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ABSTRACT

Recently a 4-cell s.c. accelerating 500 MHz cavity has been tested at
CERN [1]. The mechanical support of this cavity allows to change the
lengths Ei of individual cavity cells in a reversible way even with the
cavity mounted within the test cryostat and cooled down to 4.2 K. 1In the
following we present a cavity model and describe a perturbation method
which uses only this property of the support (fig. 1) to monitor the

excitation of different cells and to tune the cavity to a flat m-mode.

Fig. 1
. Sketch of cavity and support
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1. INTRODUCTION

Superconducting RF cavities in the frequency-range of a few hundred
MHz are limited in field by a rapidly increasing field-emission. Therefore
for multicell-cavities operated in the w-mode the field flatness is even

more essential than for copper-structures.

On the other hand, it is technically much more complicated to measure
the field with a perturbing object [2], if the evacuated cavity is in a
bath of liquid helium especially since the perturbing object and its
support have to be removed from the cavity for the final high field and

high Q tests of the cavity.

Therefore we have developed a method of measuring the field-
distribution and tuning the cavity accordingly without introducing an

object into the cavity, but simply using the tunable support [3].

In part 1 we present a lumped-circuit model for cavity half-shells of
aperture-coupled cavities and from these building blocks we construct the
whole multi-cell cavity model. It is shown that this model gives the
correct eigenvalues and eigenvectors for any type of end-cells and
especially the correct behaviour of the mode-frequencies for different

couplings.

In the second part we show — based on this model - how one can measure
the field excitation of the different cells in squeezing the cells by a

fixed amount and measuring the corresponding change of the mode-frequency.

Finally we give a method of how to approach the field-flatness and

desired mode-frequency in a few tuning-steps.

This method was used and found to be correct during three runs of the
CERN 4-cell cavity (F1T = 500 MHz) between December 1980 and April 1981
[1,3].

The results are given in part II of this paper.



2.

THE MODEL

Monitoring and tuning will involve first order perturbation
calculations i.e. we will take up an approach used already earlier [4,5,6]

Our model, however, eliminates two drawbacks of these attempts:

or full-end-cell cavities the models used so far have no flat

T mode in their unperturbed state.

(b) Their n/2-mode frequency is independent of coupling which is not

true for aperture coupled TM,, cavities.

The basic building bloc of a model with correct behaviour is, in analogy to
a cavity half-cell, a half-section having a coupling condenser Ck/2 as
shunt and a series resonator composed of L/2 and 2C as series element

(fig. 2).
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Fig. 2
Cavity half-shell and its equivalent model

Half-sections are then connected in the same way as half-cells would have
been to form a cavity. Fig. 3 shows for example a section of 3-cells out

of a multicell cavity:
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Fig. 3
Model of 3 full cells out of a multicell cavity



2.1 The chain of infinite length

To obtain the dispersion relation of such models we interprete fig. 3
as three meshes of an infinite chain with a travelling wave excited on it
travelling from left to right. Then the current amplitudes in adjacent
cells (losses here neglected!) may only differ by a phase angle 6: (8

is in cavity language the mode angle)

n _ n+tl _ e-Je (1)

On the other hand, if Y is the coupling admittance

= 'Q
Y =) €, (2)

(2 = ang. freq. = 2 m F; F are mode-frequencies, f cell-frequencies)

and Z the resonator impedance

we find from Kirchhoffs laws

1 1 _
7 (3,72 ;) +2a -3 (a -a)=0 = (4)
a a
nml, 2ezy) -2 o (5)
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n n

Combining this equation with eq. 1 we obtain

‘0 .
2+2Y = eJ + e 19 . 2 cosé (6)

which expresses the dispersion relation for any ladder network with shunt

and series elements Y and Z. Using now eqs 2 and 3 we find for the special

case here the dispersion formula

Qz
— = 1+ 2 K(1- cos6) (7)
wg
with
1 C
2 = —— = e—
Wy L C and K C

k
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In the cavity language w@ is the resonance-frequency of one cell
terminated by electric mirrors (metal plates) in the iris plane and K is
the coupling coefficient between cells. Now the lowest possible frequency
2 corresponds to 8 = f (zero mode frequency) and is independent of
coupling as approximately found in aperture coupled TM;, mode cavities

1

92 - 2 =
z Yo LC

The highest possible frequency corresponds to & = n (w-mode frequency)

Q2 = w? (1 +4K)
™

For small K we get as relative height of the dispersion step (relative band

width)
Q -0 Q2-Q2
Tz 1 m =z _ C
2 v = 2K = ¢t73
z Q; k

2.2 Chains of finite length

According to eq. 1 all currents a; are equal in the zero mode.
Hence the coupling condensors are not charged, there is no voltage between

points B and B' and connecting them does not perturb the zero mode.
In contrast for the m-mode no current passes through points B and
B', and cutting the wire there will not perturb the m-mode. This offers

two possibilities to delimit "full end cell" chains of finite length.

The first, terminated by short circuits between end points B and B'

corresponds to a cavity delimited by electric mirros in the iris plan and

may resonate in the zero mode but not in the m-mode. A cavity delimited

by metal plates in the iris is evidently not suitable for particle

acceleration.

The second, with open circuits at both ends, resonates in the w-but

not in the zero mode. Finally we note, that connecting points A to A'

perturbs neither m-nor zero mode and corresponds to cavities with half

end cells.
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Open circuits correspond to magnetic mirrors in the iris plane. Such
objects can be realized in computer codes like SUPERFISH or LALA but in
practice only be approximated by cut-off tubes. If used to terminate a
TM;, cavity such tubes store predominantly electric energy and are
consequently in first approximation modelled by a small condenser C

tube
connected between terminating points B and B' as indicated in fig. 4

B'
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i

Fig. &4

Model for an end-cell with cut-off tube

The resulting series L-C circuits at the end of the chain are now tuned to
slightly lower frequencies than in the ideal open circuited case, but
evidently a small reajustment of the resonator condenser C (end cell
correction) can re-establish the ideal conditions i.e. we treat a cavity
with beam tubes and corrected end cells like a cavity with all cells equal

and delimited by magnetic mirrors.
If we now apply Kirchhoffs laws to an open ended, N-mesh chain, fig. 3

being an example of a 3-mesh model, we obtain by adding the voltages around

the first mesh

—%aN_1+<$+Z) ay = 0 (10)

The remaining mesh equations being those of the infinite chain (eq. 4).

az = 0 (9)

< |

Multiplying all these N equations by j 2 C and introducing matrix

notation we obtain the eigenvalue equation
0 0
Hla> = Q2] a> (11)

Here is |a> a column vector having the resonator current amplitudes a

as components. (We adopt the following notation: capital underlined



letters are matrixes, small letters with brackets are either column
vectors: |p> or row vectors: <ql; finally we write a scalar product
as: <qlp>)

0
H has the components:

w2(3 K+1) -w? K [ R

_woz K w%(z K+1) —wg K Oo.o'o-

|me

0 -wg K w?(2 K+1) -w, K Ovevoes

:-...............................0 -ng w:(B K+1)
. 2

Solving eq. 11 for its eigenvalues &m we find the same functional

relationship between ﬂm and em as for the infinite chain but now

with a constraint on the permitted values of the mode angles em

a2
m
— = 1+ 2K (l-cosb ) (12)
2 m
Wo
i
em = m N y m=1,...,N

and solving further for the N components of the N eigenvectors of eq. 11

om _ . _ T ;
a = sin (2n-1)m N (13)
n,m= 1,..., N.

The N eigenvectors are orthogonal due to the fact that for this ideal case

.0 . .
the system matrix H i1s symmetric.

For the real cavity in its untuned state different cells will have in

general different frequencies .

The corresponding model will then have a matrix H where the w, of ﬁ
are in each line replaced by the appropriate 0 with the result that

symmetry of H and orthogonality of eigenvectors are no longer guaranteed.
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Neverthele«-, after numerical checks assuming a natural relative
variation of 10U ’ between cell frequencies w_ we are confident, that
n
first order perturbation theory, which preassumes orthogonality, can be

applied with adequate precision.

%*
3. FIRST ORDER PERTURBATION IN w( )

Let us assume that we apply a small perturbation to the untuned cavity
2 2

changing the individual cell frequencies from w_ to w'n with

§(w?)
w'2 = w21+ 2.
n n 2
w
n

The cavities system matrix in this perturbed state is then to first
approximation
H' =H+6H=(1+P) &

with the diagonal perturbation matrix P

(*) In our case variations in K between different cells can be neglected
as also verified experimentally. However, even with different
individual K, the formulas derived here remain correct, if one uses
the corresponding unperturbed eigenvalues 22 and eigenvectors
|a>. Nevertheless as communicated by [8] field-flatness problems
may arise due to variations in K for equally pre-tuned cells.
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2
Assuming now that the Qm and |a™ of H are known, we can find

2 '
the Q'm and lam> of H' in using well established

perturbation methods (see for example [7])

QIZ
—m

QZ
m

and using ﬂ‘am>
QIZ
m

92
m

and

la'™

l§a™

We assume in the following, that all eigenvectors have been

<a"|a™

§(02) <a"|sH|a™
1 + M s ] — =14+
Q2 Q2 <a"la™
m m

2
ﬂmlam> we obtain

<amlP|am>

<am|am>

|a™ + |8a™ with

‘22
<akIP|am> m kg

|
i) ks a

)

kim <a 2

2 _
Qm Qk

=1.

<a"|PH|a™

Q2 <a™a™
m

(14)

(15)

normalized

Written in components eqs 14 and 15 have then the form

§(02)
m

1]

92
m

N §(w )? N § (w
] ML —D -] s
n=1 w n=1 w
N (m) G(wn)2
T . .
n£1 in w?
n
2
N k m & m
Z a a a.
n n J 92_92
m k

)2
n

2

(14a)

(15a)

(16)
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The differ nces of mode frequencies in the denominator of eq. 16 imply
the well know: jact that the sensitivity of a mode against perturbations

increases with 1/K and especially for the m-mode with NZ%.

3.1 Field-measurement

The system of eq. (14a) is evidently a special formulation of Slaters
perturbation theorem stating that the reaction of a mode frequency to a
perturbation is proportional to the relative change of the modes stored
energy, which for each cell is in turn proportional to the square of the
local amplitude az. We can now make use of this to measure in fact
the (a::)2 of different cavity cells by squeezing them by equal
amounts 6%/% i.e. applying equal dw/w and noting the corresponding
Gﬂm/ﬂm. Since we measured only the squares of the local amplitudes
we have then to guess the right sign which for not too badly tuned cavities
can be done by comparing with the ideal eigenvectors of eq. (13). We then
calculate, after having normalised all vectors, the Ga? with respect

to the ideally tuned case.

3.2 Tuning

The remaining task is now to calculate corrections to the cell lengths
appropriate to improve the cavity tune. This can be done in making use of
eqs. (15a) and (16) after elimination of the following difficulty: If we
detune all cells of a cavity by the same small amount we obviously shift
the whole dispersion curve without changing neither its shape nor the field
distribution (eigenvectors) of the cavity modes: The matrix I(m)

transforms any vector |Sw/w> with equal components into the zerovector

and is therefore singular (proof in Appendix 1). We exclude this case in
demanding that one cell, for example the n-th one, is never detuned

(Gwn = @) i.e. we imagine that the present detuned state has been

arrived at by touching only the remaining (N-1) cells. We calculate now
the reverse corrections to these cells from their 6a: and the non

(m) by leaving away the n-th

singular (N-1)x(N-1) matrix obtained from T
line and column. This procedure will lead to an ideally tuned state but
with a mode frequency ﬂm in general different from the desired one.
Therefore we have to follow up by a homogenous deformation of all cells
(all 6w equal) calculable from the m—th line of eq. (14a) to correct also

the mode frequency.
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In practice both steps can be finally merged in one by replacing one
line in matrix I(m) by the m—th line of eq. (l4a). We get a nonsingular
N x N - Matrix which allows, when inverted, to calculate from 6(9;)/9;
and (N-1) measured 6a:, corrections to all cells, which both improve

the tune, and shift Qm in the right direction.

Numerical examples calculated for a 4- and 5-cell cavity with a 1%

dispersion step are given in Appendix 2.
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The matrix T of eq. (16) is singular sin

1
™\[:) - o
1

which is equivalent to

Tfm) = 0 for all j
jn

Il & 22

n=1

Using the definition (16) of T we obtain

APPENDIX 1

ce

N N N N2
) T(m) = J TN L
n=1 47 n=1 K;m non ) ga-go
m k
2
_ N k 9m N k m
= ) a; . ) a a,
2_p2 -
k#m Qi - n=1
The eigenvectors are orthogonal, therefore
N
) ak a™ = <afa™ =
n=1 n n km
In the definition eq. (16) of E(m) we have to sum over k with the

exception of m, therefore ka is always equal

total sum.

to zero hence also the
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APPENDIX 2

NUMERICAL EXAMPLES

The eigenvalues in all equations have been the squares of the angular
frequencies. We measure, however, the frequencies themselves. Therefore
we use the relation §(w?)/w? = 6(£2)/f* ~ 2 6f/f valid for
Sw << w, which is always true for our linear approximation (w +*> f;

Q < F).

We use the following definitions

lsa> = la (measured)> - |a (ideal)>

§F_ = F (measured) - F (ideal) (mode-frequencies)
*) _ .

an = frequency-shift to be executed for cell n to

approach the ideal situation.

For a 4- resp. 5-cell cavity with equivalent cells (end-cells corrected)
with a total dispersion step of 1%Z (K = 0.005) we get in first order
approximation the following relations (note that S of eq. (1l4a) is

independent of K).

(*) The mechanical movement §%/% to obtain a given 8f/f has to be
calibrated separately, f.e. by stretching all cells by the same amount
8% and measuring 8F;/F;, equal to 8f/f in that case.
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4-cell

Eigenvectors (normalised)

w 3/4 1/2 = 1/4 =
0.5 -0.653 -0.5 0.271
-0.5 0.271 -0.5 0.653
0.5 0.271 0.5 0.653
-0.5 -0.653 0.5 0.271
. N N (1\')
We define Tby T = - 2T so that
§f, /1, §a)
v = .
T .
§£, /£, sa,
-178.5 -22.5 76.5 127.5
" 25.5 76.5 -25.5 -76.5
T = 76.5 25.5 -76.5 =-25.5
-127.5 -76.5 25.5 178.5
n " . .
We define § by § = - S which yields
S, /£, §F_/F_
LY . .
S . = .
§f, /£, SF 4/Fu 4
-.250 -.250 -.250 -.250
v -.427 -.073 -.073 -.427
s = -.250 -.250 -.250 -.250
-.073 -.427 -.427 -.073
GFﬂ/FTr §f, /£,
— §a, .
(s,m)"! = :
Sa, .
8a, sf,/f,
-1. -.9804 1072 .4902 10°2 -.4902 10°2
- -1. 1.4706 10°*2 0 +.4902 10" 2
(s,T)"' = -1. -.4902 102 -.9804 1072 -.4902 10°2

-1. 0 .4902 10°2 +.4902 1072



5-cell
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Eigenvectors (normalised)

m

447

=447

447

-.447

0447

We define T by T

He

I=e

We define S by

we

lene

475 w 3/5 2/5w 1/5 w
.602 -.512 -.372 .195
.372 -.195 -.602 .512
+.632 0 .632
+. 372 -.195 +.602 .512
-.602 -.512 +.372 .195
so that
§f,/f, a)
Sfs /£, Gas
-219.0 - 73.0 + 36.5 +109.9 +146.0
+ 73.0 +109.5 0 - 73.0 -109.5
+ 36.5 0 - 73.0 0 + 36.5
-109.5 - 73.0 0 +109.5 + 73.0
+146.0 +109.5 + 36.5 - 73.0 -219.0
= - 8§ which yields
§f, /£, GF“/Fﬂ
8fs /£ GF"/S F“/S
-.200 -.200 -.200 -.200 -.200
-.362 -.138 0 -.138 -.362
-u262 -c038 "040 -0038 —0262
-.038 -.262 -.40 -.262 -.038
§F /F sf,/f,
™ n
682 = :
Sas fs/fs
-1. -1.096 10°% + .548 10°% - .548 10"2 +.548 10°2
-1. +1.644 1072 0 + .548 1002 -.548 10°2
-1. - .548 100% -1.096 10°2 - .548 10°2 0
-1. 0 +.548 10°% +1.096 10" 2  +.548 10" 2
-1. 0 0 - .548 10°2 -.548 10°?



