplicity, we will here consider a scalar version of the
model. The generalization to vector electromagnetic currents, composed of either
scalar (Cfﬁiéf) or spinor (q:z;“( ) fields, is straightforward 79). We
shall refer to the basic fields Cf(x) in the theory as quarks even though

they have zero spin.
Two basic assumptions are made in the formulation of the model :

1) the currents have the form

—g(x): Y)Tl) 2 ) (43)
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with the quark fields C((X) obeying canonical equal time commutation

relations

S Lf ) ge)] = 5% (44)

2) hadron—quark scattering amplitudes decrease rapidly as the (off—shell)

quark mass becomes large.

82)

Neither of these assumptions is true in any renormalizable field theory

in perturbation theory 83).

An immediate consequence of the first assumption is that the exact
propagator function

Do) = Jux e T[# )] o) (45)

has the behaviour

[ a _ —_—
D(: (W ) JrQL_) o L.?z, . (46)
The exact rate of decrease of the hadrop—quark amplitudes need not be

specified — as long as the decrease is fast enough.

Given (43), the exact current—hadron amplitude

Tw) = Jd% e UG TR gte]lp (47)
(Fig. 12a) has the form shown in Fig. 12b, where the four upper solid lines
are the eaxct quark propagators (45) and the two lower lines represent the
hadron of momentum p. The amplitude of Fig. 12b is the sum of the contri-
bution (Fig. 120) of the disconnected (2 hadron)—(4 qurak) amplitude and the
contribution (Gif. 12d) of the connected (2 hadron)—(4 quark) amplitude. It
can be shown that, as a consequence of the above assumptions, the dominant term
in the A 1limit comes entirely from the disconnected contribution of Fig. 120792
We will not derive this result here but only note an intuitive explanation. The
large momentum g carried in by the external current must go into the quark
lines attached to the current. As the mass of any of the quark lines in Fig. 12d
becomes large, however, the value of the contribution decreases rapidly ny
assumption 2). Thus the contribution of Fig. 12b vanishes rapidly in the A
limit. In Fig. 12c, on the contrary, the quark propagator connecting the two
currents only decreases as (kz)—1 for large mass k2 [ﬁq. (46[] and so the
large momentum q can go through this line without causing the contribution to

decrease rapidly.
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The assumptions further imply that the contribution of Fig. 12c scales

79) and so the model satisfies the scaling law (22) with the scaling

correctly
function F(cu) given as an explicit function of the imaginary part of the

quark-hadron scattering amplitude ‘T(s',kg), st = (p-—k)2 (Fig. 13%)
Flew) ~ S fud ,ZMT@N—()LM—OJrA, cv'bcﬁ—u‘), (48)

In a similar way, the expected scaling laws (I1.18) and (I.26) are satisfied

in the case of vector currents.

The contribution of Fig. 12c is precisely the one which provides the

leading LC singularity. It can be written as 84)

AfeX . ; - .
gJyx el [%(x)<¢ﬂ‘TEQ&)q(C{NfC>) (49)
in tems of tne x space auark propagator  D(x)= 0| L) (0T 0> aua

the x space quark-=hadron scattering amplitude shown in Fig. 13

<plTLF) ] p> = Flep, ), (50)

Equation (49) has the leading LC singularity ~(1/X2)f(X~p,O) which is the

matrix element of the leading term in the LC expansion
Judie) 5 ALk ) (51)

We note that in this model the Regge~like behaviour of the scaling function
F(LAQ ~ Id\,elxb“ () O) for small (c corresponds to the ordinary Regge

behaviour of the quark—hadron amplitude T(s',k ) for s'—- o at fixed
2 79),85)

In spite of its nice features, it must be emphasized that the model is
only illustrative and cannot be taken as a serious candidate for an exact
description of nature. One of the reasons for this is that the scaling
behaviour of the model comes about entirely because of the large (~V)
separation in momentum space between the produced particles (intermediate
states) in the upper quark line in Fig. 12c and the produced particles (inter—
mediate states) in the lower gquark—hadron amplitude. All of the incident
current energy goes into producing a spray of fast (energy ~ ) particles
with quark quantum numbers, even if the propagator (45) has no pole so that
quarks themselves are not produced. This cannot be got around -~ the separa-—
tion sets in as soon as scaling does. The presumed empirical absence of this
effect unfortunately means that the mechanism responsible for the scaling

properties of the model is not the mechanism at work in nature.



B. Models for light cone expansions

In renormalized perturbation theory & , in soluble field theoretic

models 87), and axiomatically 88)’89), operator product expansions describe
the behaviour of products A(X)B(O) of local field operators at short

distances. These expansions have the form

N
AG)B(e) 5557 2_FE w0 (o) (52)

where 01,...,0 is a finite set of local field operators and the Fi(x)

N
are functions with singularities for =x—0.

In a scale invariant theory, the degree of the singularities of the
Fi(x) is simply given in terms of the dimensions of the field operators. In

90), there exists a one—parameter group U(s) of

91)

a scale invariant theory

unitary transformations such that each local field ﬁ((x) satisfies
. ;. - . _ d .
U Xx)U ts) = 59K (sx) (53)

for some real number d. The field 9( is then said to have (dynamical)
dimension d and we write dim'X = d. Applying this scale transformation to
Eq. (52), we obtain

F &) ~ L“’)dﬂdg— %

N X ) (54)

dimB= d

where dimA = d B?

A’ dnn0i= di'

The generator D of scale transformations, defined by

—4(&ns)D

U) = € (55)

satisfies
LD, X)) = (4 ) X)) (56)
In canonical theories, D 1is given formally as the charge

D = [&xD (57)



of the dilatation current
_ Vv
D.x) = xVE, ), (58)

where 8.v is the stress energy tensor. We also have the commutation

relations
— » M )
(0" =P (59)
with the generator P~” of space time translations.

The theories of interest to us will not necessarily be scale invariant,
but will have (or essentially have) a scale invariant limit. The leading short
distance singularities will be mass independent and will therefore be deter—

mined by dimensional analysis in the scale invariant limit.

B.2 PFree field results

Consider a free scalar field @(x). It satisfies
(O+ m™)¥) = o, [cg(,))cf(?)] = ‘4'ﬂ({-3jm41)l') (60)

where we have explicitly indicated the unit operator by I +to emphasize that

the cormutator is a ¢ number. As is well known, the Wick product

100 = P4 = ;éw[@(m)%)—zx,r(g,mz)] (61)
-0
exists as a finite local field operator.

In our free field theory, we can define non-local Wick products such
as :#(x)8(y): by the usual method of putting all creation operators on the
left. When this is done, the short distance limits such as }Ji_i%} F(x)g(y): =
= j(x) will all exist. Wick's theorem then states that

Cf()()‘(l(?') = :"é(x)cg(‘f): t A+()(-?)ML)_ (62)

Another example is

1004t4) = 20, (-4 }‘MI)A+(X~?}ML) F 4D, (g, m) E9L0)  (65)
+ 80 o) Clpdey) . .



Equation (61) can be rewritten as

o) =22 8,01 + Fee ) (64)

X—=>C

- L
Py =1 + de) (65)

Here and elsewhere X2 means X2—i2;xo. This has the form (52). The nature
of the expansion (65) can be described in terms of the above "dimensionality"

concept, with dimI= 0, and dim@= 1. Also dimj= 2 and dim ) @=2.

The behaviour of the product of any two local fields in the theory can
be determined in a similar way. One simply expands in terms of all other
local Ffields with dimensions small enough to give singularities. It follows,

for example, from (63) that
4()(?{}(5);;?(@(;‘:)1—,[ Fe () e FGGRRCE) Y rCy 44T L (ee)

The description of the behaviour of j(x)j(y) near the light cone
(x—y)z-»o, rather than at short distance (x-y)” - 0, 1s somewhat more
complicated. This can be seen from Eq. (66). For x"'- 0, (1/X2) is a
power more singular than (1/X2)X“ . Near the light cone, however, since
X2—9O but X“74O, each function has the same singularity. In fact, it
easily follows from (63) that, if the LC behaviour is expressed in terms of
local operators, an infinite number of such operators occur to carry the

(1/x2) singularity. The result has the form 71)

?(x)}(i{)? Ca(z;t)LI + ?— Z%d‘“'%%\ ;(M,)X,AUU (67)

m=o0

where we have introduced the variables

%“: "L.(’(‘?L) ) 7:_\2’_()(*?>) (68)
(n)

and e means —%?:6' Here dimO = n+?2 so that each term in the sum has

dimension two and carries a LC singularity M/éz.

In the present free field model, (67) can be verified directly from
(63) %) -



100 J(4) ~— L] + A) 4ol (69)

or

1w Jtg) = o +AL6) 7 § g ) Y e ()

,

Tet us now ask what happens to the simple free field LC expansion (67)
if interactions are turned on. If the interaction is a renormalizable one such
as %6%4, then, in each order of perturbation theory3 the form of (67) is

only altered by logarithmic factors and one obtains n ’88)

: Ly de
j(ﬂ)j(o)m d (@) (Lnx?)
F L )™ sk O 0.

Here a, and a;, are integers which depend, in general, on the order of
(1000 o
perturbation theory and O§1 n(x), (i=‘1,2,...,In, n=1,2,...) are

suitably defined local fields 88 . Now j(x) is not given simply by (61)

(71)

but requires a more complicated definition. We see that in any finite order
of a renormalizable perturbation theory, because of the occurrence of loga-
rithmic factors, the renormalized fields do not have well-defined dynamical
dimensions. Nevertheless, the short distance behaviour of any Wightman
function is, apart from logarithmic factors, the same as it would be if the
fields did have canonical dynamical dimensions. Put differently, the short
distance behaviour is determined, apart from log's, by the naive dimensions
of the fields. In particular, the nature of short distance expansions and
of LC expansions are so determined. Similar results hold for all OPE's of all
currents in all renormalizable theories 86)=91).

The interesting question associated with the occurrence of the loga-
rithms is the nature of their sum over all orders of perturbation theory.

The log's could, in principle, sum up to a power according to

P S T S SR

X

7 D (72)
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and thus reinstate the scale invariance of the theory at the LC. This is
precisely what happens in the Thirring model 93). The Thirring model 94) is
a two-dimensional (one space and one time) relativistic field theory involving

a massless Dirac field ﬁ‘(x) (two components) coupled to itself by the

current=current interaction Xj”‘(x)j (X) with j = qVX‘Lf . The exact
solution is scale invariant 93),95) Witgl
Gin X = 5 v (- ) (72)
and
dim Faev )y = (- 204 (14)

The dimensions of the fields and currents are seen to be coupling constant
dependent and consequently so are the degrees of singularities in OPE's 93)’96>.
The dimensions take on their free field values (dimﬁ’::%dmn??’= 1) only in

the free field limit /\ = 0.

It is unknown whether or not a similar power behaviour obtains in

conventional four-dimensional non=trivial theories. Leading logarithmic

97)

summations of ladder graphs scale with anomalous dimensions , but this is

not the case for leading logarithmic summations of all graphs 98)’99) It is

possible that scale invariance comes about via the existence of a Gell-Mann -

100),99)

Low eigenvalue
101)

, and conformally invariant theories of this type have
been constructed , but it seems difficult to understand Bjorken scaling

in this framework.

C. Canonical formalism

C.1 Lessons from SLAC

The results discussed in Section II.B.3 make it clear that the dimen-
sions of fields are dynamical quantities which cannot, in general, be deter—
mined a_priori. In order to determine what are the dimensions of the local
fields (presumably) encountered in nature, one must turn to experiment. The
most precise information about dimensions comes from the SLAC-=MIT data. We
will show here how these data strongly support the idea that nature's fields

. . . 1
have canonical dimensions 7 .
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In Section II.A.1, we have exhibited the LC singularities for the
(spin averaged) nucleon matrix elements of the product {AA(X)JV (O), which
were equivalent to the scaling laws (I.18) and (1.26) experimentally verified
in the SLAC-MIT electroproduction experiments. The important thing to notice
here is that these ILC singularities are of integral power. The degrees of the

singularities are, in fact, precisely those given by canonical dimensionality.

One cannot, however, conclude from the SLAC proton data that canonical
dimensions are to be expected in general. The reason is that conserved
quantities (with non-vanishing charges) have canonical dimensions and only
such (or related) quantities might be seen at SLAC. The electromagnetic
currents {/A(X> have their canonical dimension 3. In the expansion of
{kA(X)JV>(O) there can occur another conserved field = the stress energy
tensor 6..y(x) of (canonical) dimension 4 [e.g., P, = IdBXOgM.(X) has

dimension‘ﬂ. Thus
Q;(x)JZ(o)-j:Z? ‘i{ Eaﬂj(c) e (75)

and the leading LC singularities might well be canonical even if (m0st) fields

in nature do not have canonical dimension.

The above explanation of how the Bjorken scaling laws could be wvalid
in a non-canonical world does not, hwoever, really work. The reason is that
the electron—-neutron data also satisfy the scaling laws, and the neutron
scaling function is definitely different from the proton-scaling function.
This cannot be explained by (75) because ©..u has I=0 ‘and so gives equal
contribution to protons and neutrons. There must therefore be another infinite
string of local fields in (75) with canonical dimensions, but with I=1.
There is, however, no known conserved (or partially conserved, which would do
as well) I=1 +tensor. It therefore seems that there is at least one (and
hence, by causality, an infinite number) of non-partially conserved local
fields with canonical dimension. This suggests that all fields in nature

have canonical dimensions.

Consider again the scalar currents j(X) = :¢(X)¢(X): in A ¢4
theory. Motivated by the empirical results described in the previous section,
we assume canonical (i.e., free field) dimensions for all currents. It then
follows that the LC behaviour is (67). The specific form of the O's can be
obtained from consideration of the7$?ort distance <¥# - O) expansions of all

products 93(,..., d j(x)j(0) or, alternatively, from the highest spin
1 n



contributions to the equal time commutators (ETC)  [dp seees dx 3(x),3(01]x
g(xo). These commutators can be formally evaluated by &sing thencanonical
commutation relations for the fields ¢(x) and the equation of motion

(l] + m2)¢(x)= A:ﬁ(x)B: to eliminate higher time derivatives. The results
for the leading LC singularity are obviously independent of the interaction
term, since, for a given dimension, the leading LC singularity is carried by
fields with the most Lorentz indices and these come from the kinetic term
g3, g [e.g., the interaction contribution :g@: \ :@f: cannot carry a IC
singularity, whereas the free contribution :f 94 93 f: of the same dimension
(four) carries a ILC singularity =x% '$/x2] and so the free field expansion
remains formally valid. This free field expansion follows simply from Wick's
theorem to be given by Eq. (70). Expansions of the type (70), which uniquely
follow from the assumptions of canonical commutators and field equations, will

be referred to as canonical LC expansions. They have been extensively used in

Refs. 102)-104).

For actual physical applications, we will use the canonical gluon
model, in which the quark fields Y interact via a neutral vector meson B
coupled to the baryon number. The interesting currents are the vector, axial

vector, scalar and pseudoscalar ones

VA SR WA (76.2)

(76.b)

>
I
1
-
=
o=
S
N
N

ST o= vty (76.c)
P¥ = iyt (76.4)

of dimension three. The free field expansions, for example

NAIBIVA Y ]2, 05 ) + 9, O ) - 3,05 6)

(77)

- C

A E/*W°<‘/3O (%)7)]

| A i

EJ S, -:) «— = = =7
Q. 6 = %M, AR RS AT N AR AT

. (78)
g QX<—>y) N
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are now, however, altered by the interaction term, since, for example,
: q73d;%b~f :  and g2:CFB“ Bbﬂﬁ can carry the same (leading) ILC singularity.
The effect of the interaction can, however, be simply accounted for by in-

voking the invariance of the theory under the gauge transformation 71)

5 Ay Ax),
Y0 — & B =B + 2AK),

(79)
O +ur)A) = O,

71)

The result is simply to replace the derivatives DV in (78) by the

gauge invariant derivatives

A NEEPPY N | (e0)

The resulting expansions are then the unique ones which follow from the

assumptions of canonical commutators and field equations.

In the free quark model, the bilocal form of the LC commutation rela—
tions has been given by Fritzsch and Gell-Mann, who showed that many of the
parton model results follow from the structure of the expansions 105).

Tet us next address ourselves to the problem of incorporating the
constraints of current conservation and partial current conservation on IC
operator product expansions (LCOPE's) 106). To illustrate the problem,
consider the ILC behaviour of the product of a conserved current J .. and

another local operator K :

LKy 755 2 B0 05, 7) - (s1)

In all cases of interest, the corresponding LCOPE for the T product
s 61),71),103)

T2 WKy m‘ééﬁ)@;(e,y)) (82)

where ﬁl( %) 1is obtained from Ei( %) by replacing %Z—i £ % o by
2 .
?. —lE .

MJ = 0 only requires

Strictly speaking, current conservation PR

that the coefficient of the leading LC singularity of

R T80 1)
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61),71),103)

vanishes. It is, however, extremely convenient to satisfy the

exact conservation condition

(ax) B e )CLln)] = o (83)

Suppose further that the ETC
(oL, K ] to=is) = L)) (84)

does not vanish. Then one has the operator Ward identity

) T k] = Loost- ), (85)

and it is again very convenient to have (82) satisfy this constraint exactly :

M
:‘L) N >~ . - o _ . [
(“ Z:tA-L%h,A G7) = Lw§-4) . (86)
We will show how this and the related constraints of partial current conser—

vation (PCC) can be accomplished.

For the case of Abelian (ET commuting) currents such as the electro-

magnetic current

-3 3 L\ 5
/ = / —\/ 87
\'/ T \W ? (&)

A

the manifestly conserved form of the LCOPE was given in Refs. 61) and 71).
It is

L0 = (0t - 4 v )ELSY)
- () 9? =4 PITE ) b 4)]

(88)

p - AX N . AN NN £
AURRIEIG B SN SR A ) Sy e i)

In (88), the explicit current conservation is achieved by including suitably
many non—-leading LC singularities. As we will see, the corresponding conserved
form for non—-Abelian currents is rather more involved. It contains infinitely

many non-leading 0 singularities.
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To illustrate the procedure used in Ref. 106) for the non—Abelian case,

we consider the typical LCOPE

\/ @(7 —"’DA JQ/L(‘)(X)? o (89)

or

LV SR 7 — D Z.'(%)] xaé (x , /) , (90)

where we have only kept the bilocal operator relevant to our immediate

discussion. Note that

qgu%f}x) = £a6¢ SLLX)' (91)
We also have
T G ~ : ab
T 00 5% ] — (378 6)] 27 va) (92)
Now
D:MT[\L“(x).Sb(y)] = —4[“"‘3‘0)5*(3)) (93)

and our problem is to add sufficiently many non-—leading terms to the above
LCOPE!'s to satisfy this operator Ward identity. To accomplish this, we

. . . 2 ..z . s
introduce a projection operator ,@;A(('B/} x), i -1%?0) which satisfies

the differential operator conditions

%) "@«ba\? >%L‘*€?}) - ©, | (94)

('97) (9;( ) % Aa) = — g‘*(g)} (95)

and

@L% ) %L) %L—eoa a/vA.(,(%) . - (96)

Our procedure is then to use

V8% ) — 250 (s )l ) - (97)
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and

T[\/u(x)éb(ﬂ ]—a (9,( )% ‘%)Jub(x,?) T (98)

which satisfies (93%) by construction.

The expression derived for the projection operator

"9+/ (3,%) = B ()5 -<e5) (99)
in Ref. 106) is simply

0&1/(9)47) = [Q,A+(47)D)] + A+(£4)D)(2u . (100)
The corresponding time—ordered projection operator

B lns) = & () steee) (o)

is, of course,

£ (9,5) = [2.0:6,0)] = Ap(s,0)2 (102)
These expressions clearly satisfy (94) and (95).

A similar procedure can be followed to ensure current conservation for
the product yf(x)zs(y) of two vector currents in each of the vector

indices 106). We obtain expressions of the form

V) O 09580 g ) oL G

We emphasize the need for an infinity of non-leading terms here. The express—

sion (103) is manifestly conserved in the forward dlrectlon [i.e., for

...Ipéﬂ and this cannot be achieved in a local

way in the non—Abelian case 107). This means that no finite number of terms

will suffice 108).

diagonal matrix elements <p

Given the conserved form (103) of the LC expansion, it is a simple

matter to use the LC algebra to derive relations among the deep inelastic

106),109)

neutrino-nucleon structure functions When neutrino data are

available, they will provide crucial tests of the above canonical formalism.
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To conclude this section on the canonical formalism, we note that it

106),110)

is not consistent Precisely the same assumptions used above lead

to a contradiction with naive scale invariance. To see this, consider, for

example, k ¢4 theory. Some canonical results are 11)

(30w, 9] stxe) = 3231 6%(x), (104)

B0, qo] te) = as fle) ), (105)

where

(l

}(x) s x)Cix) | (106)

= Lo [Fixe5)¢00) = <ol@3) €1 > (107)
§—>cC

These expressions are, however, mutually inconsistent since (104) implies that
a term of the form A (Lnx2)j(0) is present in the short distance expansion
of @(x)#(0) so that (107) does not exist. Thus, contrary to what is fre-
quently said, canonical computation does not imply the existence (apart from

¢ numbers) of field products at the same point.

We see that canonical evaluation cannot be carried too far without
running into conflict with naive scale invariance. The canonical result (104)

implies the short distance expansion

C)Hle) 52 A0 + G+5XEUH}®)1‘---) (108)

l_',r()() o L (-x"+tx ), (109)

This means that the local scalar current of dimension two cannot be identified
with (107) and that there is a manifest inconsistency between canonical

evaluation and naive scale invariance.

These difficulties with the nalve canonical formalism persist at the
current-current level. The naively expected canonical result (69) is incorrect

because the bilocal operator :8(x)@(0): has singularities on the LC.
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The behaviour of the gluon model is similar. There we find, for

example 87),112),106),110)

FLOL A He) s [0 A, W] e PhIB

X—>0
(110)

) t N Q ;
Tyl ) v
. . o - . 0
We see that in order to define {}4, we have to subtract from jfi;}\ N
a number of operator terms with singular coefficients and divide by a loga—
rithmically singular factor. To define Ji*‘ for a=1=8, only the division

is necessary. We see here again that formal canonical manipulation does not

imply the existence of the local product of the fields.

It is clear from the above that, in order to have a consistent canonical
formalism and maintain the results obtained earlier in this section, a more
careful statement of the rules of the game must be given. An approach to this

problem will be outlined in the following section.

C.3 Reducible soale_igyariance

We will show here that it is possible to avoid the inconsistencies
discussed above while maintaining canonical field ETCR's and exact scale
invariance. ' The idea is to employ reducible representations of the dilatation
group 0@' , as formulated by Dell'Antonio 113). The analysis is taken from

Ref. 110).

Our approach is most simply illustrated in a scalar field theory. We

postulate the field equation
O%) = gJIx), (111)

the ETCR's

[Cf;(x) )Cf(a")]%ﬁx‘,) = ) , ekc., (112)

[;)L(X))C(’(O)]S(X'o) = 4’”0)%%") ) (113)

and exact dilatation invariance, as generated by U(s). Here j(x) is
defined by (113) and J(x) will be precisely defined below. For simplicity
we make also the minimality assumption that only the minimum number of fields
of each dimension necessary for consisfency are present. It follows from (112)
that



"f(s)@(x)br—((ﬁ = 5?(5)(7) (114)

and ?’ can be taken as the only field of dimension 1 so that it transforms

irreducibly. It next follows from (111) that

Ve J)U (s) = & Jlsx), (115)
and then from (113) that

VgV ™) = s* fisx) (116)
Another consequence of (111)=(113) is

e (117)

(G0, ¥o)]stxa) = 946 $x).
From (112) and (117) follows the 8D expansion

W0%(0) G2 8.0 + Flme) Le) + Flo), (118)

X=C

where é::—ig/4n2 and J(x) is an as yet unspecified local current. Scale

invariance (and minimality), however, require that

F00 =40 + %), (119)

where k(x) transforms under dilatations accroding to

V)b Ute) = s*Z(s) o) + o)) . (120)

The fields j(x) and k(x) thus form a basis for the two-dimensional redu-

cible representation of ‘£}'and the SD expansion

T)le) —> A, 0T + Q+FUax?)]f0) + Go) (21

is consistent with scale invariance. Equation (121) provides explicit

expressions for Jj and k 1in terms of CP :

Ao) = Lm L) Ho) = D) (122)
X=O ([ 1+ 7 (Lax*) ’



Jlo) = L‘M{cf(o%(c)—zxm)v[nf?(lwlﬂ}lo)} « (123)

X— 0

It is to be emphasized that (122) and (123) are fundamentally different in

that j(O) is defined from ﬁf(o)<?(o) by removing a divergence multiplicati-
vely whereas k(0) is defined by an additive renormalization. Note the
non-perturbative character of the multiplicative renormalization in (122),

which is additive to any finite order in g.

We can now proceed to consider other SD expansions. The scale inva-

0)

riance puts strong restrictions on their form. An important example is

1) ) — —lzf‘fk* b/@v\XL]}(O) + 5 bhie) t--- (124)
X X )
with a and b arbitrary constants [}hey occur also in the jk and kk

short distance expansions (SDEX]. It follows from (124) [ilus the related
results for 'agj(x)j(oi] that the structure function

\/\/(%7—)\)) = jd¢xe4.[6'x<]0“;1(x))}(Q)])/ﬂ> (125)

will exhibit at most logarithmic deviations from the scaling behaviour

V \/\/(@L) \))

N (). (126)

Although this is gratifying, we would like to go further and obtain exact
scaling. This requires the further assumption that b=0 (etc.), in which

case the ETC

[, f)] S0 = 7% 5" o) e

exists.

The structure of Eq. (124) offers a very appealing way to understand
the origin of this exact scaling 110 . Let us suppose that j(x) is a physical
and measurable current (e.g., it couples to leptons) but that k(x) is un-—
physical and unmeasurable. This means that k(0) cannot occur in the j(x)j(0)
SDE and so, from (124), we must have b=0. The condition b=0 is, in turn,
precisely the condition for the existence of the ETC (127) and for scaling
(126). Thus, if we decouple k from (124) in this way, we obtain purely
canonical results such as (127). The [ﬁ,éj and [k,éﬂ ETC's might not
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exist, but that is unimportant since the log's have been decoupled from rela-
tions among observables. What we are proposing is to allow only the minimum

number of log's necessary for the consistency of the theory to be present,

The non-observability of k(x) suggests that an extra symmetry
principle is operating. An interesting possibility for this is invariance

under the field shift transformations 110

R ix) —> @) + , A = const . 5 (128)

which we refer to as R invariance. R invariance precludes the measurabi-
lity of CP (x) first as gauge invariance in electrodynamics precludes the

114)

measurability of the potential A/U(x) R symmetry has been previously

used in particle physics in connection with pion low energy theorems 115). It
is a spontaneously broken symmetry and not unitarily implementable 116), but

the localized charge integrals exist and that is sufficient for our purposes.

We will identify the observables in our theory as the R invariant

local fields. This does what we want it to since (122) and (123) give
2
%Rf]t()() = O) 8R0€L’(> = g/FC()({) t A ) (129)

so that j is an observable and k is not. Furthermore, R symmetry applied
to (124) leads to the desired result b=0. DProceeding in this way, we obtain
the scaling law (126) as a consequence of the combined symmetries of scale

invariance and R invariance.

One must, of course, check that our postulates (111) - (113) and all of
the OPE's are consistent with R invariance., A detailed investigation shows
that this is the case, and that we can obtain a canonicai structure for the
algebra of observables 110). An important condition is that %RJ(X)==O
in order that the field equation (111) is R invariant. This requires that
Jd be a member of an (at least) three—dimension reducible representation of
x}} [; must be properly defined as a limit of, e.g., j(x)c?(o) or
k(x)cf(o);] Note that in the usual irreducible scale invariant (ISI) canonical
theories, R invariance is only possible in the trivial cases when the
Lagrangian only depends on QMCP . In reducible scale invariant (RSI) theories,
on the contrary, because of the possibility of multiplicative renormalizations

of the type in (122), R invariance allows for a much richer structure.

The algebraic structure of the combined dilatation and R group is

specified by the commutation relation (cr)
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D,k] = <R ) (130)

valid if q> and 7’ are irreducible. A simple example is the free massless

scalar field theory, where

a% ) = @ (131)

and

Reulx) = QMCQ(X) (132)
is the local current whose charge, suitably defined 116) generates R +trans-—

formations.

R invariance can also be applied to physically more interesting
theories such as the gluon model. There again we find that R invariance
gives scaling 110). An interesting mathematical structure emerges from the

combined requirements of scale invariance, gauge invariance, and R invariance.

One of the interesting features of our approach is the connection
between exact scaling and R invariance., In IST theories with canonical
dimensions, scaling follows just from the dilatation symmetry whereas in RST
theories with canonical dimensions, the extra symmetry is required. As we
have seen, the RSI theories have the advantage that they can be based on simple
field equations and canonical ETCR's. It is, of course, impossible to conclude
at present whether the scaling observed in nature is a consequence of the

relevance of theories of this sort or whether it is due to some other mechanism.

The R invariant currents which we have encountered, such as (122), are’
obtained from field products by dividing out their singularities appropriately.
Such currents are consequently smoother than the R variant currents and so -
the algebra of observables is a smooth subalgebra of the algebra of local
operators. The scaling behaviour of the physical current-=hadron amplitudes
is a particular consequence of this smoothness. It would appear to be of
some interest to explore further consequences. It is possible that this
approach could substantiate the often expressed hope that nature is smoother

than perturbation theory.



D. Massive lepton pair production

D.1 Preliminaries

In this section we shall consider the inclusive process shown in Fig. 14.
Two particles, of momenta p and p', collide to produce an observed lepton
pair of momentum q and an unobserved hadronic final state. We will work with
scalar particles and currents until a comparison with experiment [%rotons into
(spin 1) photoné] is made later on. The amplitude for the process is a
particular discontinuity 17) of the three-to-three diagram of Fig. 15 and is

given by

W0ys,0v7) = [d e KppiF ol p ., - ()

The variables are

. 2 RS . , fo ol (134)
and we have taken p2:=p'2:=1°

We consider now the behaviour of W in the generalization of the
scaling A 1limit in which each of the four variables (134) becomes large

with the three ratios fixed :

: / .
A' \[‘m:t ‘ ‘H)S)‘\))‘/_—")N woth ;—"»’(_) - )%- f"(ed' (135)

x|

From phase arguments of the type used in Section II.A.1, the region of confi-

guration space which controls the behaviour of W in the A 1limit is again
seen to be the ILC 5),61),117),118) .

Ix=l £ o (136)

In spite of (136), it does not follow in the present case, contrary to
the situation for electroproduction, that the leading LC singularity dominates
in the A 1limit. To see why, assume for the moment canonical singularities

so that

Lppldmlrry w5zt pepis) + glepxrhs) v 020
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where we have exhibited the leading and first non-leading contributions.
Because of (136), the contribution of f will be a power of X greater than
the contribution of g. If, however, the large s behaviour of g 1s greater
than that of f by a power (or more), then the contribution of g will be

the same as (or greater than) that of f since X /s is fixed in the A
limit. E.g., if £ sX but gﬁds“4*z then the contribution of £ 1is

~ 1/ks®  and that of g is ~1/H °s**® which dominates if h > 1.

It thus becomes a dynamical question whether or not the leading LC

singularity dominates. It turns out that in all presently known models

E@Altiperigheral 119), parton 120), Peynman diagrams 121), non-perturbative
parton 122 , the above possibilities for ruining leading LC dominance do not

occur. Eéctually, since in the parton model the only configurations considered
exclude those which contribute to the leading ILC singularity, there it is the
second leading contribution which dominates;] This will be seen in Section D.2.
More generally, any uniform bound on the large s behaviour at fixed # ,

such as that provided by Regge theory, is sufficient to ensure leading LC
dominance. Strictly speaking, such a bound would only be relevant in the

Regge limit s—® with A fixed, but commutativity relations of the type
discussed in the previous chapters make these bounds relevant in the A 1limit
as well 123). Furthermore, in the LC treatment the large M and large s
dependencies are effectively decoupled and only the behaviours of the five-
point functions <pp! O‘X1,...,“ n(O)|pp'> in the R lim$$7?r$2§§1evant,
provided the sum over n is sufficiently well-convergent ’ .

It follows that under the quite general circumstances described above,

the leading LC singularity dominates the A 1limit and we have
W rtys,v,vr) =27 Wy Lo sy v, v ) (138)

where WA is obtained from (133) by keeping only the leading LC singularity
[Z1/x2)f(x-p,x-p',s) in the canonical casé].

The relevant Regge limits are

!
pionization limit (P) : VyV'is - @3 Jef— fixed;
fragmentation limit (F) : Vs & ®; %é, y'  fixed.

There is also the F' 1limit, which is the same as the F 1limit but with V

and v!' interchanged. The behaviour of (133) in these limits is

\/\/"? Sxﬂ,(%zﬂ;)k) (139)



and

- % vV S
W—="5 A% vy K. (140)
The (hadronic) scaling properties exhibited here are consequences of Regge
pole dominance of Fig. 15 in the Regge limits 124). Commutativity relations123),

such as

/e/CmJ S%ﬁ(%)ﬂ) = A M(M)S)V;V)/ (141)

H—> 0 s M U
W Aixed A
C%
'}Z#{ﬂﬁc(

can be derived as in Section I.B.1 from the integral representation

Qo I s .
Wi vv) = Jdckj‘fbfd'b"0‘(&>b)b/)5)§>+(%+va+zb'v’+bb'5>' (142)
o -1 -1

The representation (142) is a straightfdrward generalization of the ones

used in Chapter I.

D.2 Model calculations

In this section we will discuss the amplitude (133) in the non=—
perturbative parton model reviewed in Section II.A.%3. The amplitude (Fig. 15)
in the model has the form shown in Fig. 16. Particular disconnected contri-
butions are shown in Fig. 16a and 16b. The diagrams (a) are exactly the parton
model (annihilation) diagrams 120), as can be seen by inserting intermediate
states in the blobs. They have been previously discussed in this model in
Ref. 125) and in the multiperipheral model in Ref. 3). Our analysis of these

3) treatment. The (bremmstrahlung) diagrams (v)

diagrams will follow Wilson's
have not been previously treated in this model. They are claimed to give
insignificant contributions compared to (a) diagrams in Refs. 120) and 125),
but we will see that this depends on strong specific dynamical assumptions
which are not necessary for the successes of the parton models in electro-
production. Likewise, there are no good reasons for neglecting omitted

diagrams in Fig. 16.

For simplicity, and in order to compare with the parton model calcul=-

ations, we assume that the ILC expansion has the free field form :
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J(x)(j(c)——?AJr(x):‘(’{x)‘(’(o): + :J(’x}j(c)i + CO&)) (143)

where the bilocals :<?(x)(p(0): and :j(x)j(O): are analytic. Then the in-
tegrand in (133) has the LC behaviour (137).

We consider first the (a) diagrams. Their contribution factorizes in

3)

configuration space

Sperlpwilpr > = <pl@GEp><pldwqe)lp
= P Py x*) f()@f") XL) ‘

(144)

) 126) shown in Fig. 13. The

Here f(x-p,x2) is the quark—=hadron amplitude (50
Fourier transform of the product (144) gives precisely the (a) diagrams by
convolution. Going to the LC, we get

! K.
Lix-F, x‘)m@(x'/ﬂ)o) = Llx-p) = ;‘—T;faw i =(w),  (145)

-/
with F(u>) the current-=hadron scaling function in the model EEqs. (22) and

(23)]. We see that the (2) diagrams contribute only the second leading sin-
gularity in (143). We also see that, since (144) is independent of s~ 2pep',

the mechanism described after Eq. (137) for ruining (second) leading IC
singularity dominance is not operating here and so the leading ILC behaviour

(145) does control the A 1limit.

Substitution of (144) and (145) into (133) gives 127),128)
| | ¢
", i \ ' — Y= \/ y Vg0 6
W, () —5 Jae] deor FdFtn ¥ (g - op - ) (145)
The cross—section do /d# is proportional to the amplitude
Wilsers) = 5 Jd R0 (). (147)
We obtain from (146)
W, (14)5) —a }(”t) , T = —“'—;— ) (148)

where



Fle) = Jiwdu P Fler) bl - ), (149)

120),125)

This is precisely the parton model result for the scalar case under

consideration.

We consider next the (b) diagrams. They immediately give in configu-

ration space

Sprlgwje)lep s = D) <ep T pp > - (150)

These diagrams thus contribute to the leading LC singularity in (143), which
is easily seen to dominate their A 1limit. Their contribution to the A

limit of (133) is

W (g) = Jd% b)) @G 0) TUS Lop, Gep'ss)  (151)

where T(k2,\;, V';s) is the (off—shell) quark—-hadron—-hadron forward amplitude

(including the quark propagators). We introduce now the Sudakov variables 129)’130)
by writing
- ) YA "
_,Qq—-u«f”-f-u)/” fkl) (152)
with k -p::kl_-p'::O, and we obtain 131)
2 =
v%J@)—7(ﬁSJJwawﬂJng(n—Lum~zy/u’+ux»%)@&~w”-z‘>
(153)
- .. PN S S . )
‘ l(b"wg—ﬂﬁ_7w'i}u\) E )S ’
To estimate (153), we assume the usual Regge behaviour of T, e.g., in the
pionization limit
— x 2 , R
[ 5 SN Blwes) ). (154)
130)

Assuming as usual that T 1is biggest in this limit and that T decreases

rapidly when the quark masses become large, (153) becomes

W) a8 ‘“"( Yde‘(Juu/ Bluws) §(rt—2ecv —Lw“vq—ww.s)@(ww’-(%) ]
' 155



where

B(3) = Jd&%, 4Gy, 40). (156)

We will not attempt to evaluate (155) further now because it will be
seen in the following section to be a special case of the general LC express—
ion which we investigate in detail. We note only that to compare (146) and
(155), or (148) and the behaviour of the corresponding Wb0€,s) obtained
from (155) 128)

dynamical question. It is, in general, possible for Wb to be comparable to,

, one must know the fall-off rate of B(z) and this is a

or even to dominate, Wa. If we in fact accept the calculation of the fall-
off of Wa(q) in gq; 1in Ref. 120), then Wb(q) should certainly dominate
away from qL=O.

Now, what about the remaining diagrams in Fig. 16 ? It is argued in
Refs. 120) and 125) that they [és well as diagram (bi] are dominated in the
A 1imit by diagram (a).132 . This again depends, however, on specific and
as yet untested extra strong dynamical assumptions. As an example, we consider
the form factor corrections to diagram (a>133). That is, instead of the
current coupling to a point in Fig. 16a, we allow a current-=quark—=quark form
factor, say [@CK E]%' to be present. This might be expected to be important
since the quark rungs in diagram (a) are at bounded mass. Note the contrast
with diagram (b) and with the electroproduction diagram in Fig. 12c. There
the quark propagator connecting the currents has mass approaching infinity
(as y ) in the A 1limit and so the form factor, say G(qz,(k+q)2), is to
be evaluated in the asymptotic limit q2~>a> with qz/(k+q)2 fixed and in
this limit (in canonical theories) it approaches a constant. This result is,
of course, implicit in the proof that the diagram of Fig. 12b domirates in
the A 1limit. For the diagram of Fig. 16a, on the contrary, both quark lines
attached to the currents have small masses by assumption ?) [éfter Eq. (44i]
and so the form factors relevant are like on-shell hadron form factor, which
decrease rapidly, perhaps exponentially, for large KX . Calling Wa(x ,S)
the contribution of the (a) diagrams with complete quark—quark-—-current form

factors, we have

> Gx) ?(”C)) (157)

\/\/&(K%g) A
with .? () given by (149) ana (¥ ), the square of the form factor, an
unknown function of ¥ , of possibly fast decrease. Actually, it is argued
in Ref. 79) that G(X ) 55

the quark—quark scattering amplitude decreases fast as the (off~she11) quark

const., but this depends on the assumption that

mass becomes large. Unlike the corresponding assumption for quark-hadron
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amplitudes, whose decrease in the quark mass is a consequence of the composite

nature of the hadron 83)

, we see no reason for expecting the validity of this
assumption for purely quark amplitudes. The assumption is, in fact, incorrect
for the quark-quark propagator EEq. (46i]. Thus, there is no compelling
experimental (e.g., from the success of parton models in electroproduction)

or theoretical (e.g., from the composite nature of hadrons) information on the

behaviour of G(® ) in (157).

In view of the lack of control of these other diagrams, and also
because of weaknesses of the model itself, such as those mentioned at the close

of Section II.A.B5 a model independent approach seems desirable. Some

123),1%4

attempts in this direction will be outlined in the following section.

The result of the LC multi-Regge analysis is 123)

I - ]
Wa A &* (‘Q’”S)LJ"\ Su'{v(fdo(’él’a ‘%(as“) o'sTN s aw)
-t

(158)
Ci(rm 2y — 2V aal!S ) Bl - ) = W (5,4, v,v7),

where QE (ﬁ), 6';a) is of fast decrease in its first two arguments and is
independent of its third argument for ¢ <a < 1-¢C. [ﬁere ¢ =¢(s) is

such that si'(s) ~ 2 GeV2;] W can therefore be conveniently decomposed into

L
the sum of a "pionization" piece W coming from f <a<i1-¢ and a
"fragmentation" piece W coming from 0 g a < ¢ and 1-¢ <a <1 123) :
A~ —_
WL = W + W, (159)
with
: o
7. o~ / . o —
F(m,6y0) 2 E(8,8), wcatl-t (160)
and
F(6,650) = P4, 8), n<e of avi—€ . (161)

Let us compare our model independent result (158) with the model
calculation of Section II.D.2. The contribution (155) of the (b) diagram is

immediately seen to have the'form (158) with spectral function



‘I/h((s)e’,a) = B(ﬁﬂ’) (162)

since
!

Ty ' ! i
Ldas = ,Q/Ins (i—-g TS s . (163)

Even the fast decrease of B(z) for z—-® is necessary in order to have a
fast cut-off in transverse momentum of produced quarks in hadron-hadron

collisions.

In or?er to compare with the contributions (146)-(149) of the (a)
135

diagrams , we must first replace (154), which comes from a 1/X2 LC
singularity [}he first term in (1431], with the result of using a constant

LC singularity [ihe second term in (1432] since, as we have seen, that in the
leading LC behaviour in the (a) diagrams. The resulting amplitude Wz has

the behaviour
I ,
W, (¢) =5~ $% ((m s)jéiayéddu’s““ ACES s ) KT AP 7). (164)

Thus

W, (#)s) =< s“(iﬂs)}’dq(a&d(x SITAE (R8T s )b - £) L (165)

This appears to be quite different from (148)—(149). In fact, the (a) diagrams
do not satisfy one of the main assumptions involved in the derivation 123) of

(165), namely leading Regge behaviour for the five-~point functions

. . ) &

epe | 46) g, B L >
encountered in the expression for the LC expansion (143) as a sum of local
fields. It indeed follows from (144) that the five-point functions from the
(a) diagrams have a large s Dbehaviour, namely constant, which corresponds to
a leading fixed singularity in the J plane - a Kronecker delta at J=0 136).
Although there is nothing which precludes the presence of this Kronecker delta,
its presence 1is perhaps somewhat surprising and unlikely. But, as we have
stressed in the previous section, the remaining diagrams in Fig. 16 are not
necessarily dominated by the (a) diagrams and so the possibility exists for
them to cancel the Kronecker delta from Fig. 16a in such a way that the large

132)

s Dbehaviour of the sum of all contributions is described by a Regge pole
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This would certainly be the simplest possibility from the complex J plane
point of view — although clearly not from the diagrammatic point of view.
It is, of course, also possible that such a cancellation does not occur and
that the Kronecker delta remains. Then its contribution should be added on
to (158).

The form factor corrections discussed in the previous section nicely
illustrate how the above cancellation can occur - if they are such that the
total form factor is of fast decrease. Equations (165) and (157) are indeed

consistent in this case. To see this, take

kf"e (.{5)/_”-)’4%(_) = Cﬁ(./.?/%/>@(.ﬁ)+ %((/,7'):( ) (re6)

with G and g to be specified. Substitution in (165) gives

\/\//((J*(,5> —Z\——? lc;’f (ﬁns) é(;{)sc.:&&jg‘x ‘QI-GLB[(_,,(S&\) + g(ﬁ"‘:& )} , (167)

Changing integration variables from a to u = d‘sa and taking g((g) to be

of fast decrease gives

W, (#,5) & Gl Mix) (168)

where

(o

du 4 (w) (169)
ul -

94(%) = fcllx.x[

T

Finally, choosing

NOt) = /tOH( ?(’t)7 C_:(/’() - K’d“ C«'(K>) (170)
(168) becomes
\NQ (#,5) N C(x) 7(’t)} (171)
just as (157). The reason for the consistency of (157) and (145) is that

diagrams (a) with form factors of fast decrease do satisfy the five-point

function Regge behaviour.
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It should be noted that in the above analysis the only place we use
the fast decrease of G(« ) was for (166) to be consistent with the fast
decrease properties of ¥ , which are consequences of, among other things,
the Regge behaviour assumption 123). If the fast decrease of ¥ is given up,
then the above analysis shows that the LC result (165) is consistent with (157)
for any G(){), including the naive parton model result (148) with G()() =1.
[Likewise, the (b) diagram result (155) can be obtained without B(z) of fast
decrease:] This is perhaps not surprising since the leading LC singularities
do dominate in these models. Thus, our LC forms (158) and (164) encompass all
possibilities if the fast decrease of ¥ is relaxed. Since we feel that the
five-point Regge behaviour and consequent fast decrease of Y is the most
elegant and likely possibility, we will proceed to discuss (158) with these
restrictions on & . The present data will be seen to be quite consistent

with this.

Returning to (158), we note that since ‘f/(,6,43') must be symmetric

under interchange of / and A ( 'y =2 y' symmetry of W), we can write

F(8,6) = C(L32,VE5") - (172)

One integral in (158) can be done with the S function and the others can be
estimated if @ is a sufficiently smooth function of its arguments 134 . The

result for W and W gives the expression

& Ez, %) ,) T $(x) Vi) (173)

for the contributions of the pionization region (d&i/d)() and the fragmentation

regions (d5/dx) to the cross—section

do  _ 46 . 4T (174)
dn d o d ¢

The interesting feature is the difference in the behaviour of the sum variable.
The sum (174) can thus easily appear as the superposition of two different
rapidly decreasing contributions, one (d&i/df() dominating at large #€

and the other (dél/d;() dominating at small 2 . The result of the combi-
nation of these two contributions can produce a shoulder, as seems to be

present experimentally (see Fig. 17).

When spin is correctly included, the result is an expression of the
form (158) with @E replaced by a sum over g?i, i=1-4 134)
with experiment, we take the simplest possible phenomenological model for the

‘{’i's. We take 134)

To compare



. ~h(a+A7)
¢.(8,6') 5B € ( (175)

A

the pionization limit with ,3 and ,3' both large, and

F8,m) —=> Fe kB (1-4) ¢ (176)

the fragmentation limit with /3 large and A2'~41. In (176) we have in-
cluded a threshold factor analogous to the one in electroproduction. With
these explicit forms, the integrals over K , x', and a can be performed
in the A 1limit. The final result is the sum of a P contribution, with an
unknown over—all coefficient P and an F contribution, with another unknown
over—-all coefficient P. So, in this simplest case, we obtain a represent-

ation in terms of the five free parameters P,F,h,k, and £ 134).

To compare with the experimental data, we must integrate over phase
space, fespecting the experimental cuts 138). We obtain expressions for
d¢~/dK?, d9/dcos6, dg/dy, , and o'(Ep) to be compared with the

experimental results 138). Our procedure was to fix our five parameters by

1
fitting the a0~ /ar * curve 124). A typical hand fit, with

P = ler F =%, h=o0 ) k=20 | 2=4,(177)

is shown in Fig. 17. The fit is seen to be quite good. The shoulder appears,
as expected, from the interference of the two exponentials and the final rapid
decrease of the curve is due to phase space. Using the same values (177), we
obtain predictions for the other curves 134). These are shown in Figs. 18,
19, and 20, together with the experimental data. The agreement is seen to be
very good in all cases. It is possible to obtain still better fits using more
sophisticated fitting methods, but this hardly seems warranted at present
because our assumed forms (175) and (176) are only guesses and because of the
crudity of the exerting data. More detailed comparisons and predictions for

the future experiments will be given in Ref. 134).

Accepting at least the gross features of the present data, a few remarks
about the significance of the fit (177) are in order. The small value ~‘10._4
obtained for the ratio P/F suggests that the Pomeron-particle-Pomeron coupling
at t=0 1is very small and perhaps vanishes. This must be the case if the

Pomeron is an isolated pole at & (0) =1 139). The value 4=4 for the
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threshold power decrease is similar to the value f£=3 found in electro-
production. We also obtain acceptable fits with 6=3. We finally note in

Fig. 18 the smooth fall-off of dJd /dcos®. The behaviour is ~e=500(1-cos6)
and we fit this nicely. This should be compared to the behaviour e—2000(1—cos@)
which one finds for hadronic single particle production in similar experimental

conditions and which is the parton model prediction 120).
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