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1. - INTRODUCTION

In these lectures we shall be concerned with a class of
phenomena in particle physics which can be related to the behaviour
of quantum field operators near the light cone (LC). This class in-
cludes lepton-hadron scattering experiments in which a very massive
current interacts with a hadronic system in a high energy inelastic
collision. We shall develop an appropriate operator formalism for
describing light cone behaviour in quantum field theory and apply it
to study a number of interesting examples in the above class :

electroproduction, M pair production, vector meson dominance.

That the LC in configuration space corresponds to the
scaling limit for the electroproduction structure functions was

1),2) Knowing this, one can, of course,

3)

pointed out some time ago
simply take the Fourier transform of the Bjorken scaling laws to
determine the LC behaviour of the proton-proton matrix element of the

4)’5).

product of electromagnetic currents To understand the reason
for existence of scaling, however, this information is useless and
some dynamical principles are needed. An attempt at this in terms

of a universality principle is described in Refs. 2) and 4).

A recent study of the behaviour of products of local
fields near the LC in renormalized perturbation theory has established
the existence of operator product expansions which describe this
behaviour 6). These expansions provide an understanding of the
scaling behaviour in terms of the canonical field dimensions and
singularity structure of renormalizaBle field theories. They predict
the strength of the light cone singularities and thereby provide a
means of measuring the dimensions of interacting fields, they deter-
mine properties of amplitudes in several variables, and they provide
relations between form factors describing different experiments
corresponding to different matrix elements of the current products.
It‘is concluded from several such applications that the present
experimental results are in good agreement with the naive field
dimensions and canonical singularity structure of renormalizable

field theory.



A number of experiments which probe the LC are described
in Section 2. Short distance behaviour in quantum field theory is
reviewed in Section 3 and the LC behaviour is exhibited and discussed
in Section 4. The dimensionality concept is discussed in Section 5.
In Section 6, we describe our treatment of mass dispersion relations.
Sections 7 - 9 describe application to deep inelastic electroproduction,

massive M pair production, and vector meson dominance.

2. - EXPERIMENTS WHICH PROBE THE LIGHT CONE 7)

Let us first consider the weak or electromagnetic scattering
of a lepton off of a hadronic system ®X +to produce an arbitrary final
hadronic state. Calling q the momentum transferred to the lepton
and p the total momentum of the system ®, tae total cross-section

of interest has the form

i% ccﬁ k 6k 8 (k- 9" ep~ ")J‘“ dkx(‘(p—m VRO A AN
(2.1)

Here V =qep is the initial energy variable, r 1is the polarization
of the leptons, and %n is the nadronic current to which the leptons
couple. The matrix element in (201) is connected and spin averaged,
Chanzirg the orders of integration in {2.1) gives
v
de”
(2.2)

where we have defined

A9V “]‘) jd*’ "”‘stk ) §(k'- 1‘) § Cle- p’\*)
(2.3)

The form (2;2) is very useful for our configuration space
purposes, The integral (2.3) can ve simply evaluated in the frame

p=(1,6) = 3 (we take p =1) %o give

Aq.(.‘k)‘f) )3 = ___E_:(v +=]) —‘\ ] n)‘t

(2.4)
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where we have written 1~=|2g‘, t==xo° We refer to the Bjorken 3)
scaling limit as the A 1limit
3 =_9 .
V—p2, 4 —» >, w:-&)— \ocx&d)
(2.5)

and obtain

AL (54997 __A__,_i%[e:v(r-t)af r (e t)_'.wr] |
| (2.6)

Only the regions r==+t 1in the (first/second) term are important

and so we can deduce the covariant result

A, (x,Pv,q) A iT'rc 5M({% +w‘c)
| (2.7)

in terms of the "transverse" variable

"GLE (p-x}l -x* .

(2.8)
It follows from (2.7) that, in the A 1limit, £§+(x,p,u,q2)

is highly oscillating outside of the region

x+ \ [ 3 a
i S v T or X ~ ]
and, therefore, has effective support on the LC x~ fvoa Referring

back to {2-2), we see that the A 1limit of the cross-section can be
obtained simply from the behaviour of <c&§J (x) JV 0) 3> on
the LC. This is precisely the behaviour we have studied in the pre-

vious sections,.

For reactions in which a hadronic system producss a lepton
rair and an aroitrary final hadronic state, the analysis becomes more
complicated because of kxinematic res ions on the x space inte-
gration region in the analogue of (2.1)}. In the frame v ={/s, O),
the physical k space rezlon will have %he form {|’~y<)f(ag,s) }
for sox=s functions ){(q ,s) Proceeding as above it can be shown

that the relevant configuration space region is given by



t - ‘
| x| & T
(2.9)
So, for large q2 and ¥ , the LC is again the dominant region.
The extra condition that }Q(qz,s) be large can be satisfied in many

cases of interest.

Another important use of the IC is to determine the behaviour
of amplitudes for large values of a single mass variable., We illustrate

this by consideration of a scalar vertex function

Alghk) = [t e <o T A, Bl P>
(2.10)

Here A(x) and B(x) are scalar currents and lp > 1is a state of
one scalar particle of momentum p=qg-k and mass p2==m2° We can

write (2,10) as

A(?"; k') = ?Lﬁ (Vl‘m"Pt)-%J&‘x Af(">l’)‘/) q%)<e| T [Aw), Bt"’]“’))

(2.11)
where Y =q«»p=%(c12+i«:2-m2)° Thus, the behaviour of A(q2,k2) for
q2—>03 and fixed q2/2v , i.e., for fixed q2/k2, is determined by
the LC behaviour of A(x)B(o)e A special case of this limit is the
0ld Bjorken 8) 1limit q2/k2—»0, in which case only the equal time
behaviour of A(X)B(o) is relevant, Another special case is the
limit. q2—*a) with k2 fixed so that q%/Zv -1, This limit is
important btecause it determines the number of subtractions needed in

fixed k2 dispersion relations,

The analysis of this Section can clearly be extended to
many kinematically more complicated processes, Our operator expansions
can thus bte used to derive and relate these processes. Correspondingly,
the observed nature of these processes can be used to learn about the
existence and properties of the field tieory describing the hadronic

structure,.



_5_

3. - SHORT DISTANCE BEHAVIOUR IN QUANTUM FIELD THEORY

In order to introduce short distance operator product
expansions in as simple a way as possible, we consider first a free

scalar field :

(a+rm>)P) = © (P00, 90] = Al m) .
(3.1)

L ]
‘The equal time behaviour A(Xz,m)|X =0 = S(‘}E) gives the canonical
o)

equal time commutation relation

[4(x),¢€(o)]x N = sl
° (3.2)

where we have explicitly indicated the unit operator by~ I to empha-
size that the commutator is a ¢ number. A property of this field

theory which we shall make use of is the existence of the Wick product

i(x) = :Px)Px): = lim [Ple+§)Px) = A (§
J X i-':;[ £) + )] .

as a finite local field operator. Here, of course,

A x) = Lo|P)P(e)[0) = (—,_#fcl‘kc'ik’xe(k.)ﬂk‘-!n‘) -
3.4

is the free field Wightman function.

Note that, in view of the fact that

—_—
Blx) x>0 w1t Woiexe T (”"‘lﬂ?x&) )

(3.5)
the formal expression (x)®(x) is meaningless, whereas the Wick
product :ce(x)cp(x): is a well-defined operator. In (3.3), divergences
in the ordinary product ce(x+i )?(x) for ? — 0 are cancelled by

the divergences in A_'_(i) for § - O.
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Equation (3.3) can be rewritten as
WU)Plo) 555 ALK + je (3.6)

iﬁ%z '%I'I. + \j(°) ) (3.7)

where we have used (3.5). Here and elsewhere x2 means x2-i§,x0.
Note that (3.2) follows directly from (3.7). The forms (3.6) and
(3.7) are interesting because they express ce(x)QP(O) for x ~0
as a sum of finite local fields (I and j) with c¢ number coef-
ficients which (perhaps) diverge for x — 0. The nature of the
expansion (3.7) can be elegantly described in terms of the "dimen-
sionality" concept. One assigns to each local field in the theory
a dimension in mass units. Thus dim I = O and, from (3.2) for
example, dim? = 1. Also dim j = 2 and dim 30(? = 2. Then
the nature of the c¢ number singularities in (3.7) is determined
from the fact [illustrated in (B.SII that leading singularities in

the theory are mass independent.
The behaviour of the product of any two local fields in
the theory can be determined in a similar way. One simply expands

in terms of all other local fields with dimensions small enough to

give singularities. As an example, we have

joje 5 () T + e (5)JO + eu()x: 20: + ¢5i N

From this follows the equal time commutation relation

Ciw, je = cj@§(x) + c-nomber .
J, ],.go JrrdL “ (3.9)

Similar results hold in any free field theory.
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If, instead of free fields, we consider fields interacting
according to a renormalizable interaction, then in any order of pertur-
bation theory, expansion of the above forms remain valid apart from the

2 9),10)’11). For example, in

presence of factors of power of log x
any finite order of q’4 theory, the product (3.7) of renormalized

fields is replaced by

P 333> E)m ]l + Fot)jto)
(3.10)

for suitable functions Fi(xz) with logarithmic singularities for
x = 0. Thus

0 90) 755> bllogxt)* LI+ B llogx)¥ jo) o
3.11

for some integers a and a'. Note that j(x) is no longer given by

(3.3), but rather by

jur = Jim [T [P0 - B I]

(3.12)

in the given order. Note also that (3.2) is no longer valid - the

equal time commutator is even divergent if a > 0 (as it is).

The general behaviour of products A(x)B(o) of
(renormalized) local field operators at short distances x# — 0 in

renormalized perturbation theory and in soluble field theoretic models

is similar. One obtains operator expansions of the form 9),10),11)
N
Ax) Bte) =3 i R ) Ojto)
' fxo (3.13)

where O1""’0N is a finite set of local field operators and the

Fi(x) are functions with singularities (1/x)di—dA_dB (apart from

1ogs), where the d's are the dimensions of the fields 12). We use
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the colon notation :A(o)B(o): to denote a generalized Wick product
of renormalized fields obtained from the ordinary product A(x)B(o)
by first subtracting off the singular expansion (3.13) (or a trivial
modification of ;t) and then taking the limit x“* — O. The result-
ing quantity can be shown to be a finite local field operator having
the same quantum numbers as the free field ordinary Wick product
:A(0)B(0): 9);10),11), All of the divergences encountered in
unrenormalized perturbation theory arise from its use of divergent

expressions like A(o)B(o) rather than :A(o)B(o): .

Thus, for example, in ?4' theory, the short distance
behaviour of j(x)j(o) is again of the form (3.8) except that the
c,'s are replaced by ci(log x2)%i  for suitable integers a;. All
this follows from the fact that the leading short distance singular-
ities are mass independent and hence given by dimensional analysis.

A more precise treatment of this dimensionality concept will be given

in Section 5.

4. - LIGHT CONE BEHAVIOUR IN QUANTUM FIELD THEORY 7)

The difficulty encountered in going from short distance
behaviour to LC behaviour can be seen from Eq. (3.8). For notational
simplicity, we shall first ignore all logarithmic factors. We shall
discuss their possible effects later on. Note, in (3.8) that, for
x — 0, (1/x2) is a power more sSingular than (1/x2)xq . Near the
LC, however, each function has the same singularity and, in fact, an
infinite number of terms with this singularity occurs in the LC

expansion. The result is

. 2 o tn)
)(!)J(o) = c.,(;';) I + -#hzoxm.,xdn w,on (O) (0.1)
& .

where dim O(n) = nt+2. Thus, each term in the sum has dimension two
and carries a LC singularity 1/x2. For consistency with (3.8), we

must have



~(0) . \
o*® = < and O‘u: = ¢;:PqF: .

The other terms in (4.1) do not contribute to the short distance

- limit (3.8), but they are necessary to describe the LC limit (4.1).

We can now calculate the IC behaviocur of, for example,
the expectation value of j(x)j(o) in the one-particle state of momentum

p. We can write

EFIOLL. (@I = a0B Ry + 59 BB + ... s

(4.2)
where the omitted terms each involve at least one Sxp ° Only the
first term in (4.2) therefore contributes to the leading LC singularity
of (4.1)., Thus, defining

‘ -0
m
poYy = ) )",
mzo » (4.3)

we obtain

Slwgelr) w57 = fitep)

(4.4)
as the leading IC singularity of the connected matrix element,
Expansions oi the form (4.1) exist and describe the LC
behaviour of the product of any local field cperators in z2acs order of
renormalized perturbation thesory and, more generally, in any theory
in which expansions of Zhs Iorm (3.13) exist for all local field
products at short distances. They might therefore be abstracied from

- these models and assumed to be true in the resl world,

We shall not have time here to derive these expansions.
Derivations are given in Ref. 6) 13). This reference also contains. deri-
vations of similar expansions for the product J.a(x)jy (o) of vector

currents and for other interesting products in 494 theory, the gluon
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model, all other renormalizable models, and in soluble field theoretic
models. Properties of the expansions are discussed in detail, including
the nature of the basis fields ©O¢,...8, and consistency with

causality and translation invariance.

As a second example, we consider a vector current j/u(x)
of dimension three in ?4 theory, for example ?(x)}. P (x): .

Ignoring logs, we obtain the LC expansion

R, ,00 “"

Jole) w= E. I+ Z...—_-{"'“&""x"“"‘vnp.' (o)

o{)s * o v\ oy, D
+x ¢ RRUSEE Xm@ © t Xy Xe X«n@“ o) *h x“nﬁ: ©

- “"“n
AT PR 7 (o)}

/‘V
(4.5)

where we have writiten < = Cx

the current q"(z) is conserved, then the expansion
(4.5) can be sizpl:rfisd further, The current conservation condition

3y (21 =0 rluces essentially iwo counstrainis on (4.5) and reduces

the number of operztor ssjuences from five to three. The final result

can bte conveniently written in the manirestly conserved fcocrm

L =2 (33,-3,0)x* Zn:x“t... Al R C)

. C s
tiCuvagd X ";x"l-n,\“n RN Y (4.6)

“a

*[9)\\13% ?xv ,4,« 9:( v 'f'z{ 24»0](‘07 X‘-)ZX X szt,u.ﬁ”(").

ot
o

Here the (log:x‘) rm does not violate our neglect of logs since
e

away aftsr it is differentiated. The relation between

ct
(U]

the log zoes
the‘1? 'z znd tbejf"s can be founc by explicitly performing the

differentiztions exzibited in (4.6) but will not be given here.
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5. — DIMENSIONALITY 7)

In this Section we shall indicate how one can be more
precise about the notion of dimensionality which we have been using.
One says that a local field j( Cx) has dimension d 1f there exists

a one-parameter group U(s) of unitary transformations such that

V) XU 'ts) = s Xisx) (5.1)

Examples are the free massless scalar field with d = 1 and free spinor
field with d = 2. We shall refer to this notion of dimension as
"dynamical" dimension. For the usual fields in free field theories,
dynamical dimension coIncides with naive dimension. We shall say a
field has canonical dimension if it has a dynamical dimension equal

to that of the corresponding free field. In a theory in which all

local fields have dimensions and short distance expansions such as
(3.13) are valid, application of (5.1) to (3.13) implies that the

Fi(x) behave as stated like (1/x)di_dA_dB, with no logarithmic

factor. This is what happens in free massless field theories.

In an exactly scale invariant theory, the structure of
any two-point function is fixed up to some constants. For example,
application of (5.1) to the Wightman function <O| (x)%¥ (o)|0>

gives

<°,X(x)'X(o)l0> = const (x‘)'d .

(5.2)

Also, if Q = IdBX jo(x) is the generator of an exact internal symmetry,

then dim jo(x) = 3, as can be seen by applying scale transformations

to a relation like l:'x(x), Q = a¥X(x).

In any finite ordsr of a renormalizable vperturtation

O
4,
’_
[e]
13
V]
H
‘_I
<t
b~
2]
|1
(@]
N
V]
(¢}
ct
(o]
H
4]
ct
%
w
]
D
3
(@]
H
1

theory, because of the occurrsnce of
malized fields do rot have well-d=zTined dynemical dimensions., Never-

theless, the short distance behavicur of any ¥higrtman Iunciion is,
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apart from logarithmic Tfactors, the same as it would be if the fields
did have canonical dynamical dimensions. Put differently, the short
distance behaviour is determined, apart from logs, by the nalve
dimensions of the fields. In particular, the nature of short distance
expansions, and, by our anélysis, of LC expansions are so detei‘minedo
We shall describe this situation by saying that the fields have

effective canonical dimensions.

In any theory with effective canonical dimensionality
and with short distance expansions, LC expansions very similar to
those given in Section 4 will exist. Included in such theories are
free field models, renormalizable perturbation theories in any finite
order, and most of the xnown exactly soluble models. In theories
with effective non-canonical dynamical dimensionality and with éhorf
distance expansions, our derivations show that LC expansions wiil élso
exist., In these théories, the singular functions will, of coursé, :
be somewhat different from those enccintered in Section 4. The ‘
Thirring model is the orly one we «now of that exhibits noh—canohicél

dynamical dimensionality 14).

- A final point we should mention concerns the nature
of the sum (if it exists) of the perturbative expansions of the re-
ndrmalizable field theories, It is possible, and has been suggested,
that the logaritizmic factors occurring in each order sum up %o a power

and sc change the 47 zmical dimensions of the fields. This is what
gl J

o

happens in the Thirrinz mcdel. We suspect that this Thirring model
phenomenon arises tecause of the zero mass particle present and will
not occur in resalistic models with no massless particles. There is

. no evidence thatn the logs of renormalizable perturbation theories add
up to a power 15). in the Tollowing section we shall point out the
existence of empirical indications of the validity of effective

canonical dimensionality,
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6. - MASS DISPERSION RELATIONS ')

Consider a vertex function

where the scalar particle (k) is on-shell (k2 = m2) and p and
q (k = p+q) are the momenta carried by two scalar currents A(x)
and B(x) :

A, ) = IJ*xc“"‘<ol'r1_’,t\cx)3¢o)]lk> ;

(6.1)

We saw, in Section 2, that the behaviour of A(p2,q°) in the limit
p° > ® with es = p7/2v = [1 - (a®02/p?]]"! fixed (o included)
is determined by the behaviour of A(X)B(O) near (namely, within
1/p2) the light cone x2 = 0. Thus, to compute this limit, we can

use the general light cone expansion

)
Ax)B o) 3 EGiey,) Z;- KMy O::"" (e)) (6.2)

where the 0&33 o (O) are local operators. Defining
ceo

» ;X“---x"“ <OIO:’...¢Q(0)IK> = 'P(k") + order x* ) (6.3)

we obtain

A B) — [is e EGeie) Bliex)

(6.4)
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Thus the general singularity E(z) =z T gives the result

Q'"ﬁ (aw)

Mtv)

Alpyqt) — - (Pt ) (5.5)

where

-
Rt = f,,JA et AT ) (6.6)

Two interesting special cases are the limit &2 — 1 (so that q2/p2 -0

and the limit is p° - ® with q° fixed), in which

Aps ) o )R,
9 Lixed (6.7)

and the limit w— ® (so that q2/p2 — 1 and the limit is the
Bjorken 8) 1imit Py~ @ With p fixed), in which
Y § r-4
At F) oo (BT HFE@ .

-—ly
P Fixed
As expected, the limit (6.8) is controlled by the first non-vanishing

(6.8)

(although perhaps infinite) equal-time commutator as determined by (6.2).

In simple perturbation theories, one finds r = 1 (within
logs) and f(A) ~ eI 5o that F1(w) has a pole at e« = 1 and
(6.7) becomes meaningless, the correct behaviour being A — const. We
explicitly assume that our Fr(“’) do not develop such poles. This
assumption accounts for the observed rapid decrease of empirical form
factors and the smooth behaviour of the structure functions measured
at SLAC and amounts to assuming a composite structure for the hadrons.
It is, presumably, the same mechanism which reggeizes the fixed poles

of perturbation theory that eliminates the poles in F?(u)).
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We shall make a second assumption in order to determine
the values of 1r relevant in specific cases. We assume that all
relevant field and current operators have the same (canonical) dimen-
sions that they have in the gluon model (ignoring logs) (triplet quarks
coupled to a massive neutral vector meson via the baryon number current).
The gluon model thus treated has been very successful in accounting for
many aspects of processes like the ones we are considering 17), and, as
we shall see in Sections 8 and 9, this specific assumption gives the
essentially unique singularity structure for electromagnetic currents

consistent with the SLAC and Columbia-BNL experiments.

OQur final assumption will be that asymptopia sets in quite
quickly, namely for p2 ~ 2 GeV2. This assumption is strikingly support-
ed by the results of SLAC and Columbia-BNL. Its implications for our
purposes are that (6.7) becomes valid for p° > 2 GeV® and that f(A)
has support concentrated very near ‘a =0. This last statement accounts
for the rapid approach of the electroproduction scaling function to its
(constant) asymptotic limit. It means, in particular, that F1(1) is
of the order of f(o). ‘

We proceed to apply these ideas to discuss mass dispersion
relations. The amplitude A(p2,q2) is assumed to be analytic in the
cut p2 plane, with a cut starting at p2 =¢ > 0. We can, therefore,

write the "finite mass dispersion relation"

a A N} LI}
A e) = ‘i"jp"f,ﬁ%;‘%‘_— 7|t A(P ‘_,C) ) (6.9)
A

where a(p ,q2) = abs A(p2,q2) and c) is the circular contour
|p | = . For N >2 GeV2, we thus obtain

’ ;
Arsqy) = -;r,-J,;,,.a_m:{:)_ g j.; e o)

XN Ny
-pPE+ie w
od P P
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Integrating A over ¢, , we get the further useful relation

A Ew v-1 |
0= _i','_[jrl'-a(w"qt) -+ .fi.i_..cdﬁpﬂ(p") . -(6.11)

We are thus paralleling the "finite energy sum rule" treatment of four-
point functions. The important fact that [\ can be as small as

2 GeV2 is analogous to the usefulness of the concept of "duality".

Let us suppose that there is a low-lying particle of

mass pa Wwith the quantum numbers of A(x) so that
l(r‘sq‘-) = wl(p*~ ) af(q“) + QN(p§q") . (6.12)

Then, (6.10) and (6.11) become (canonical dimensionality implies

that r is an integer)

A Catt
Alort) = B2l ¢ L2008 o5 £o) (513
o
and
A |
o= ap) +-,‘;[dp"-a.,(r",°!‘) + da R, (6.14)
«

We can use the above equations to approximately calculate
both the "infinite" mass contributions and the continuum contributions.
These contributions give corrections to the result of simply saturating
the mass dispersion relation with a low lying meson. In this way”wevcan
understand, for example, pion pole dominance of matrix elements of the
divergence of the axial vector current and we can estimate corrections
to vector meson dominance which are in good agreement with experiment.

An example of this will be discussed in Section 9.
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7. - DEEP INELASTIC ELECTRON PROTON SCATTERING 18)

Our purpose here is to use the expansion (4.6) to study

the process e+ p—e+anything. The relevance of the LC behaviour

of the matrix element <p|E£, (x),79 (o] |p> to the A I1imit

this reaction has been known for some time 1). Our use of the
operator expansion will, however, enable us to deduce a number of new
results from the observed scaling behaviour. We follow the notation
of Ref., 4)
first work with the result (4.6) of ignoring logarithmic factors and
afterwards discuss the effect of these logs and of their possible role

s Where more details and references can be found. We shall

in changing the singularity structure.

The total cross-section (2.1) of interest can be written

J%r — TR . “
;‘JU o Eklﬁl‘sin“—’i—E“/:_("l:\i)’-csz% +2.W,(‘:‘,‘v}sm’-%})

(7.1)
where E 1is the initial electron srergzy and © +the scattering angle
~
and we have set the proton mass equal to unity: p ='. The structure

functions are definead by
%T_ljé‘:‘ eiq‘x<ﬂ[‘;ﬁ-u)) J:(°)];?> - (f.‘ﬁ?/-)(& ‘/G?u}\ya!l (Q)"; V)
=(3 - E Wi )

) (7.2)
where pE—V/qi={Zhi)_1, and the A 1izits are

hﬁ? YW (iv) = B (e (7.3)

. - - | i

liz W (9% v) Flp) . (1)

The transverse and longitudinal structure functions are

R=F, R=r,RE-FK . (7.5)
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Experimentally 19) , (7.3) is well satisfied in a non-trivial way
Eﬁ‘z(ﬂ)Nconsto for QP> 2:] and FL/FT is small, as suggested by
the gluon model 20)0

It is convenient to introduce new structure functions by

writing

Sl GlLw, SOl = [ -vle,+1R) 5.V

=093 - 29IV, (95 V) .

(7.6)
Equations (7.2)-(7.6) imply
‘:;\m CWV@Esv) = eRie) .7
lim Wi (43 v) = 2R .
A (7.8)

In configuration cspace (7.6) reads
e T, L]l = -[2p8 -89, «R %) + (39,00 p)

-(33,-03.)VG 0p)

(7.9)

in terms of the Fourier itransforms

— ¢ i -l<7 *
Vi(ql,V) - fJXC’ "(x )X‘f) .
, (7.10)
The A 1limit of the V,!s is given by the LC behaviour
of the Gi's and these can bte determined rrom (4.6). We define as

in (4.1)-(4.4) the matrix elements

lLA s x Raeeey (P> = fotxp) v O

(7.11)

le‘_x“'--.x" ,,7?::‘“,"(0)’}’) = j“’s{‘(xsp)i'?"p‘eg(!?) 1+ O(xY),

(7.12)
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Comparison with (7.9), using

Im(x‘-iex,)" = NEXIU) ,  Imlog(-x* +iex,) = meg)OLt),

(7.13)
gives the results
A
V(x4 xp) 753 — E) QW) R (x+P)
(7.14)
A A
VG xp) =2~ ES fixep) .
(7.15)

These are precisely the IC behaviours shown in Ref. 4) to be equivalent
to the scaling laws (7.7) and (7.8) or (7.3) and (7.4). Indeed,

direct substitution of (7.14) and (7.15) into (7.10) gives the results
(7.7) and (7.8) with

PR = —njdl SR (7.16)

rE(e) = -—E—jdf\c“*/‘/’ﬂm.
' (7.17)
We have thus derived the validity of the scaling laws (7.7)
and (7.8) in the large class of theories in which (4.6) holds. .
Strictly speaking, because these theories really ziwve extra logarithmic
factors, we can only deduce that (7.7) and (7.8) are valid apart from
powers of log q‘° Indeed, it is a known fact that in low ordsrs these
theories give scaling apart from logs. This is satisfactory since the
presence of such logarithmic factors could easily escape exXperimental
detection at present. One might think that this result is trivial
because we have built in scaling via $ihe mass indevendence of (4.6).
The point is, however, that, because of the possibility of norn-cancnical
dimensions, mass independence is not equivalent to scaling, We can
thus reach the strong conclusion that the observed scaling dehaviour
is consistent with canonical dimensionality but not with many types
of non-canonical dimensiorality. If a single operator with a non-
vanishing proton-proton matrix element in (4.6) had a dimension signi-

ficantly less than its canonical one, then the scaling limits (7.7)
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and/or (7.8) would be divergent by the corresponding power of q2.

If we further believe in the relevance of a perturbative model, then
we can conclude that the logarithmic factors in the model do not add
up to significantly change the singularity structure. It is therefore

an interesting and non-trivial fact that non-trivial scaling is equi-

valent to the presence of the LC singularity structure required by

canonical dimensionality.

We have thus seen how the existence of operator product
expansions like (4-6) enables one to correlate experimental results
with the nature of possible field theoretic models for the hadrons.
In addition to providing evidence for essentially canonical dimension-
ality, the observed scaling strongly suggests the relevance of renor-
malizable field theories. Non-renormalizable models, made finite,
say, by the introduction of infinitely many subtraction constants,
possess much worse LC singularities. A further major advantage of
our formalism is that, unlike the matrix element statements like
(7.14) and (7.15), it enables one to compare and relate different
processes since these processes simply involve different matrix

elements of the same operators.

Before leaving electroproduction, we wish to comment on

what happens if FL==O° It is clear from the above analysis that,
-

neglecting the unlikely possibility that the proton-proton matrix

element of each ﬁou <
that the leading allowéd singularity 1/x: in the first piece of

in (4.6) vanishes, PF.=0 means

(4.6) is not present. Assuming canonical dimensionality, this means
" 2 2 .

that the (1/x ) must be replaced by (log:x‘)e This comes from

both the non-leading contributions of the given operators satisfying

dim =n
«1 o000 '\1,1 +
operators satisfying dimﬁ« x =n+4, Calling the matrix slement
100 '

and from %the leading contributions o additional

[\

of the sum of these operators still fo(x;p} as in (7.11), (7.15)

becomes replaced by

N |
V(Y x-p) = E(Xg)e(x‘-)[ﬁ,(x-r) + 2f(xp)). |
(7.18)
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Another use of the LC in connection with electroproduction
is to relate the A 1limit with the Regge limit (R limit ; V— o,
q2 fixed) and thereby understand the asymptotic behaviours of the
Fl(f) for large A 1)’4)’21). Conventional Regge theory and Pomeron

dominance predict that

’iRm V() = wjeqn) V! (7.19)
l;{\/l (1‘)") € "r;('lt) V. (7.20)

It is easily seen 4) that in (7.10) the R limit of the v, for

v > |q2| >> 1 1is again controlled by the LC behaviours of the {;i'
Equations (7.19) and (7.20) together with (7.14) and (7.15) require
then that 4)

)~ o)~ 1l

(7.21)

for A — ®. Use of these results in (7.16) and (7.17) then gives

Flp) 555 comst (7.22)
in. good agreement with experiment 19).
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§. - MASSIVE ga PAIR PRODUCTION 22)

The several numbers obtained from SLAC are insufficient
to really test our LC ideas. The recent Columbia-BNL experiment mea-
suring massive muon pair production from high-energy proton-proton

23)

collisions is therefore extremely useful theoretically since it
involves an initial state different from SLAC's and provides addition-
al experimental constraints. Several theoretical investigations of
this process have already been §iven 24). In this note, we shall
apply our theoretical results on the behaviour of current products
near the light cone to study the Columbia experiment. Our predictions

turn out to be in excellent agreement with experiment.

We consider the reaction proton + proton — /k+ + /n_ +
anything and call p and p' the momenta of the initial nucleons
(p2=Ap'2==m2) and q the momentum of the muon pair. We define the
invariants s = (p+p')2, V= p-q, and ¥v' = p'.qg. The cross-section

is (neglecting the muon mass)

r ot h \
‘3:;" = w I:s(s-:m;jmfd'l. ‘;'";W""Qrc: > (8.1)

where

Wy = E, EJJ“’x 1Y <Coptl L) T o) | ppry, " 6.2)

In (8.1), C/l: (a) describes the polarization © =T, T,, or L of
the _m pair and the integration region in the centre of mass (CM)

frame is described by the inequality

I <4, < (seqt —tm)ad® = 28, (qY9) . (8-3)
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In (8.2), J’. is the electromagnetic current, a spin average is
(here and everywhere) understood, and only the connected part of the

matrix element occurs. The total cross-section is

de _ &t [ 3 U
At T T en? B(s-smt)ﬁri;i} b Wo - (o)

In the physical region for our reaction we must have q2= q§ - ?1)2 > 0.
This is in contrast to the SLAC kinematics where q2 < 0. Using current

conservation and the reflection property Wv’ = W;\) s We can write

2
w’v = (q/‘q\l - g’J qz)w,](s’ q 9 V ’ v') T oo .

The SLAC experiment can be nicely described by the assump-
tion that the appropriate dimensionless functions Fi(qz,\)) become
functions of only the ratio /9 = \)/q2 in the limit -q2 - ® ,

V - ®, / fixed. This corresponds to the expectation that a
massive photon should only probe the short-distance (mass—independent)
structure of the target. We should like to apply this same idea to
the M pair process but note that, because of purely hadronic non-
scale invariant effects, this need not imply that the dimensionless
structure functions Fi = q2 Wi become functions of only the ratios

f= \)/q2, P = v'/q2, and @ = s/q2 in the limit

958, V, V' —> o0 with 4, p) and ¢ Fired, (s.5)

We shall rather implement the electromagnetic scale-invariance principle
by assuming that the short-distance behaviour of the product J (x)3y (0)
is mass-independent. This is part of the content of our 'operator expan-

sion.
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Combining (8.1) and (8.2), we obtain the expression

.
S‘E—‘ < < (I 1)< T T ppry g7eL | (0.6)

where

Og t-x; ) = jkd‘k et 6lk,) § Ut-9*) (8.7)

with the integration R specified by |k | < _[}tg - g2 :[% = M in the
CM frame. Now, when s — ® and qz'ﬁ ®, we see from (8.3) that

R — (all space) and so l\;(x; qz)'* l}f(x; qz), the ordinary free

field Wightman function. Thus, in the specified limit, only the inte-
gration region x2 ~ 0 1is important in (8.6). More quantitatively,

it can be shown that (8.7) has support essentially in the region

|x* - sa] < -‘# . (.8)

Elsewhere ‘&I{ gives exponential decrease or rapid oscillation which

damps the integrand in the physical region. This region is near the

light cone provided q2 and #® are both big.

We can thus use our expansion (4.6) in (8.6) to determine
the behaviour of dd‘/dq2 in the A 1limit. ZFor simplicity we shall
use the form valid when FL = 0 although we would obtain the same
results without this assumption. We call 01’2(x) the coefficient

of first (third) differential operator in (4.6).

We next define

<ep'l Q) lpp> = E e ¥,

(8.9)
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<PP'(O:6(‘O’PP'> = E,_(X")[ﬁ 7“6 +€.F"r8 + \gﬁ'al
(8.10)

+ﬁ(Pdrl@ N P:dr,s)] ,

where fi = fi(s,x.p,x-p')d-o(xz), the x2 dependence being irrelevant

for our purposes since it leads to weaker singularities. Fermi statis-

tics require that

filsrpp) = s xop, ©p)y is e,
(8.11)

Res,x.p, xp) = £G,xp)xep) |

and crossing gives

#,‘(s,g.p'x.P') = \e,‘(S,"X'P) ‘X'P') ) izo-8 _ (8.12)

We thus obtain

WG = [ e ) + by )

(8.13)

.[,e’-m+ ]} )

where we have written E1(x2) = E2(X2) = log x2 = E(xg).

Consider the contribution of

<PF"WG‘|--.Q‘(D)IPP'> = F(“‘(‘)(ﬂ.“‘ﬂ.*%'"'a’n) o (8.14)
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to fo(s,x-p,x-p’). We assume that the large s behaviour of such
amplitudes (corresponding to the emission of a zero four-momentum
particle with Lorentz indices 0(1...¢n) is governed by Regge

25) |

theory Then F(n)(s) I cns* whereas the omitted terms (involving

i i o e o ' * o 0 ' b i
tk;\e—?;}fig polynomials p *1 p“m ) “m+ P xn) ehave like
S , Where ® is the t = 0 intercept of the leading contri-
buting Regge trajectory (presumably the Pomeron with e = 1). Thus

we can write

s,np xp) = s*[Lup) + 4lep)], (8.15)

where fo(x-p) = %cn(x-p)n. Similarly considering (8.10) leads to
the behaviour (8.15) for f, and £, =f, and to (8.15) but with

1
® -1
f f .
s or 4

3

Returning to (8.13), we are led to consider the behaviour
of the pole contributions to integrals of the form
I §d4xe'iq'XE(x2-—i.gzb)f(x-p) in the limit (8.5). We obtain
I~ (1/m)(1/n)(d/an)(1/N) T (a5-n/m), where F(w) is the FT of
£(A) and W = |q|. In the limit (8.5), we thus obtain
1~ (1/ah) 1/ p2) 2 (1/P)

have the asymptotic form

i

(1/q4) g.(p). In this way, (8.13) is seen to

v r « .
W ele] — 'f'.—Zﬁlg,(p) [ -(pemd 919 c0)

(8.16)
+a.s"E*v’-(f’-c')(rft')w‘]‘j‘(p) + (pe-;p')} o

The form (8.16) which we have obtained has a simple physical
interpretation in terms of the Regge picture which accounts well for the
SLAC data. The SLAC results for @ > 2 can be described by the assump-
tion that they correspond to (Pomeron) Regge pole dominated behaviour

with the q2 dependence of the photon-Pomeron-photon vertex given by
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scale invariance. If we adapt this picture for the present situation,
and further use Regge theory to conclude that the (pp') - Pomeron - (pp')

- s1 l-_-thus obtaining a Regge

vertex has the large s Dbehaviour s
squared description (see Fig. 1) corresponding to the two large sub-
energies Y or W' and él, we obtain precisely the form (8.16)
for large M with the further information that go(p) = AP
g1(P) ~A/@, and gz(p) ~ A,/P for some constants A;. Our
final assumption will be that these asymptotic behaviours set in at
the SLAC points @ ~ 2. Then we can neglect g, in (8.16) and

obtain for (8.1)

357 — comst i [4L f(araA)(20)

chql
) LeV)* (8.17)
+T Au[“’pﬁ + 48 Fc") J ,

and for (8.4)
: |
a— onst LOACAR[E (e, e

where P = p+p'.

We have compared our prediction (8.17) with the experimental
results in Fig. 2. The experimentalists do not measure the total un-
constrained cross-section (8.17), but have an angle cut cos © > 0.998
and a momentum cut 12 < P1ap < 29 GeV/c for Elap = 29-5 GeV. It
can be shown that these cuts do not significantly affect the relevance
of the light cone. The theoretical curve we have plotted corresponds
to performing the integral (8.17) over the cut region and taking
3A0/2A12g)20' Our result is seen to be in good agreement with expe-
riment . We can obtain an even better fit by suitably adjusting
the functions gi(p) below the value (f@~2) suggested by SLAC for

the onset of the asymptotic behaviour.
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9. - CORRECTING VECTOR MESON DOMINANCE 16)

In this final Section we shall apply the considerations
of Section 6 to the related processes W - 3W, I~ MY, and
W~ 2¥ . The 0ld Gell-Mann - Sharp -Wagner 27) model uses vector meson

dominance to relate the amplitudes for these processes as follows : -

LW
ra 1
Alwo—p3T) = _°L..<‘ LY ) (9.1a)
~¥
ji .
Alw—rry) o = <. - denp.&—: (9.1p)
X
AlTt=ay) = T > = KA@=ra)y (1)

Here the Ki's are known kinematical constants and the rest of the

notation is standard.

To compare these predictions with experiment, we shall use
the recent Orsay 28) colliding beam determinations of ’(p and fw .
These experiments give the most accurate measurements of these vector
meson (V) mass shell photon-vector meson junctions. They find
’lf. /4® = 0.52 + 0.03 and 13/41 = 3.7 + 0.7. EVe mention that,
whereas the Orsay value for Tp agrees with other on-shell deter-
minations, their value for e is not consistent with all other
determinations 29 .] According to the usual vector meson dominance
hypothesis, these on-shell (q2=m$) values are to be used in (9.1)
even though the ¥ -V junctions in (9.1) are at the photon mass-
shell  q° = 0.
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Thus comparing (9.1) with experiment, one finds 28)
Mworwy) ~ + Mw—anv) (9.2)
[ (r=37) [yup Mo—raz) EXP
and
llwawdd| o, [lo—awd) o)
[(w—3w '
)] W ? Plosr) cp -

We see that the VMD model gives a quite unsatisfactory account of these

processes. Let us therefore see how our LC approach can improve things.

We define the f° — 2 ¥ amplitude in terms of the
° . ‘(3(1:1) + ts(kz) one Ak k,)) :

} X » '
75 Alo, k) = Eug €7k ECUQK KT FUM KE) o (5.0)

The relevant operator product expansion is the second piece of (4.6) :

) o Td
‘Zﬂa( J_ (O)—’ ’\Qd‘ x-*x ZX‘ "x‘ O.t..?.“g)n . (9.5)

heo

In the gluon model Oéo)(o)ﬁ A% (0). Thus, Egqs. (6.7), (6.13) and
: (6.14) give

o= R wiE o oo
k;@txed

FOx,k+)
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F(e,0) .‘_“--;'—-A(w—-)ﬂ'() + -A%-_ 2 (9.7)
w WMe
t 3
-J;E{: o —e-%'ﬂA(w—»nr) + A, (9-8)
w
where
Qm“)“ Q.Mu}

L, m>) | v,

is the on-shell w? - 1{ junction and Ac and o, represent an average
of the continuum effects so that we expect n® g_mi < N\=2 Gev?.

Equations (9.7) and (9.8) give

o & (oMt ket |
Flewo) = = (i — )A(w-—nt)-!- ™0 (9.9)

Note that the first term in (9.9) is the usual Gell-Mann - Sharp - Wagner
term (9.10), but with a correction factor (1-— 2 mi), and the second
term comes from the light cone behaviour. We shall compare this pre-

diction with experiment below.

We call A(kf) the off-shell &2 - WY invariant ampli-

tude so that the Feynman amplitude is A(O) &/AVoqg e./" (x) ev(k1)k1“ kf.

We obtain as above

EL t N
Alo) = ‘7'*’"""'_7/*-@- %. . (9.10)
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27)

This result coIncides with the GMSW model provided

Tole) = ("%“:)"Yp : (9:1)

We now compare our predictions (9.9) and (9.10) with expe-
riment. We leave the usual VMD prediction (9.1a) unchanged since most
of the physical events occur suck that the /A2 is nearly on-shell. By
choosing mg ~ 2, we find that both (9.9) and (9.10) are in good agree-
ment with the experimental results. This value of mg is quite reason-
able since the vector mesons should saturate the dispersion relations in

their neighbourhoods and thus restrict mi to be near its upper limit.

We see that the effect of the continuum is to give a k2
dependence to the 1f vector meson junction which is quite appreciable.
The striking fact is that with mg ~ 2 GeV2, one can account for the

discrepancies of the VMD model discussed above.

We believe that the applications described in the last
three Sections demonstrate the usefulness of operator product expansions
near the light cone and support the correctness of the assumption that
the hadrons can be described by a renormalizable field theory with ef-
fective canonical dimensionality. It is clearly desirable to explore
additional applications in order to further test these ideas and to
gain more familiarity with the concepts involved. It is possible that
the LC will provide an increase in the usefulness of configuration space

field theoretic methods in understanding some aspects of particle physics.
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