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scattering amplitudes in the scaling limit

About a year ago y we pointed out that the behaviour of

2)

behaviour of relevant matrix elements of current operators near the

is controlled by the

light cone (LC). At that time, we attempted to incorporate into this
essentially kinematical observation a dynamical universality principle
in order to relate the observed existence and magnitude of the electro-

3)

production scaling functions to more familiar and understood concepts

We shortly afterwards 4)

established the consistency of our proposal
with gauge invariance, Regge pole theory, etc., by showing that it could
be accommodated by the most general LC singularity structure equivalent
to scaling behaviour and consistent with these principles 5>. QOur pro-
posal was, however, specifically restricted to providing relations only

between equal states at rest.

The purpose of the present paper is to continue this program
by providing an operator formulation of our universality principle so
that our relations are valid between arbitrary states. This will esta-
blish the consistency of the proposal with the general field-theoretic
principles (Poincaré invariance, causality, etc.) and also with the

6)

perturbation theory and in soluble models. Our main motivation for

operator structure of field products near the LC recently derived in
studying this model in such detail, in spite of the few experimental
numbers presently available for comparison, is that if it (or some

modification of it) is correct, then it provides an explanation for the

observed electroproduction behaviour. This is in contrast to other

models for electroproduction which have simply been able to accommodate

the observed results. Also, our configuration space methods may lead
to other simple dynamical principles which have complicated manifesta-
tions in momentum space. It will, in fact, be seen below that a
striking consistency emerges between the non-local characters of quite
different modifications of the right and lefi-sides of a LC ccmmutation

relation.

For orientation, we consider first the forward spin-averaged

connected covariant retarded current-proton scattering amplitude



b _ . 9 i jabe 5
T = .’J*x c”%o(rl [0, T @]le) + I 3',&'"’ Z (q)

BB T 0w) +.o . ()

Here V¥ = q.p, R = q2, (p2= 1) and we have allowed for the presence

of an operator Schwinger term of the form appearing in
b '3 . ¥ -
S(X,X[J;‘(x), JL (0)] = if “‘JL @ 5w + 'cla', 2 (9 akiftx) . (2)

" In this paper we shall explicitly consider only the SU(B) vector
currents ;f (X) although all our equations can be immediately gene-

ralized to include the axial vector currents. The absorptive part of

(1) is
b 19
WA = [T <, Tl I

= BP W:b(a,v) + ... (3)

so that

\A/L = ‘,'TIMT,_ . (4)

We shall be concerned only with these double helicity flip invariant

amplitudes. We write

(t)ab | b
= L ab (8
T o= 3w e ),
and similarly define ng)ab.

The currents are, of course, assumed to satisfy the local

chiral glgebra
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etc. When this relation is expressed in terms of a a4, integral of
(5) with q fixed, and an infinite momentum 1limit is taken inside of
AN~

7) 8)

this integral, there results the Fubini - Dashen - Gell-Mann sum

rule

->ab C -G
W ) = - o

where we have defined the forward form factor by

ipF = Gl @ler

Equation (6) corresponds to the asymptotic bekaviour

T“nb(n,v) - _:)_'pabc.Fc

L

in the Regge limit (R limit ¢+ V— o, #» fixed) characteristic of

a fixed pole in the complex jJ plane at J =1 9).

Because of the rneed for the above infinite momerntum assumption,
(6) is not equivalent to the equal-time commutation relation (5), but

10) 1), 12)

rather to the LC commutation relation

i, sua[rim, T'@] = # e i) | )

Equation (6) follows immediately from (7) by integrating (3) over v

in the frame g¢q_ = 0, p = (1zg)’ in which
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The structure of (7) can be understood as follows. The left
side is local in x and antisymmetric under the simultaneous trans-
formations a — b and x — -x. Thus, if it is proportional to §(x),
it must be antisymmetric in a, b and hence involve the antisymmetric

coupling matrix fabC 13).

Since qf; is odd under the‘generalized
charge conjugation operation CL y 1t follows that the right side can
only involve another C; odd operator ({ﬁ. again in this case). The
integral in (7) is not, however, the only covariant restriction of the
commutator to the LC. We can also consider

"ifc\x+$(x,) ﬂx-p)[‘l&(x)) J:b(o)] . (10)

We assume for simplicity in this paper that all such X, integrals
are rapidly convergent even though there is evidence to the contrary
[see, e.g., Eq. (3.61) of Ref. 421. We shall treat the more general
case elsewhere. Contrary to (7), (10) is symmetric under a — b,

x - -x and so, if it is proportional to  §(x), it must be symmetric
in a, b and therefore involve the symmetric coupling matrix dabc‘
This means that the right side must involve a c even operator. It

. must, by covariance, also involve an odd number of Lorentz indices -.
At this point an attempt to generalize (7) with (10) is frustrated
because there exists no simple local GL even even parity vector
operator. We are therefore led to consider non-local operators and
the simplest possibility seems to be to employ the momentum operator

g’* and write our operator universality proposal as

3 Jan, suo e[, L@) = -af“‘-L{M"R,S‘M}Su-»sm. (11)
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Here M 1is the mass operator (M2 = E,.P'~) and SC(X) the local
scalar density in U(12) (3Y A*Y in the free quark model). The
relation (11), consistent with Poincaré invariance, is the simplest

Ci even generalization of (7) we can think of.

We shall see below that our need to introduce M_TP_ is not
disasterous but is actually quite fortunate in view of the operator
structure of (10) required by local field theory. Let us first, however,
consider some properties of (11) in the abstract. The analogy between

(7) and (11) is best seen by combining them into

-

far, ser000 [0, @) = sM[F*MIS @ - ¢ P S S0 5i)

(12)
-h.«.

This relation exhibits a highly-symmetric universal structure. As in
Ref. 1), this universality is made precise by the [SU(3) x SU(BZ[/Q
algebra

8(!.)[5‘(:), Sb(e)] = crmj,"(o)s"tx) ) (1)
13

etc., which establishes the scale of S relative to J. Thus each
side of (12) has equivalent weights of even and odd e,. Further moti-
vation for (12) is the same as in Ref. 1). It is emphasized there

how the second term in (12) represents an SU(B) extension of the
Pomeron, connected to the first term in (12) by a generalization of

exchange degeneracy.

We are thus contemplating an analogy between the GL even
generalization (13) of (5) and the CL even generalization (11) of
the infinite momentum limit (7) of (5) 14). Equations (12) and (13)
lead to a universal behaviour in the deep inelastic limit just as (5)
and the V-A form of the weak interaction Lagrangian aﬂ‘W lead to a

universal behaviour of low energy weak interactions. This analogy is
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further strengthened by comparing fW with the supposed SU(S)
breaking Lagrangian 3mf§8. Finally we note that (12) incorporates
a sort of combination of internal and space-time symmetries in the
sense that it relates vector elements of SU(B) and scalar elements
of its extension [SU(3) x SU(3§]£ with vector elements of the
Poincaré algebra and scalar elements of its universal enveloping

algebra.

Consideration of the single particle rest matrix elements
of (12) easily leads to the predictions of Ref. 1). Following the
methods of Refs. 12 and 4), (11) is seen to imply the existence of
a finite Bjorken 2 asymptotic limit (A limit : V- ®, @ = —qu)

fixed) :

b
YW, P ) 5 E¥w) . (14)

The asymptotic structure function is related to the Fourier transform

of the light cone restriction of

fdx(p,[lau))lb(o)][ﬂ = G(x*x_)mab(x“x-) (15)

15)

according to

R = S ™ ¥ ero . (re)

The presence of the 9(X+X_) factor in (15) follows from causality 4>.

The existence of (16) follows from (11), which implies the existence

of the integral 16

-;-;fdxﬁtx,)tmab(u,o) = _‘,Jabch . (1)
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Here we have defined the forward scalar form factor

Dc. = <Fle-(Q)’P> . (18)

Equations (16) and (17) now give
E_ab(o) = T'fclab‘DC R (19)

and so (11) is seen to imply a constant asymptotic behaviour for W — 0.

Finally, (12) implies (when &L = 0) that

ab 1 3be ~¢< . 13be e
‘T; (R)\)) 'R." ) EP F + DJ D J (20)
in the Regge limit with |y | large (R' limit : W>>|#|[>> 1).

Let us now return to (12) and compare it with the known ope-
rator LC singularity structure of quantum field theory. The appropriate
tool for this endeavour is the LC operator product expansion formalism
developed recently by Brandt and Preparata 6). They showed the exist-
ence of such expansions in each order of any renormalizable field theory

and in soluble models. Their methods show that

(7w, )] =2 Z € 0o s +2i ¥ 0o

($)e (21)
S w]aw )
where
ab ab b
A= o emasuny, A= £ 4es T
and
(e = —C¥)c
- N t o
€ w = :L;b)"x‘“"x "l:«.~~~°<h(°) > (22a)
27w = L ar
% = LN L (e (22v)
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with the E's, F's, and G's Hermitian local field operators.

Equation (21) will be valid in renormalizable models like the
gluon model in which the SU(B) symmetry breaking is due to mass terms.
In any finite order of perturbation theory, (21) will actually also involve

factors of (log Xz)r for integer r. We shall ignore such factors here,

partly because their effect to all orders is completely uncertain 17),

18)

and partly because their presence to a significant extent is ruled

out by the SLAC electroproduction and Columbia-BNL M pair experimental

6)

results .

The symmetry properties

Emc(-)l) = 8 &) (23a)

(t)e _ utie

51, (-x) = % 3‘,. (x) (23b)
(the (e

ﬂ/»\v (_‘) = t /&/u\) (X) (230)

require that

~>e —t+le -1 _ 1o _ _
E = klx = 'Euﬁ - E; = Ei« = Civv = O )
(24)

and the equal-time commutation relations (2) and (5) imply that
+1e < — =) e .
e =2, &7 =0 = L . (25)

The remaining low-indexed terms in (22) contribute to the time deriva-

tive commutator according to



hJ b c " t4)e +)C
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t §;; terms + (ievj) antisymmetric terms.

It is now a simple matter to use (21)—(25) to evaluate the

light cone restrictions of the commutator. We find

—1(: Sclx+ S(X-)[I,a(x) ; Ib(o)] = §(x) S()_(_ ) l‘\tabc[I‘(O) - %SJ& E(xdzd:—it(x)] (27)

and

‘ be < (+)e | »
‘;de*x(x.)ecm[f_ ‘o, ) = $8x)id 3o @ + 3jd, £ w) . (28)

We see that the general form (21), even though it is consistent with

the equal-time commutation relations (2) and (5), does not necessarily

obey the light cone commutation relation (7). It is hardly surprising

then that (28) does not give (11). Because of the presence of § (0) = @,
(28) does not, in fact, even exist. It fails to exist, however, in a

well-defined way.

Before considering (27) and (28) further, let us directly
compute from (21) the behaviour of the single particle rest matrix

elements. We define

1

<pl € ) 1p> e up) + .. (29a)

£

fl

(37 e
el e lpy (xp) + .- (29%)
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el 2 wley = j‘*"(x.P) o , (29¢)

where e, £ and g are scalar functions and the omitted terms do not
contribute to the leading asymptotic behaviours. By the methods of
Ref. 4), we find from (21) that (14) is valid with

Eab(w - #}4;@‘“‘“%“0) , (30)
where
) = [ - uf T v ] Q (51)
so that
Fo0 = - & d™faagee(a). (52)

Using (25), we find further that

T, 0t > 354 “Jargoeon + S TF e g m]
(33)

Equations (30) and (31) tell us that

fdeo E®00) = £HY%0) = -£4™[g" 01 -2 %) + €92"a)]
(34)
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By virtue (26), this is just the Callan-Gross 19) result. We have
derived it without taking an infinite momentum limit because in (29)

there occur no 8pav terms since g__ = O.

The results (30)-(33) can be derived directly from (27) and
(28) in the same way that (16)-(20) were derived from (7) and (11).
[@he three finite terms in (27)—(28) contribute the three 1/V
pieces in (33) to (8) whereas the S(O)Zl? term contributes a constant
piece which is exactly cancelled by the second term in (8);] We thus
see from (33), as well as from (27), that the sum rule (6) need not be

valid. Instead we have

Jow P = - - aemgmy] (55)

This result is not surprising since it is known that the Gell-Mann

algebra (5) plus Regge behaviour are not sufficient to derive (6).

There can in general be additional "infinite mass" terms present 20)
and this possibility is nicely exemplified by (35).
We want to accept (7), however, and so we set
-2¢
[JX*_E(X‘_) /a__ (X.,,O, g) = (o . (36)

We proceed to see what our proposal (11) tells us about (28). The

existence of (10) immediately implies that 21)

7 (o) = o, (37)



_‘]2_

Thus our assumption excludes the presence of q number Schwinger terms.
We are, needless to say, not unhappy about this. Equation (11) further

requires the validity of the identity

_‘g-fdxf /&ft)c(xf')o) Q) = - -;—: {M’l P.. ) \S‘(O)} . (38)

Using (220), this can be written as

LT e 6, = ~{me, s@ (59)
where

). (40)
iarveud

G:n)--(°)

n

Equation (39) is, of course, supposed to be a weak relation, valid between

suitable hadronic states |x > 1in the form

"iScl?\Z(-n)" X' | G- @)% = - 2p&|S@l (41)
n
where P is the total momentum of |x2>.

We must admit that (39) appears somewhat strange. It is
saying that an infinite number of local fields add up to the product
of the local field sS°(0) and P /M. That is what must happen ,
however, if (11) is to be valid in the class of theories giving (21).
It clearly illustrates the dynamical nature of (11), as opposed to the
essentially kinematical nature of (7) 22). In view of the fact that
(11) represents an operator SU(B) generalization of the Pomeron -
that celebrated dynamical object presumably representing the combined
background effect of an infinity of channels - the form of (39) is
not all that unexpected. It exhibits, in fact, a striking connection

between our earlier need to introduce the non-local operator PJAw
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(in an attempt to construct a simple even-parity even CL vector
operator) and the occurrence of the infinite sum of local operators.
If the sum were finite, then (39) would not be consistent with cau-
sality since a local field cP(X) with X2 < 0 would commute with
the left side but not with the right side. So the presence of PJHM
on the right requires the existence of an infinite sum on the left.
Conversely, the infinity of terms on the left strongly suggests that

the sum is non-local.

Apart from these indications that (39) is not (obviously)
inconsistent, we can do little to convince anyone that it is correct.
For matrix elements within the %* baryon octet, however, slightly
more can be said. We label these octet states by e =N,=, & or N\

and write

(P,C|6:;n)--(0)|P,C> = (E)lh+2 K;e * (42)

Defining now

K. = Z‘“"n A" Ke (43)

Equation (39) implies that
P <

lakim = -50; | (00)

where

De = <e|S@ ey . (45)
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The function (43) should be strongly peaked at A =0 so that the

su(3) behaviour of KZ(O) = ng should dominate the SU(3) behaviour
of the left side of (44). The SU(B) behaviour of the right side, on
the other hand, is dominated by that of Dg. We thus see that our result
(44) is consistent with and suggested by the conclusion of Brandt and

23)

Preparata that in the canonical gluon model, (26) and (45)'have the

same d4/f ratios.

It would be interesting to check the validity of (12) in
various models. It is unfortunate that perturbation theory seems
unsuited for this purpose because of the absence of a simple Pomeron
in that theory and because of our inability to deal with the logarithmic

‘factors which occur and which ruin scaling.

Although in this paper we have emphasized the possible vali-
dity of the universal relation (12), a more conservative approach is
also possible and, sinée it is based on only father familiar and tested
ideas, is perhaps more likely to be correct. Thus, a strict consequence
of (28) and the usual Regge picture for absorptive parts is that
IdX+Jz£t)C(X+,O,Q) is non-vanishing only for ¢ =0 and c¢ = 8.

In this case, we still maintain the LC interpretation of the Pomeron
embodied in (21), (28), (33), etc., and (22c) continues to illustrate
the complicated dynamical nature of this diffractive mechanism. In

view of the underlying SU(B) structure of (21) and its (admittedly
mainly kinematical) persistence in (27) and (36), it may not be comple-
tely unreasonable for this SU(B) structure to persist also in (10) S0
that highly symmetric asymptotic behaviour like (20) are obtained. The
specific operator implementation of this idea given by (11) is, of
course, even more speculative and its detailed structure should probably
not be taken too seriously. A comprehensive field theoretic under-
standing of the Pomeron would undoubtedly either confirm (11) or provide

a suitable alternative.

I thank the CERN Theoretical Studies Division for its
hospitality during the execution of this work. I thank Heinrich

Leutwyler for an enlightening discussion.
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