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INTRODUCTION

In the form in which it was originally put forward, Regge phenomen-—
ology contained a wealth of predictions. If Regge poles alone dominated
scattering amplitudes at high energies, then the simple form taken by a
single Regge pole term, together with factorization of Regge residues,
permitted one to parametrize scattering amplitudes with only very few un-
knowns, and also dictated very specific relations between scattering

amplitudes describing different processes.

As it has turned out, however, this admirable vision of high—energy
phenomenology has failed. It is simply not true that in general Regge
poles alone dominate; other kinds of j—plane singularities, specifically

branch points, are also present and are important.

If cuts, as well as poles, are necessary to parametrize high—energy
amplitudes, what is left of the predictive power of Regge theory? In the
absence of any knowledge about the cuts, one would at first expect almost
nothing. The fact that an unknown j-plane cut has an arbitrary function
of two variables (t and j) as its discontinuity means that omne can fit
essentially any scattering amplitude (which is, after all, also only a
function of two variables) with a cut. Furthermore, because factorization
fails in the presence of cuts, no predictions remain which relate differ-
ent scattering processes to each other. Essentially the only prediction
which obviously remains is that scattering amplitudes, at a given value

of t, behave like powers of s at large s (apart from logarithmic factors).

Therefore, if Regge theory is not to be discarded as basically vacu-
ous, it is necessary to discover some theoretical limitations on the cuts.

What then do we know about j—plane cuts?

That cuts should, theoretically, be expected to exist was first shown
by Mandelstaml’z). He found, by studying a particular class of Feynman
graphs, that if two Regge poles with trajectories ai(t) and a2(t) existed,
then one also had a cut with a branch point at ac(t) = o1 (t/4) + ax(t/4) - 1.
In particular, if one of the two poles (say 02) were the Pomeranchon (as-
suming that it indeed exists) with aP(O) =1, we find ac(O) = o1 (0), and
the cut and pole o1 have the same quantum numbers; that is, they occur

in the same amplitude. In addition, since the slope of the branch point
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is less than the slope of the pole a;(t), it lies above the pole for
t < 0 but below for t > 0.

This branch point, formed by the interference of two poles, may
well exist., But is it the highest branch point? For example, if a pole
a1 (t) and the Pomeranchon aP(t) generate a cut with branch point at
ac(t) = a1 (t/4) + aP(t/4) - 1, then the cut itself together with another
Pomeranchon should, by the same argument, be expected to generate another
cut with branch point at aiz)(t) = ac(t/A) + aP(t/A) - 1; this second

cut has even smaller slope than the first one, yet still satisfies
2 . . .
aé )(0) = a1;(0), so it lies above the first cut for t < O.
Such arguments may be repeated, making plausible the existence of a
sequence of branch points with smaller and smaller slopes, all crossing

the original trajectory ai1(t) at t = 0.

To summarize, then, we can say only the following about the position
of branch points in the j-plane: given a pole a1(t), there exists a branch
point ac(t) with the same quantum numbers such that aC(O) = a31(0), and which
lies above 01(t) for t < 0. Even this feeble conclusion, we should note,
depends on the existence of a Pomeranchon with aP(O) =1; 1if aP(O) is
slightly less than one (as some models suggest) then the pole and cut
cross at some finite negative value of t. The various cases are illus—

trated in Fig. 1.

Can there be other cuts as well as these? Of course there can.
Specific models yielding different cuts exist. For example, one such
model gives a flat cut associated with each pole aj(t) crossing the pole
at t = 0: ac(t) = a1 (0) 3). The only thing we can do is, optimistically,
to believe that the only cuts which exist are those for which we can find

specific theoretical arguments.

The most important characteristic of a cut, which we would like to
know if we are to be able to make any experimental predictions, is the
nature of the branch point. The first Mandelstam cut, generated by two
Regge poles, turns out to be logarithmicl’z); that is, the t-channel
partial wave amplitude has the form T(t,j) v log (j - ac(t))s Successive

2

cuts, however, have more complicated types of singularities °. Other

modelss) lead to cuts with square root singularities: T(t,j) v Vj - ac(t .
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Obviously, we can say nothing which is model independent.

The same is true about the third characteristic of cufs which we
would like to know; that is the actual value of the discontinuity across
the cut. Any statement we can make is model dependent: the discontinu-—
ity of the first Mandelstam cut can be calculated in terms of the poles
(and their residues) which generate it. The same is the case for the cut
in other specific models; however the answers in the various models are

all different.

To summarize, perhaps the only thing which we can safely say on
(nearly) model independent grounds is that there exists a cut associa—
ted with each Regge pole, occuring in the same amplitude, which is flat-
ter than the pole and which crosses it at or mear t = O. ALl other de-
tails, such as the type of branch point or the value of the discontinu-

ity, are model dependent.

1f we wish not to commit ourselves to specific [and doubtless

wrong“)j models, is there then anything left to say? Can we make any
phenomenological predictions at all? The answer is yes, as we shall
see below. What we shall do is to accept from the foregoing discussion
only the (pfobably) reliable statement about the position of the branch
point. Then, using only this input, we shall on the basis of general
(and incontrovertible) principles such as unitarity argue that it may
still be possible to make certain non-trivial phenomenological predic—
tions. These predictions will, of course, be less detailed than those
which could be made on the basis of specific models; but they will, in

contrast, have a chance of being right.
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THE FORM OF THE t—CHANNEL PARTIAL WAVE AMPLITUDE

The crucial principle which we must maintain is t—channel unitarity.
(This, incidentally, is entirely ignored in the specific cut models now

commonly in use).

) T(t,j) has a

We assume that the t-channel partial wave amplitude5
branch point at j = ac(t). Because T(t,j) must satisfy unitarity, it is
reasonable to suppose that the corresponding D function D(t,j) also con-
tains a branch point at j = uc(t). In the neighbourhood of the branch
point, we may write the contribution of the branch point in D explicitly;
the remainder of D is then smooth in j and, near j = a,, we may expand

it in powers of j. Then we may write, near j = a.s

D (4 = - -1 v
DL ] ct) = D4, ) (2.1)
where Dc(t,j) contains the cut. (This may be thought of as a sort of
effective range expansion in j. Since the normalization of D is arbi-

trary, we choose the coefficient of j equal to one.)

Let us, by means of some examples and other arguments, understand
why this form is to be expected, and make clear what is meant by the

6)

function Dc .

First, suppose we start with a model for the partial wave amplitude
containing a pole at uin(t) = 0o + o1t (dg and o; are real), and a cut,
added to each other. (As, for example, in the absorption model.) We

write as the input partial wave amplitude

3.
eI e T
T (6 [~ et j)

(2.2)

where Tc(t,j) is the (explicit) cut term in the model. This amplitude is
manifestly not unitary. Suppose we unitarize it, by, say the K-matrix

method. Then we write the unitarized amplitude as

T )

il

TLy) L= Cpoe) T (4 ]) (2.3)
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where p(t) is a phase space factor. (Note that p is real for t above

threshold, and imaginary for t below threshold.) Then we find

[ ({,J‘) = J - e - t";(_/gm + (J‘—-xm)Tc) (2.4)

so that

'D(flJ) = J~—~>(o(l‘.)' Dg({J)

(2.5)
where
A, (L) = X, (E) o+ 1‘(({),'2m (1)
and where
DC(L/J) —_ L‘Tlt)(J—')(C({)> ]‘ ("/J)
(2.6)

If the cut is absent (Tc = 0), then the resulting trajectory in the
unitarized amplitude is simply ao = o, * ipBin; i.es Im ag(t) =

p(t)Bin(t) for t above threshold, a well known result.

Thus one may think of 0o(t) as a sort of unperturbed trajectory,
which is altered (thorugh unitarity) by the cut into a new trajectory
o(t). The new trajectory, of course, is the solution to

DUt x) = o (2.7)

Secondly, suppose we unitarize the amplitude of Eq. (2.2) by a
slightly more sophisticated method, say the N over D method. We choose
N tob 7)

e

ML) T s e (e ) TOL) e
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Then it follows that D is given by

b ate : o
NOt, ) = 7 X T - j ‘),”_ (A () 4 () dtt) Te ()
. IJ L _Lc “t.”t' , (2.9)
so that we now identify .
, ” ettat” i
X (k) = K )+ L et " (2.10)
e
and -
o) A, _ )
D- [{_ ' ) = i J ( - [(J - .X,“ ({'J) /(’ [.l/;J) .
S T t'- k (2,115

ty

The same interpretation as before is natural.

As a third illustration, and confirmation, of the form (2.1) let us
revert to potential theory. Recall the situation when two Regge poles
8 . . . ..
og(t) and ao;(t), cross ). The D function is a quadratic form in j near

the collision point, and may be written as
J- e tt) Gy (t)

D ( t/J ) = et
C‘./f) J - o(‘(‘t ) . (2.12)

Evidently solutions of D(t,a) = 0 are either two real poles or a
complex conjugate pair. Thus when two poles collide, they become a com-
plex conjugate pair of polese). One may interpret €1 as the'coupling"
of the two poles, and one may say that an unperturbed trajectory a1 is
perturbed by the presence of another trajectory o1 into a new trajectory
o which is the solution of D(t,a) = O.

Next suppose the unperturbed pole ag collides with a family of other

poles o, i=1.., 2
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In analogy with Eq. (2.12), we write
J— 2o &€, G, - -
T)({,J) = Aet €, J-« ©°
é‘l o J— %

(2.13)

2z
L

) éﬁc/J i ﬁ«ha (j-=)

J'Q"l_~ L=

(We have here, for simplicity, neglecting '"coupling" between the "other"
trajectories ui.) Now let the family of poles o all be parallel:

we write ai(t) =o01(t) - (4 - 1). Then we let §, the spacing, approach
zero and call o (t) = uc(t). We have thus constructed the situation of
an unperturbed pole 0o perturbed by the presence of a continuum of paral-

lel other poles; that is, by a cut. The D function Edropping the ir-

relevant exponential in Eq. (2.13)] isg)
e oy
) £ ’(t,J‘\ ‘
D) = et - [ —
_ =47 (2.14)

Again, we recover the basic form (2.1).

As a final confirmation of Eq. (2.1), we may merely note that in
two explicit dynamical models containing both poles and cuts this form
appears. In all versions of the multiperipheral, or multi Regge, model,

one findslo) (at least approximately)

[ N = S ¢ ( —/-Zc(t £ (A'_"‘[(_(&))
Dt ) J oo Xect) - At) kgl (2.15)
while in the Carlitz-Kislinger models) one finds
4 r - i -— ’-’( ({ ) - /g‘» (t, V/ N P ({ )
Dt ) J ‘ , J= (2.16)

We take it then that the form (2.1) for the D function near j = o
may be believed on a model independent basis. As we have seen, the
way to interpret Eq. (2.1) is to think of an unperturbed Regge pole
oo (t) colliding with the cut contained in Dc(t,j), and thus becoming
altered into a new pole a(t), satisfying D(t,a(t)) = 0. This inter-

pretation is then entirely analogous to that of Eq. (2.12), where one
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thinks of the original pole 0 colliding with the pole a1, and be-
coming altered to a new pole a. The only feature of the cut which we
need to know in order to make this interpretation is the position of
the branch point: this allows us to say that ago(t) and ac(t) "collide"

at, or near,t = 0.

What do we learn from this about the behaviour of the output poles,
the solutions to D(t,0) = 0? Let us take the two specific models,

Eqs. (2.15) and (2.16) as illustratioms.

In the logarithmic cut example, there is one pole on the physical

sheet, satisfying the equation

X = Xy o+ 3. Lé} (X - d()

We presume that ao and o, cross at t = 0. Since the logarithm blows

up as o > 0, the pole can never pass through the cut, but must instead

approach it asymptotically. The situation is illustrated in Fig. 2.

There are also poles on all unphysical sheets, satisfying
X, = L, + 2, ( [cj (A, - 2, ) + CH‘R;)

for n = #1, #2 ... . Evidently these occur in complex conjugate pairs,

*

o =0_ and their imaginary part never vanishes. These complex poles

can pass the cut, as sketched in Fig. 2.

0)

A further comment of interest is the following1 . The residue of

the physical sheet pole is proportional to (BD/Bj)—IIJ o that is, to

(o - uc/a o, - Bo). Thus as o > s the residue becomes very small.

Hence the physical sheet pole becomes weak, and therefore unimpor-
tant, as t becomes more and more negative. This same situation does
not obtain for the unphysical sheet poles. There, since Im o # 0
o= a, does not become small, so these poles are not, in general,
weakly coupled. Thus, crudely speaking, the partial wave amplitude
at negative t may be described as containing the cut and a (on the
nearest unphysical sheets) complex conjugate pair of poles, moving
through the cut, plus a weakly coupled (on the physical sheet) pole
just above the cut. Poles on further unphysical sheets (n # *1,0)

are, presumably, too far away to be of much interest.
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The square root example is also easily analyzedg). There are now

two sheets, and two poles o, and o_, given by

A

3 “
X + Ly Ty cé st \/ /Qf/q -r//;&cl(do—- X )

1]

-

Again we assume 0O and a, cross at t = 0. Poles with Re Yo > 0 are on
the physical sheet, and poles with Re Y& < 0 are on the unphysical

sheet.

As t > +°, O, approach 0o, the unperturbed pole, and o, lies on
the physical sheet, while 0_ is on the unphysical sheet. As t de-
creases, O and o_ decrease too. At a negative (or zero if Bo vanishes
at t = 0) value of t, the two poles collide at a negative (or zero)
vvalue of j - o, They are by this time both on the same sheet, o, having
passed through the cut onto the unphysical sheet, or 0_ having passed
through the cut onto the physical sheet, depending on the sign of Bo.
Below the point of collision, the two poles are a complex conjugate

pair. This situation is illustrated in Fig. 3.

Thus the partial wave amplitude contains, at negative t, the cut
and a complex conjugate pair of poles (on either the unphysical or

physical sheet).

The effective situation is therefore very similar to the logarith-
mic case, and indeed one can convince oneself that the same is true
for any type of cut: the partial wave amplitude will consist of a cut,
plus complex conjugate pairs of poles on various sheets, plus (possibly)

real poles.
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THE FORM OF THE SCATTERING AMPLITUDE AT HIGH ENERCY: '’

We learned in Section 2 what we may expect, independently of any
model, for the t-channel partial wave amplitude; namely it contains a
cut, complex pairs of poles, and (perhaps) real poles. Let us for
simplicity suppose it to contain a cut and a single complex pair. (If
there are in reality several complex pairs, the one we shall select is
that with smallest imaginary part. If there are real poles, they will
appear in the usual way). Thus we assume that T(t,j) has a branch
point at j = ac(t), and poles at j = ai(t) = uR(t) i aI(t).

Let us exhibit the poles explicitly, by writing

fot )

T4, - -
J) (J-u(_r(%))(J'-d_(t)) : 3.1

The function f contains the cut, and the poles are on an unphysical

sheet if f(t,a, (t)) = 0.

The high-energy scattering amplitude is constructed in the usual

way by means of a Mellin transform:
C4len

J‘ .
. B - S 7(7[&1/)
(s, t) = 77 | TR T

C—( o

Ar (3.2)

where C is larger than any singularity in T(t,j). We can now deform the

contour in Eq. (3.2) to obtain

Tist) = A, s 45 s
/
e g‘j 9‘.,. f’('i, )
4oL j‘ J Ay (3.3)
-
<) (= %)) )

where 2i Im f(t,j) is the discontinuity across the cut in f(t,j), and

where

W

t

ﬁ + f(’t/xj)/(«ﬁ-«,) ) (3.4)
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Hence §+ = 0 if the poles are on an unphysical sheet; and in general
B, = (B

It is worth pointing out explicitly certain qualitative features
of Eq. (3.3), and most particularly of the integral therein. This inte-
gral, evidently, exhibits the cut contribution to T(s,t). The weight
function for the cut -- that is, the discontinuity across the cut --
is Im f/[(j - aRf + ai]. If g is small, therefore, the weight func-

tion has a large Breit-Wigner like peak at j = o This tends to empha-

size the j = Op region of the integral, and suggEsts that the energy

dependence ought to be approximately saR, unless s is very large. If
s is very large, however, then clearly the dominant behaviour will be
sac. How large is large, clearly, depends on the size of Ops as well

as on the form of Im f.

The size of o is, of course, proportional to the strength of the

cut, as we have seen in Section 2; that is, O_ must be proportional to

I
Im £f. Therefore, as the cut becomes very weak, and vanishes, the inte-

gral in Eq. (3.3) approaches

(.%F(k/%ﬂ )) SXK
o

b4

- T = O

and we recover the original single real pole with o, = 0y, which we would

R
have had if there were no cut at all.

For very weak cuts -- i.e. for very small ap, we may conveniently

rewrite Eq. (3.3) in the form

s -
T (s t) = R T S

' X

S,“’R ‘ 9‘«‘””‘])
oA
A . J
t T . (J~-X,_)z+ wy
X ' %R

A J

J de Feij) (s!-s )

(|- %e ) e Xt
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This is in a form relevant to the absorption model: it attempts to
approximate the remaining integral by the explicit absorption model
cut, in which the cut weight function is a smooth function of j. Ob-

viously, this us a dubious procedure except in the limit a;. - 0; for

I

any finite cut strength, i.e. for any finite a., the integrand is

I’
certainly not smooth. It appears, then, that the absorption model is

likely to make sense only in the limit in which there is no cut at all.

Let us return now to the general form (3.3). Our discussion has
made it evident what approximation we should make: we will assume that
the function Im f(t,j) is relatively smooth over a range in j of the

order of o_ around o . Then we may write

I R
¢ -
—_ \'jﬁ' _ == %F{{-/"(F) A s ety
Tl = Aes A« 2 | (Ttes 0 (3.4

-

The similarity to the Breit-Wigner approximation is evident. There,

one assumes that once one takes out a complex pole in the energy, the
remaining weight function of the cut in the energy plane varies smoothly
-- thus one ends up with a single complex pole in energy to describe

the contributions of a cut in the energy.

Here we do exactly the same thing with j instead of energy, and a

complex pair of poles instead of a single one.

The integral in Eq. (3.4) can be evaluated explicitly, and we find

1]
w |
4
w
}
')
1
n

T (s, t)

. “e_
I f 06 ) [ p (g - ¢ B o)

201 o«

The accuracy of this approximation depends, of course, on the function

Im £, and on the size of ap as well as on s. Representative examples

are shown in Fig. 4. The Ei function has a simple representation:
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’ s ('Z)h
Ect-z) = ¥ « gz Z o

ney M (3.6)
where Y is Evler's constant. '
Using this representation, we may, if [a+ log s| < 1, finally express
T as a pair of complex poles alone, in complete analogy to the Breit

Wigner expression for an amplitude containing a resomance. We obtain

T )= o, "
(s, t) j3e o3 (3.7

where )
{4: + i (Y + kcjﬂ)) g‘«« }.['i,dll)

o (3.8

*
= R exp i¢. Thus B = B .

and we write 0, — O
+ c

Again the error involved in replacing Eq. (3.5) by Eq. (3.7) depends,

for a given s, on the size of o, and of (aR - ac) log s. An example is

I
shown in Fig. 5. As before, for sufficiently large s, the approximation

breaks down; but the smaller aI, the farther it goes.

Because this stage of the approximations involves (aR - ac) log s
as well as Cs it should be noted that in some situations it may be
more accurate to stop with Eq. (3.5), which is still an explicit form
for the amplitude not involving detailed knowledge of the cut, and not
to continue on to Eq. (3.7). Equation (3.5) requires only that o is
small; Eq. (3.7) requires |(0LR - ac) log s] to be small as well.

The essential assumption, leading to Eq. (3.4), was that Im £(t,j)
had no unusual behaviour near j = Op This assumption can be somewhat
relaxed, without invalidating Eq. (3.8), as follows.

We expand Im f£(t,j) in powers of j, around j = O

(2

Mo ﬁff,j ) = 2 Gn (] - <)

n=g

Inserting this expansion into the integral in Eq. (3.3) then yields
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From this, in so far as the approximation of the Ei function we used
before is valid, we readily again obtain Eq. (3.7), only mnow Eq. (3.8)
is replaced by

(¢ 5 (Vs LegR)) Qo flt, s)

- 2
P 7 B T - (3.10)

We have, then, two somewhat complementary formulae. If Im f varies,
but |(OLR - uc) log s| is small, we may use Eq. (3.7). However, if Im f
is smooth, but I(aR - ac) log sl is not so small, we can use Eq. (3.5).

If both are valid, then of course we use Eq. (3.7).

In any event, subject to the stated assumptions, let us assume
that we can obtain the form (3.7). The amplitude is thus described
(to a high degree of accuracy over a sizeable range of s if O is
fairly small) as a pair.of complex conjugate Regge poles and nothing
else. In this moderate energy range, the entire effect of the cut, no
matter what the detailed behaviour of its discontinuity, looks just
like the (Breit-Wigner like) complex pair of Regge poles. This, we
emphasize, is true whether or not the poles lie on the physical sheet.
The accuracy of the representation (or rather the range of s over which
it is an accurate representation) depends on the size of Ops and of
](uR - uc) log s|; and it also depends on the smoothness of Im f in

the vicinity of o Finally, it is also important to note that the

R
representation of the cut as a complex pair is far more accurate than
to represent it simply by a single real pole -- that is, by the limiting

case in which the cut is absent altogether.

The conclusion, then, is that the presence of a cut does not neces-
sarily leave Regge theory with zero predictive power, even if very little
is known about the cut. All that the cut accomplishes, in the moderate
energy region at least, is to replace each real Regge pole which one

would have dealt with in the absence of cuts, by a complex pair. The
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number of parameters is therefore only doubled: whereas before, in a
pure pole model, we had a real trajectory o(t) and a real residue B(t)
we now have a complex trajectory a(t) = aR(t) + i uI(t) and a complex

residue B(t) = |B(t)| X¥B(E)

We may exhibit the correspondence to the single real pole expli-
citly. The amplitude of Eq. (3.7), for a complex pair of poles, may be

written in the following simple form: (we now re-introduce the signa-

ture).
For even signature

: : —C T
o —tnx.,/l o« /7_

T(s ) = Y¥+5 &€ v ¥ €

s/

= 1Yl s e < F (s, ¢) (3.11)

where the "correction factor" F is

Fis, t) = toa (A kegs s qy) ced T3/,
-t (3.12
4 L A (ﬁ(c.icgg + Yy dunte T/, )
For odd signature
o 2 —cfiXpy,
'_T(;/t) = l..‘}/lg &€ - I (S/'f)
(3.13)

with the same "correction factor" F.

It should always be kepd in mind that this correction factor only
represents, approximately, the existence of the cut. For that reason
the residues in Eqs. (3.11) and (3.13) do not factor. Only the residue
of a true pole factors; the complex "poles" we deal with here are not

really poles of the partial wave amplitude (though they may include con-
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tributions from physical sheet poles if there are any) but are only

approximations to a cut.

For the same reason it is possible for the complex poles alone to
produce polarization; this simply reflects the fact that a cut can
produce polarization. Again, complex poles can produce "cross-over
zeros" without the residue vanishing; (this can happen because F
vanishes, not |B|). This is merely saying that a cut can give a cross-

over zero. And so forth.

We have now completed our theoretical development. The result

we have obtained is that if the cut is fairly weak, so that a. is small,

then even though nothing is known about the cut there are nevirtheless
phenomenological predictions. Indeed, an entire Regge pole plus Regge
cut combination, up to some cut-off energy (the weaker the cut the
higher the cut—off) is describable to a high degree of accuracy by only

a complex conjugate pair of poles, and nothing else.

The following section will be devoted to some detailed illustra-
tions of the use of this result in specific phenomenological situatiomns,
to conclude this section, however, let us make a few general observa-

tions, as follows.

3.1 Total cross—sections

As we have seen, the contribution of a given complex Regge pair of
even signature to the imaginary part of a forward elastic amplitude will

be i
"(R 10) ) PR ) “n[“'/l_

+ { (0) S 3 i = (S, ¢ :
Rl S (€ Fes,en) 510

(For odd signature, an extra factor of i is inserted in the bracket).
Using the form given for F in Eq. (3.12), this may be rewritten as a

contribution to the total cross—section of

W «Lx

Wple) -1 : . C Fe )
‘ Y (é) ’ S é Ceoal (9(1- (c))(,cgs + Yyt )) A —Z-R ceh -
(3.15)

- N T4 . e
— e < <1 {c!z(ch —rq/alc‘)) e > _Z__R pwhk = g
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At first sight, therefore, there would appear to be an oscillation
' 12)

with increasing log s, of period 2ﬂ/uI(0), assuming that aI(O) =0
Several cautionary remarks are, however, necessaryla). First, the
approximation of replacing the cut by a complex pair failed when s
became sufficiently large; in fact by referring back to the original
integral for the cut, Eq. (3.5), it is easily seen that it necessarily
fails before the oscillations in Eq. (4.2) begin. The cut term actual-
ly goes monotonically down, and does not oscillate at all. Oscilla-
tions can exist only if there are physical sheet complex poles'(i.e.

if B, #0).

Secondly, while oscillatory terms, if they exist, do not cause any
trouble for lower lying Regge poles (for which aR(O) < 1) it is obvious-
1y not possible for the Pomeranchon itself to exhibit such behaviour;
if it did, we would eventually find negative total cross-sections. For
the Pomeranchon, therefore (if it is also describable, at least approxi-
mately, as a complex pair) either aI(O) = 0 or the complex pole is on an

unphysical sheet.

3.2 Forward Diffraction peaks

The question of how the complex pole idea applies to the Pomeranchon
may as well be faced immediately, since it's been brought up in the

context of total cross-sections. Let us list the possibilities.

i) The Pomeranchon is simply a real pole -- perhaps like the physical
sheet pole in the logarithmic cut modellu). In this event the
total cross—section is the normal Pomeron contribution plus, per-—
haps, damped oscillatory contributions from lower lying complex

pairs.

ii) The Pomeranchon is a complex pair, either with aI(O) =0 or on an
unphysical sheet to avoid negative cross-sections. In this event,
we can see from Eq. (3.11) that an elastic differential cross-
section looks like

g 2
AT/ = (Y )d,,o IFés, el

and we note
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The correction factor thus introduces minima in do/dt which move

5)

toward t = 0 with log s ! .

The Pomeranchon is something entirely different. The entire
question of what constitutes diffraction scattering has, of course,
always been present in Regge theory. We do not escape the uncer-
tainty here; as a result,detailed phenomenological analysis of
elastic processes where Pomerons exist, are subject to some am-

biguity.
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APPLICATIONS

6)

.1
4.1 7m-N charge exchange scattering

We shall begin with this reaction for the usual reasons: it is
rather well measured, and, more important, it is theoretically very
clean because only a single important trajectory, the p, can be ex-

changed.

There are two scalar amplitudes in this process, the usual A'(-)
and B(_). In conformity with the foregoing discussion, these are para-
metrized by a single pair of complex poles, representing the p trajec-
tory and its associated cut. We write

— (AL

L) Y - € (5/ )d*
A = +A Sih Mt x te
— 0T o —
. | - € S/
—+ \-A ( ) ( Se ) (4.1)
Sceen QA -
and
R | L
i - € S/
G-y Se
B = X \*B ( St ok ( )
(L= L~ ¥ (402)
_ e N
-+ o \»- R ’ ) ( /30 )
S it X~

The factors o, and o_ in the residues of the B amplitude are conventional
and reflect the Pé appearing in the cross channel partial wave expan-

sion for B.

For on the usual straight line trajectory is chosen: aR(t) =
a + bt; we expect that as in the simple real pole situation we will
find a v 0.5 and b v 1.0.

Two models are chosen for S corresponding (roughly) to the square

root and log cases. We try both aI(t) = g/~t and aI(t) = g (a constant).
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Finally, for the residues we choose forms similar to the normal
ones; specifically Yep. = ho ehlt(oc+ + 1) el¢+A and

- dit id4p = % = %
Yip = dg e (a+ + 1) e . (Of course Y_p = YiA and Yop = Y+B.) The
phases are parametrized by either ¢ , = m=t(y, + Yit) or by

= (Yo + Y1t) corresponding to the two choices for a.) with similar

h)
¢+A I’

expressions for ¢+B'

There are two manifestations of the complex poles to look for,
neither of which can be understood with a real p pole alone. These are
polarization and the cross—-over phenomenon. Only these allow us to fix
Op and the phases; the remaining data, on do/dt and GT(ﬂ_p) - OT(ﬂ+p),
provide only negative constraints, in that the excellent fits to these
which can be obtained with a real pole alone must not be seriously dis-—

turbed.

Results for all this are shown in Figs. 6 and 7, and the correspond-
ing parameters are listed in reference 16, for the 'square root" and
"constant" models of . mentioned earlier. The best fit trajectories

I
in the two cases are

X . () = 6.53 +102 + 6,200Vt (4.3)

and

f S G5t t 0,08
Y (+ - .50 t+ 0.45 t . ¢
: () (4.4)

The fits are excellent, though of course the miserable quality of
the polarization data precludes us from a serious test of the forms of

o It may be noted, also, that a cross-over is indeed obtained; how-

I.
ever, its position is not sensitive to the parameters and may be placed
anywhere in the range t = -0.15 (GeV)? to t = -0.5 (GeV)? without

affecting the other fits.

7)

4.2 7-N Backward Scattering1

We limit ourselves here to two trajectories, the N and the A, and
confine our attention, for the time being, to the '"square root" model.
Fits are made to backward differential cross—sections for the three processes

-_ - + + bl 0
Tp>pT , Tp>plT and T p > nT .
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There are, mow, many parameters (22 to be exact). Best fits are
shown in Figs. 8, 9 and 10, and the corresponding trajectories are, for

the nucleon,

N
X, (W) = - .42 - 003w * 0.Sqw’
' T (4.5)
T leHw y 6272w - C.63W +0. .04
and for the A
A Y
X, (W) = 6.cF +c.egw + 0.t W
— ' ' (4.6)

+ 0.9 wW v“l c.zawliaoehnw - ol

Points to be emphasized are that one can obtain excellent fits to the dip
in backward charge exchange scattering, and that the trajectories given

in Eqs. (4.5) and (4.6) have no MacDowell partners.

4.3 m-N Elastic Scattering

As yet results for these processes do not exist. When they do, they
will be plagued by the uncertainty, already referred to at the end of
Section 3, arising from the Pomeron. The most straightforward thing to
do is simply to permit the Pomeron to be a complex pair as well, and see
what happens; this is what is being done in the fits to forward 7-N
elastic scattering. (As mentioned before, there are of course some con-
straints on the Pomeron; for example, if it is on the physical sheet,
it must have o. = 0 at t = 0. These constraints do not seriously affect

I
the data fitting, however.)

4.4 Other pseudoscalar meson-baryon scattering processes:
Line reversal

Next we discuss processes such as K-N scattering, and hyperon

production in K-N or m-N collisions.

One thing to be done here is, of course, simply to make detailed
fits in complete analogy to those we have already discussed for m-N
scattering. Before going on to do this, however, some more general com—
ments are in order, having to do with the relation of exotic processes
and their line reversed associatesle). As examples, think of the exotic
charge exchange process K+n - K°p and its line reversed partner
K'n - K p, or the exotic hypercharge exchange process K_p - ﬂ~Z+ to-

. . . . + +o+
gether with its line reversed associate T p > K I .
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It is, apparently, experimentally the fact that the ratio R(s,t)
of an exotic differential cross-section to the differential cross-section
of its line reversed partner is always greater than onelg). It is also
quite difficult to understand this fact within pure Regge pole models,
and even within Regge models containing absorptive cuts. The point is
that the reality of exotic amplitudes requires, through duality, ex-—
change degeneracy of the Regge trajectories contributing to the high
energy form of the amplitude (p-A2 for charge exchange, and K*—K* for
hypercharge exchange); indeed, this exchange degeneracy seems well con-
firmed experimentally, at least in some caseszo). But, with exchange
degeneracy, a pure pole model yields R(s,t) = 1, and including absorp-

tive cuts gives R(s,t) < 1.

This apparent difficulty is easily resolved when one replaces the
(incorrect) absorptive cut model by the more realistic complex pole
picture. With exact exchange degeneracy, we may write for the exotic

amplitude the representation
> fetj)s!
(J.-c(.‘.)lJ.’ o)

.TE (S/’L) - ;: §

- wa
as in Eq. (3.3). (We assume the complex pole to be on the unphysical

sheet, for now.) For the line-reversed non-exotic amplitude, we obtain,

in contrast

. o : _~¢kj
T (s 41 = - J )w_f,{f;/_l_i__e Af
i ’ * e (J." d'f)(d" )

with the same weight function Im f£. Now, obviously, if Im f is smoothly

varying around o, over a region of j of order 0ps We get ITN] < |TE],

R
and hence find R(s,t) > 1.

Detailed fits to the (relatively poor) data on R(s,t) for both
£ and A production (the pairs K p ~ T %¥ and ﬂ+p - K+Z+, and K n > 7 A
and T p > K°A) can be made, and these provide adequate fits to the
)

(also poor) polarization data available as well’®’. The resulting ex-—

* k% . . .
change degenerate K -K trajectory is either (square root case)

»

K
X, () = 64 + Lot + 0.6 /-t 4.7)
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or (constant case)
o F

X, (¢) = ¢.4 +r Lot £ ¢ 20 (1r—2t) | (4.8)

ks
It is interesting to note that the O for the K*-K** is noticeably lar-
ger than that for the p-A, found earlier; this is quite consistent
with the fact that R(s,t) for charge exchange is smaller than for
hypercharge exchange, and tends to decrease more rapidly toward one as

the energy increases.

As to detailed fits to, for example, K-N data, these have not yet
been done. Obviously it will be interesting to see how these work,
in order to check that the same aI for the p as we obtained before works

here too.

4.5 Baryon—-Baryon scattering

Here, as yet, no fits exist; however, a fit to the n-p CEX

21)

scattering is under way, and hopefully, will be available soon  ’.

4.6 Vector-meson production

The only fit existing so far under this heading is a fit to the
. + o+t 22) . . .
reaction m p > T A . This reaction is a natural one to choose,
since one believes that it, like 7=N CEX is dominated by p exchange
alone; it should therefore provide another check on the p-parameters

found earlier.

Unfortunately, the functional form chosen here for aI(t) is not
quite identical to either the "square root" or "constant" models;
however, it is not too different from the "constant" case. The best

fit turns out to give

6.2749

(t) = 6.572 +0.G96t « Ty - (4.9)

4o

ol

For very small t, we have here an ap = 0.24 while in the "constant"

case before we got o = 0.09. It is not clear whether this is or is

not a serious discrepancy; perhaps it is to be attributed to the dif-
ferent choice of functional forms, and to different choices of the

other parameters. Fits obtained to do/dt and to the spin density matrix

elements are shown in Figs. 11 and 12.
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4.7 Photoproduction

23)

One fit, so far, exists here » to near forward charged pion
photoproduction. The dominant trajectories are assumed to be the pion
and the A2. Fits are made to the differential cross—section and to the
asymmetry parameters for pion production by linearly polarized photons
on polarized nucleons. Best fits are shown in Figs. 13, 14 and 15;

the corresponding trajectories are

o (¢} = —0.62 4+ )0t + (.03
- (4.10)
and
A
X (¢) = 6. 25 + .ot
. (4.11)

The results are quite insensitive to the A,; the pion plays by far

the dominant role. For this reason an g for the A has been ignored.

The value of o for the pion seems abnormally large, in comparison
with those found earlier for other trajectories. Indeed, one is en-
titled to wonder whether, with such a large g the entire approximation
of replacing the pole-cut combination with simply a complex pair of
poles is not invalidated. For this reason it is worth noting explicitly
that the residue functions in this fit are explicitly assumed to be
real; the phases ¢B are set equal to zero. It may well be that if this

(somewhat artificial) constraint is relaxed, a smaller Oy, more in keep-

ing with our earlier results, will be obtained.
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Figure captions

Fig. la : A trajectory, and the sequence of branch points generated

by its repeated interference with the Pomeron, if aP(O) = 1.

b : A trajectory, and the sequence of branch points generated

by its repeated interference with the Pomeron, if uP(O) <1,

Fig. 2 : The unperturbed or input trajectory, the branch point, and
the output physical and first sheet poles, in a logarithmic

cut model.

Fig. 3 : The unperturbed or input trajectory, the branch point,and

the two output trajectories, in a square root cut model.

Fig. 4a : Comparison of Eqs. (3.3) and (3.5) in a square root cut

=-0.3, . = 0.2 and Im f = /=%.

model. For o - o
c I

R
(From Ref. 11).
4b Comparison of Egs. (3.3) and (3.5) in a logarithmic cut model,
so that Im £ = (R = a )(2 - 0_)/(& - 0o - g log (-2))2 + m2g?

with g = 0.05 and o9 = -0.35. (From Ref. 11).

Fig. 5 : Comparison of Eqs. (3.5) and (3.7), for o, = op = -0.3,

aI = 0.2.

Fig. 6 : Fits to m-N CEX data for the "square root" model.
(From Ref. 16).

Fig, 7 : Fits to T-N CEX data for the "constant'" model. (From Ref. 16).
Fig. 8 : Fits to do/dt for ﬂ+p > pﬂ+. (From Ref. 17).
Fig. 9 : Fits to do/dt for m p -~ pm . (From Ref. 17).

Fig. 10 : Fits to do/dt for m p -~ nn’. (From Ref. 17).
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Fits to do/dt for ﬂ+p - p°A++. (From Ref. 22).

Fits to density matrix element for ﬂ+p + p’A .
(From Ref. 22).

Fits to do/dt for yp -+ ﬂ+n. (From Ref. 23).
Fit (solid line) to polarized photon asymmetry parameter
The dotted line shows the perturbation theory prediction.

(From Ref. 23).

Fit to left-right asymmetry parameter A. (From Ref. 23).



a(t) a(t) a,(t)

i >
ad (1) m
O.EZ)(t) - ac (t)

t / {

/
ap(0)=1 ap(0)<1
Fig. 1
af(t)
/ Rea.; (t)
4 ac(t)
/
///
// t
S/
ao(t)
Fig. 2
j-plane , physical
sheet
a,(t<0)
cwt DS a,(t>0)
brzlnch point
a_(t<0)

Fig. 3



Arbitrary Units

04

0.3

1 l ! | ! ! 1 !
0 20 40 60 80 100 120 140 160 180
s (GeVic)?
_ (a)
08
06
]
5
> 0.4}
<) —_——
;“L‘_)"- — —
b
0.2+
L 1 ! ! ! ! l l
0 40 60 80 100 120 140 160 180
s (GeVic)?
(b)

Fig. 4




S 314

2(3IN39) S N .
09 oY
| 74} oot 08
08t o_o_ 0% _

e e——

syun Aoniqly




(3/A%g ) Y
o6l 09 O€l 001 0L oY
T T T T o'l
- —Ho2
- —o¢
-/ 6 - uU
1 I ! |

(qw) (d u)'o-(d_u)'o

L 27098 ) -

2e'0 $2'0 90

80'0 000

'o-

' T T T

I/N286'S

/A8 21 v |
/N8 6'C ® b=t

1 1 I 1

v0

(Vi -d_u) d

2 (2/7AN38) -
o'l 8'0 9'0 0 20

00

L3 T T
.
4

Yhegz'gl- "y

= 1
ty, avl
negeel=""d

100 —~

[z(_o//\ae)qw] (Ugk = d_u




(a/n08) Y
‘6l 0'9l oel 00l (o)) o't
1 T M | o'l
T
- Ho'z
i 6 - Ip 70¢
] | 1 l

2l 3/n28) -

ot'0  2¢0 20 91'0 800

00'0

U 1 I 1

YNe8 2'11 -
/A8 6'G ]

d/A%8 2'11 v
2/A%8 6G e

1 1 1 1

1'0-

v'o

(VoL d_u) d

22/ A28
90 0

b -

2'0

T

S'0

)

(3/n28) qu




I llllllll CrrImy T llllllll

TTT IllIlI

I IIIIHE

T ﬁllllll

crrmmy T IRRRLILI lllllﬂ]

T T T

n’p—»pn*

1707 GeVic

|
o
N

02

0.4
-uU

Fig. 8

06 08

1.0

1.2



I IIIIIIII rrrrmmp T lllIlIIl L IIIIIII I IIIIHI] I IIl|I|I| I Illlllll I Illllﬂ] | l|||||l|

T p=—sT p

16.25 GeVic

!
o
N

Fig. 9

12



I IIIIIIII rrrrmm T IIIIIIII I IIIIIIII I IIIll|l| T IIIH"] I IIIHIII I IIHIIII | llllllll

T TTTTT]

T p=snmwo

6Q0 GeVic

[
o
N

0.2

04

Fig. 10

06

08

1.0

12



4 GeVlc

ks
=
()
Qe
o
£
k)
\e)
O
0} =
QOI:—
E 13.1 GeVic
0001 l | L L l
O 02 04 06 08 10 12
-t (GeVic)?

Fig. 11

1.4



21 314
(2IN39) 1 -

\,_
/ . l€lo 0
/| « 9llv 4

\ / . ge

/ o\ N9 7 © 10

.ﬁ / \
e — — \\ N ——
70




b

o~

(s-m2) dt {ub-Gev?)

300

200r

{
1

(a)

100

300

200

100

(b)

300

200

{ i I i |

200

T T i T T T T

W

ooL—— —
a00}
(e)
300
200} }
I8 GeV
oo . . .
0 002 004 006 008
-t (GeV/c)?

Fig. 13




1.0

05

\
\ } l
\ i T
\\ ¢
\ L
\\
\
\\Electriccll born
N
~
~ ~_
L | | N
02 04 06

1) GeVic)

Fig. 14



Ol

6'0

80

ST 314

»U\\/mmvv N\.A.Tv

¢0 20

Nuo mﬁu mAu «no
_ T T _

T |

0'l-
6'0-
8'0-
L0-
9'0-
0-
p0-
¢0-
20-
'0-




