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Te = INTRODUCTION

The diffrective dissociation and scattering of fast devterons

by a complex nucleus were discussed many years agc by Glauber 1),
2) and Akhieser and Eitenko 3)
4)

and Sitenko « In these investigations the target nucleus is treated

Feinberg , and in more detail by Akhieser
as & complevely absorbing sphere of radius -R. The problem is then re-
duced to a proper truncation of the deuteror wave furnction. The elastic
scattering of deuterons by a complex nucleus has also been investigated

5).

by means of phenomenological p nucleusg and n nucleus potentials

OQur approach is quite differernt. It is based on a gerereli-
zaticn of Glauber's high energy multiple scattering theory 6), where the
d nucleus elastic and quasielastic scettering amplitudes are expressed
in terms of the elastic nuclecn-nucleon amplitudes and the target and
deutercn wave furictions. Although Glauber'!s original work only deels
with rnucleon-nucleus collisions, the generalization to nucleus-nucleus
collisions is straightforwzrd and has been described at length by several

7)

autlhors .

We will concentrate on collisions of relativistic deuterons
with medium and heavy nuclei. The new feature in our treatment is the
introduvction and application of a new approximation method. In the past
one used to expand the nucleus-nucleus amplitude in & series of nucleon-
nucleon or rucleon-nucleus amplitudes. The disadvantage cf such an
expansicn is that the series converges rather slowly. We suggest a new
method where the zero order term does not correspond to the impulse
approximation, but to a corfiguration where protor and neutron come in
with the same impact parameter, the impact parameter of the deuteron
c.m., motion. The higher order ccntributions then correct for the true
impac® parameters. This approach necessitates the introduction of a
new type cf effective rucleon numbers. Numerical values for all pertinent

nucleon numbers are given in an Appendixe.

One main advantage of our approximation method is the remark-
able stebility over the whole nuclear spectrum. The first order correc-

tion is usually about 10%, whereas in converntional schemes the correction



increases with atomic number and reaches about 60% for heavy nuclei. This
attractive feature makes us believe that our method is a géod starting

point for realistic calculations on deuteron-nucleus collisions.

In Section 4, we discuss the deuteron-nucleus total cross-
section in some detail. The reason is that it offers an interesting
opportunity to test the accuracy of our method. Indeed, it turns out
that the total cross-section can be calculated exactly within our model.
Comparing with the predictions of our approximation scheme we find that
the first and zero order terms together reproduce the exact result to
within 2% for heavy nuclei and 3% for light nuclei. The stability of

our method is also clearly exhibited.

Encouraged by the good agreement obtained for the total cross-
section we have investigated some consequences of our approximation me-
thod. It works also for some complicated problems where a direct calcu-
lation seems difficult. Thus we treat coherent elastic scattering
(Section 3) and incoherent elastic scaettering (Sections 5 and 6), but
we have also tried to estimate the cocherent dissociation cross-—section
(Section 7) and incoherent dissociation cross-section (Section 8). The
coherent dissociation cross-section comes out as a difference between
two big numbers and is very sensitive to the deuteron wave function.

Here our predictions must be considered with some caution.

Particle production is treated in Sections 9 and 10. The
proton-nuclear case has been considered in detail by K&lbig and
Margolis 8). Even if the extension to deuteron collisions is trivial
the actual treatment of this problem is much more involved. We restrict

ourselves to a study of some simple cases.

Up to now only one experiment on collisions of relativistic
deuterons with heavier nuclei has been reported 9). In this experiment
the deuteron stripping cross-section on Al, Cu and Pb was measured
for deuterons at 3.54 GeV/c. In Table I we have compared the results
of our calculations with this experiment. Since the neutrons were not

detected we must add the diffractive dissociation cross-section to the

ot
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shell nucleus and neighbouring non-closed shell nuclei. Indeed in an

experiment of Fink et al. 12) with low energy deuterons one observed

an enhancement of the deuteron break-up on 208Pb as compared to

neighbouring nuclei.

2. = GLAUBER THEORY OF LEUTERON COLLISIONS

Let |i) = Idt>' dencte the product of the ceuteron and
target ground states and lf:> = ld’t':> the product of the deuteron
and target final states. The state ld';b may represent a deuteron
state, a proton-nucleon scattering state or a state with one excited
nucleon. We shall restrict ourselves to final states where the out-
going particles form two groups, d' and t', such that the momentum

transfer 5 = Ed - kd' to the group d' is small. For this case we

can use the impact parameter representation for the scattering ampli-
6)
tude

.

i3b - -
r:{itil-—-”—:-f- Jb eV I TURRF T de >, o

where b is the two-dimensional impact parameter betweeg_the deuteron

and the target nucleus (see the Figure). The factor e 3° comes from
the wave functions for the c.m. motion of 4 and aft,
C‘L $\ vk R Cf‘b
4 e * e
€ ) ~ ) (2.2a)

(2.2p)

B

Furthermore, r = - En is the internal deuteron co-ordinate and

Y
are the internal cc-ordinates for the target nucleons.

f,],ooo’fA

The explicit form of the matrix element in (2.1) is
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proper stripping cross-section (reactions where the neutron suffers

inelastic collisions) before comparing with experiment.

GJ(diff. diss.) sum sum
varget p, strip| coherent incoherent | (theor.) | (exp.)
27
Al 227.6 21.2 3268 281.6 290
64
Cu 301.8 34.8 40,1 37647 550
208 o), 439,2 62.9 54.0 556. 1 950

Table I : Cross-sections in mb for stripped protons.
- The first column contains the proper stripping
and the following two columns the diffractive
dissociation contributions. Experimental

errors ~ 25%.

The agreement between theory and experiment is satisfactory
only for Al. For the heavier elements the experimental yield is larger
than the theoretical yield. Lander et al. 9) compared their result with
estimates of Serber 10) and proposed that the disagreement for heavier
elements could be due to the assumption of a sharply defined, opaque
nucleus and to the contribution from diffractive dissociation. As we
used wave functions of the Woods-Saxon form in our calculations we
conclude that a smoothening of the nuclear surface causes‘only small

changes. Also the diffractive dissociation comes out relatively small.

Qualitatively an increase in the diffuseness of the nuclear

surface will increase the stripping and diffraction dissociation yields.

11)

in diffuseness the deuteron break-up might be quite different in a closed

In particular Nemets et al. have suggested that due to differences
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where <P and T R Q' and q" are the deuteron and target internal

(2.3)

wave functions for the initial and final states respectively. ’_Piqe nor-

malization of the amplitude PF 1is such that

d;l \F( ) ‘ ) . (2.42)

¢ = é—; SJ\Q | F (3) \* . (2.4D)
3 :

We start with a discussion of deuteron elastic scattering
and diffractive dissociation. The profile function [' of (2.1) is

then given by
PR R,ofa) s 1= e [ER (3,535,301, ()

where the total phase shift function 'X’ $0t only dependc on the pro-
jections 5,51,...,5A of the co-ordinates r,r 1,...,rA on the plane
perrendicular to Ed' Following Glauber )

phase X; $0% is the sum of the phases for scattering on the individual

we assume that the total

nuclecns in the target,

A
X'(.{(kﬁ,g“...,-s,.)c} {X' (E«lv'}‘ -'s'{_) + )(.m('b-ii—gk) } . (2.6)
. =)

As a consequence our profile function f' (_ o,~1,o..,5A) can be”'

expressed in terms of s:l.ngle particle profile functions as

PG23,5)= 1 =T [1=r SULIEDN R ALRNTES SR N .
iz :
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The single particle profile functions are related to the

elastic nucleon-nucleon scattering amplitudes through

O T \.-\'i;. T
Prlb) """, jdq_e -‘}‘ 3 . (2.8)
In the following we shall always take
-aqt/a
- - NEXVR . %
{?(1) = {“‘(‘) = Nw .o.,{' ¢ ) (2.9)
so that
-

-5 /2
‘;(‘)3 ““ (E) = ')' e ) (2-10&)

4=l @
- ee— TSR ’
P T o (2.10Db)

where € 1is the total cross-section at momentum kp ~ kn IN] kd/2 and
O the ratio between real and imaginary parts of the nucleon-nucleon
amplitude. In the following when discussing magnitudes of different

contributions we shall use the values

o= 4O wmb » (2.11a)

a= 3} GV ) .
which give

n =iz . (2.11¢)

For the special form (2.9) of the nucleon-nucleon amplitude

the profile function (2.7) can be written
.- A - .
PERF - ) =1=T {1- 0 el (345-3)"]
-v,u‘)[—%*(g-%:s&\‘l (2.12)

~.a 3t
tr e LGaTlwt 21
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The last term in the bracket corresponds to scattering of both incident
nucleons on the same target nucleon. We will refer to such terms as
"eclipse terms". They contain an additional damping factor

exp[}§2/4é] which simply reflects the fact that if both nucleons
scatter on the same target nucleon they must be closer to each other
than the range of the nuclear forces. The contribution from the eclipse
term will thus generally be much smaller than the contribution from the

terms proportional to I) .

For the nuclear ground state |t> we shall use a separable

wave function

A
2
I‘I’(F“...,?‘A)l =£‘§@§) . (2.13)

For light nuclei ? (ft) is approximately of Gaussian shape. For

heavy nuclel we shall use a single particle density of the Woods-Saxon

form 13)

fo
$(¥) = )

1+ opl(e=¢) /4] (2.14a)
C= 1.‘N~AVB {u ) d = 0.&“1$<F~A. (2.14b)
14)

For the deuteron we shall use a wave function of Gaussian form

-3 -

s %) = Ty ) (2.152)
&A= L 'F"‘ ' (2.15Db)

We note that for this kind of wave function

- 3 %
{t* = =
% E* (2.16)



We shall often encounter the two-dimensional part of this wave function.
We do not introduce a special notation for this case but simply write
‘Pd(é)’ always reserving the letter s for the component of r ortho-

gonal to Ed'

The evaluation of (2.3) has now been reduced to an evaluation
" of single particle integrals. This is done in the target thickness appro-
ximation 6) which exploits the fact that
kN

‘g:»(x R, @ a

) (2.17)

to approximate

e g(v) T (E-5,) = (s P55, Sc\t*ﬂkl&):’:lﬁ »,'P(s)»@ 18)
where T(B) is the two-dimensional target thickness

o0 o
TG) = A S&a--y(:ﬂ) . | (2.19)

~ 0o

The reason for the additional factor A in the definition of T(%b)
is that 1;9(5) for heavier nuclei is roughly constant as A increases.
Fcr products of several profile functions we use similar approximations.

When all proflle functions are identical we put

de W P(b-sf) O
N _ A _
2:..‘L‘f'. v," 'T‘(-‘l b. ) u.?“{—f. L'i."‘j":;'ﬁ'(y- \’QV] . (2.20)

1 i e

We now turn to inelastic collisions of the type 4t — xnt!?
where the incident proton collides inelastically. The same impact
parameter Db + g is used for the incident proton and the outgoing
x particle. Let us assume that the production takes place on nucleon
number Jj and that the position of this nucleon is fj = (gj,zj). The
profile function r}x for the p — x production can»in many cases

be taken in a form analogous to elastic scattering, i.e.,



- ‘p‘ it/la

{'P*Li) = &‘r °’er ')pu e | (2.21)

-2 .
- -5 /"o‘ x ‘
(;x(b) = My’ e ¢ AR o ‘(‘2.22‘)‘

In the elastic scattering itself we must now distinguish between elastic
scattering before and after the production. For targét" nucleon number
t the scattering is a proton-nucleon scattering if the scattering takes
place before the production, i.e., when Zt< Zj’ and an x nucleon
scattering if the scattering takes place after the production, i.e.,

when Zt> Zj' The elastic profile function for nucleon t 1is thus
N I - - I E_’ N - l .
f;(‘»*{‘,st)-e(is 2t (lbri-500(-%) , (2.23)

where the elastic x nucleon profile function is assumed to have the

form

- -%/a S BN
() =19,c¢ [2e, : (2.24)

Neglecting double inelastic collisions of the proton the final profile

function becomes

T A = .3,z “1\;(15’?{) - § =
(i) = B B i) O o -4
T

T U0 G-E -5 1 (- F B E- 2100 4 G- G0 @3]
ML (2.25)

Here we have also taken into account the possibility of a non-vanishing
longitudinal momentum transfer qL, where production on different

nucleons has to be multiplied by different phase factors exp[:iqL(Z_]_E)],
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30 =~ COHERENT ELASTIC SCATTERING

In coherent elastic scattering the nucleus remains in its
ground state. In our formula (2.3) we thus put ‘i’ =‘P‘ and ¢f=<t'
and get

LA LR 2
Fc‘a(l) = :;!‘ XJ. be S&*'H’@')\ ) "C)d. (E,E) (3.1a)

-F‘d(i,i) =]~ <t \u?[ach('i,s,s,,...,g)] 1£> . (3.1b)
)

We now introduce the quantity z1('6,§), which in the following will

play an important role, through the definition

&P [1‘(2,3)] = 4{\ Q’LP‘." 1‘4‘{(£I§).‘\)"‘) EA)} 2 . (3.2)

Using separable wave functions (2.13) and the target thickness appro-

ximation (2.18) we have

ep L Z,(5,0]= (-5 Wan TULE) +nan®-T(H)-e /Ma 1A
- R L .
= ep \‘-IRO.D T’_(.\:,S) +Nawy Tl ) e ] , o)

where we have defined the deuteron target thickness Tz(B,E) as

T (53 = T(B+§)+T(b-1) . (5.4)
We thus have
_ - -3y
2,(83) =-2%an Ty(5,3) +Tant T(b)-e R (3.5)
It is convenient to rewrite (3.1) in the form
FC,.J. (i) = F;(i)"" Fc(i) ) (3.65)
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F,q) =+ [&. e,ik Se(x le@) - {l— exp[-2May T, (5,3)] )’

6 amn A (3. Gb)
% 4 b
&)= 1,_-;*‘5“ A AS VLA FYEN 1  expl-rray T (3,3)]x -

x iuPqu’ TE):e* /\h] -1 } .

These expressions are rather complicated and a direct evaluation is
very difficult. We need an approximation scheme in which at least some
of the integrations can be performed analytically. The method which
was used in the past was to expand the amplitude in a multiple scatter-
ing series. This works very well for eclipse terms but for other terms
great difficulties are encountered. The series is slowly convergent and
the calculations of higher order terms is numericglly difficult. We
therefore propose a new approximation scheme where the zero order term
does not correspond to the impulse approximation but rather to the pas-
sage of the deuteron as a whole at impact parameter 5, i.e., both
proton and neutron have this impact parameter. The higher order cor-
rection terms then correct for the true impact parameters of proton

and neutron.

We now proceed to a detailed calculation of Fo(a) using
our method. We neglect the imaginary part of ¥) and put 41Iat):=61
We expand the deuteron target thickness TQ(B,E) around the point

= 0. First order derivatives vanish and the expansion up to second

order gives

T8 = 2TE) + § GYSTE +.- : (3.7)

We furthermore expand the exponential in (3.6b) and get
ecpl-wran Ty (5,5)] = tx?bc‘v(m-{1—%‘~(ﬁ7)“r(s)+...} “(5.8)

The first term does not depend on the deuteron co-ordinates and in the
second term the dependence is very simple. It can be evaluated for any

spherically symmetric deuteron wave function,
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- 2 -
Sd*\?(‘)\ (V) T(b) = (")'3'4" Z ) (5.9)
where l& is the two-dimensional Laplace operator
oy _dTB) L AT(S)
AT === v o 0 (310

For a wave function of Gaussian shape as in (2.15) we have
3 X, _2m/i Z - ‘
[ lem | (x0T =R, - = AT(®) . (3.11)

We are now in a position to evaluate the main contributions to Fo(a).
After some simplifications we get

R@=FEI+FH G+ ) (5.128)

F, (@ =i%, Joan F0 4= eplomibl |

o (3.12D)

R -¢T(b)
R, (3) -1“2&% Lih'l (q.b)- ‘e CAT(S) (3.12¢)

N

The remaining integration must be done numerically. If higher accuracy
should be needed then one has to include higher order terms in the

expansions (3.7) and (3.8).

We now come to the evaluation of the eclipse term Fo(a)
in (3.60). As was already discussed in Section 2, this term comes
from scattering processes where both the protocn and the neutron in
the deuteron scatter on the same target nucleon. Such a contribution
can be significant only when proton and neutron are close to each
other and within the range of the nucleon forces. This is brought
about by the additional factor exp[}52/4é]’ which tells us that
the last factor in the integral (3.60) is zero unless 52:$4a. In the
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deuteron target thickness T2(B,§) it is therefore not necessary to
use an expansion of the type (3.7), but we can neglect the s depen-

dence altogether and put T,.(b,s) ~ 27(b). This approximation is similar

2
to the target thickness approximation of (2.18). We expand the exponen-—
tial in (3.60) and perform the integral over the deuteron wave function.

For a Gaussian wave function

-3/ Ma

\ |
L (3 = , .
§a*s le )l ‘e T (e (3.13)

and thus

o - T(b)
F“i‘ K A : ug,](q_t) e Tv)-e o (514)

LY (RN o

The three terms (3.12b), (3.120) and (3.14) should suffice for most

practical purposes.

The integrated coherent cross-section ch o1 cen conveniently
’

be calculated with our method. From (2.4) and (3.1) we get

_ 2
%)&a gtf’b»l Sa¥s lQ(i)lz'i‘l- %l%‘(bpi)l } I = (3.15)
S&Lbﬁ'(‘&(-b‘) *

This expression is treated as those above. The deuteron target thickness
in Z1 is expanded as in (3.7) and (3.8) and the eclipse term in Z1 is
expanded as in (3.6c). This gives

- (k) o Ry 22— T
% o (B -[11- ST} o® (b){c' 2 AT(E) e e T(E) |

_,.-r(;)} {-5'1‘(\) -1.«1'(5)}

={l-e

(3.16)

io'Ea AT(E) ...i. f‘;—;—-—;“ c*T(b)} 4.

The result is most elegantly expressed in terms of "effective nucleon

numbers" defined by

) (3.17a)
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~eT(s)
N& (o) = jd b (o"!'(b)) T(B) e”

) (3.17b)

T
ch jd\,(c'r(ﬁ)) M’(b)ec. )<3.17c>

ML (¢) = (&-\)'

NO and Nk were already introduced by Glauber in his discussion of
proton-nucleon collisions. Mk is a new nucleon number particular for
our problem. The numerical values for the nucleon numbers relevant for
our discussion are given in the Tables in the Appendix. The leading

terms in the coherent cross-section (3.15) can now be written as

o, g =4O [N (o) = N (ae)] + Lo [ M, (6) - M (2]

~%0- Ny &) - N(2o)) - (3.18)

4
‘ 1 Kdl%a

The two correction terms to the zero order term are very small. The
first one is about 6% and the eclipse correcticn only about 2%. Our

expansion technique thus gives a rapidly convergent result.

We conclude this Section with a few remarks on the connection
with the usual multiple scattering approach. In our formula (3.6b)

for FO we make use of the identity

1- ep EZATEE)41E-DHY]
_{I_Q&P[“'T(b“' )}‘+§.1“u"“-6‘1‘(b g)]}
et S TE DT e FETEDIY

(3.19)

to decompose the amplitude FO into three terms

Fo = FP+FM- BF . (3.20)



In this way each term gets a direct physical interpretation in terms

of proton-nucleus and neutron-nucleus scattering prccesses. Fp and

Fn are single scattering terms whereas S'F is a double scattering
term. However, as the target in a composite system, these single and
double scattering terms do not give the whole amplitude. The eclipse
term Fe rust te added. This must always be kept in mind when cal-
culating deuteron-nucleuvs amplitudes from phenomenological proton-

nucleus amplitudes and some kind of multiple scattering theory.

After some simplifications the following expressions for the

amplitudes of (3.20) are obtained

R «ad
F_=F. —uf[: , Ra S"‘l’}(ib){\‘ur‘-"?“’)]} (501

Q‘I{t . \ t R T . 1.5 ‘b-
SF = = Livy Sob J.b SL_J.\:._ L(Iﬂ\,* +b ) Io(*gt-..—"‘)“

A
ecpl Lot £ 10 NIRIR LIS

(3. 22)

where IO is the modified Bessel fuwnction of order zero. Roth terms
can be treated numerically and it is thus possible to calculate FO
without approximations. It is more difficuvlt to calculate the inte-
grated coherent cross-section in this approach. Here the single
scattering terms give rise to double integrals and the interferernce
terms between single and double scattering terms give rise to triple
integrals and so on. Our approximation method is therefore better

suited for this problem.
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4. - THE TOTAL CROSS—SECTION

The optical theorem relates the total cross-section to the
imaginary part of the amplitude for coherent elastic scattering in the

forward direction. It reads

4T
o:o‘c——:z. “F

a

(o)

<, ol ) (4.1)

and combining it with Eq. (3.1) we get

PR S FRS PTG TERMRENURD § S

This formula is rewritten as in Section 3. We separate the eclipse
term from the direct scettering term and get
Glo‘t = G"o - O‘e ) (4.3a)
2 3 N T
T, = 2 Re S& b I&x ‘Q(i)‘ ‘U"‘ %[—"“6‘5th5>3)]} )
. 4 . (4.3D)
o = 1 Re Sol bSal X lQ(i)\ TP [-2may T, (b)i)]a

e
xX&P [.l.m')‘). T(’b)_e-'?»‘/*hl -1 } . (4.3c)

For the calculation of G‘O we can now continue on two lines just as
in Section 3. In the old-fashioned multiple scattering approach we
encounter single and double integrals orly which can be treated nume-
rically. As a consequence a direct comparison between our own method,
which uses single integrals only, and the exact result is possible.
The aim of the present Section is to discuss in some detail the accu-
racy and the advantage of our method over the conventional multiple
scattering expansion. In this discussion we shall neglect the ima-

ginary part of ¥) and shall put 41fa.v = o,

‘ We start off with a discussion of the old-fashioned multiple
scattering expansion. We make use of the identity (3.19) to divide the
direct scattering term d’o into single and double scattering terms.

After‘some simplifications of the double scattering term we arrive at
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O = Tp T -8« ) (4.4a)

5, =0, =X Si‘bh—urt-‘f-T(Hl} =sNolzody ()

o‘-—;:-.SL 2, SL 1T, b‘) eep L= U 481

4
" {\- ecp [-%‘\‘(kﬂ]}'{\—%‘-‘%T(b“ﬂ}  (4.4c)
Le SN (-\58) .

Here cfp and Crn are the total cross-sections for the scattering
of a proton and a neutron respectively on the nucleus at hand. The
term 80’ s which is positive, corrects for the presence of double

scattering contributions. As a result
\ 1 o
o, = lo‘(_No(I@)*gN(IG‘)] . (4.5)

The relevant effective nucleon numbers NO and SN are given in the
Tables in the Appendix. It is immediately seen that the double scatter-
ing is very important and that its importance increases with the atomic

number. For heavy nuclei it is as much as 60% of o’o itself.

The eclipse term o’e is treated as in Section 3. | The pre-
sence of the additional exponential exp[:—52/4a:[ in (4.3c) implies
that the contributions to the integral predominantly come from a region
of small s wvalues, s((Rd. The s dependence in the deuteron target
thickness can be neglected and we can put Tz(l_),g) ~ T2(5,O)o Upon

expanding the exponential the eclipse term contributes

c"l‘('B)
o = Tans . 2 Udb TS e
=c'-'-:-‘. A - Ny(o) % .. . (4.6)

1"‘2:/‘4 '
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Thus we find that the eclipse term is in fact a rather small correction
to the main term o"o° Its magnitude is in the region 1—4% and it is
more important for light nuclei than for heavy nuclei. For a correction
term of this magnitude the very small error committed in the approxima-

tion of the deuteron target thickness is certainly negligible.

We now turn to our own approximation method for ¢’ o
Expanding as in (3.7) and (3.8) the first non-vanishing terms become
k8
o, = 2 J4'b {1-—«;[«1‘&)1-(\-0'3.:.’ BT+
\

= Le [N, (o) ¢ M1(d)+..,1 , (4.7)

From the numerical values in the Appendix we conclude that M1 is a
10% correction to No independent of atomic number. In order to get
the total cross-section we must add, to (4.7), the eclipse contribution

(4.6) just as in the previous approach.

In Table II, the predictions of our formula (4.7) are compared
with the exact results (4.5). It is clearly seen that in the conventional
multiple scattering approach the double scattering gives a substantial
contribution ON(3€) which increases from 30% for light nuclei to
60% for heavy nuclei. On the other hand, in our approach the first
correction term M1(¢f) ‘stays constant about 10%. Comparing the total
result we see that our approximation (4.7) is as good as 2% for heavy
nuclei and 3% for light nuclei. Our figures are always below the exact
values. This is not so astonishing as the neglected terms give positive
contributions. They include higher order terms in the MacLaurin expan-
sion (3.7) as well as higher order terms in the expansion of the expo-
nential (3.8).

The good agreement obtained for the total cross-section
indicates that our approximation scheme is a good starting point for

treating deuteron-nucleus collisions.
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A =27 A = 64
exact approx. exact approx.
17.04 12.23 32.84 21.51
13.28 13.56 23,20 23.72
A = 108 A = 208
exact approx. exact approx.
48.06 29.98 T76.34 45.24
"15087 2089 "28.11 3093
32.19 3287 48.23% 49.17
Table II : Comparison between the exact formulae

NO(%O) - §nvEe) and our approxi-
mation NO( o) + M1(6') for @ = 40 mb.
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5. = INCOHERENT ELASTIC SCATTERING ¢ DIFFERENTIAL CROSS-SECTION

At small scattering angles the elastically scattered deuterons
come mainly from coherent scattering, where the nucleus remains in its
ground state. This part of the amplitude falls off very fast with increa-
sing angle and the slope is determined by the nuclear form factor. At
larger angles the incoherent scattering will take oVer, i.e:, scattering
processes where the state of the nucleus is_changed; The incoherent
amplitude has a structure which differs from the corresponding proton-
nucleus amplitude. In the deuteron case we first find an intermediate
angular region where the slope of the amplitude is determined by the
deuteron form factor and then for larger angles the region where the
slope is determined by the slope of the nucleon-nucleon amplitude. The
aim of the present Section is to show how this qualitétive behaviour is
obtained from our model. As differential cross-sections have not so far

been measured we do not aim at a complete treatment.

We first consider elastic deuteron scaﬁtering summed over all

target states as obtained from (2.1)

des, =“~; "’S& ' ‘id’;‘).‘

Zu»e\r‘(b T, Fa) 4> L T (bR T, - m\&b(s )

When the average energy transferred to the target is small we can use

the closure approximation

Tigset'l= ):_‘1" (v,, ST (Rt ) = SE-w) ...S(Z\‘;‘;a)
< .

to simplify this expression. The incoherent cross—-section is obtained

upon subtracting the coherent part as given by (3 1) We get

I,el E& SaCL}AL ~1 \’)Sc\‘lge(,‘)\ S&x \le“)‘ ';U?\)SK)
AL 4>

3L EF;5.8) = P HERS,L T PR, 70 14>
— & PR, EE ‘) 1t > 46\T (5,7, %,-5Fa) 162« (5.50)

de.

(5.3a)
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Now, invoking the formula (2.5) for the profile function we see that
terms linear in eXp[;)itot

cancel due to the normalization property
of the nuclear wave functions.

We are left with two terms

'F;(Q,L'j'i,i‘)r.(!:\%i’f.“"x (B33 80 )] eep Lid ( (£,5,%,,,30)1 14 >

-{t \txg[-ui**(\’ 33 s\, ,3p.)] > 4«""\&({[\ (b 5,59 S

(5.4)

The last term comes from the coherent scattering and was already cal-

culated in Section 3% where we introduced the notation

<{\Q&?L‘.’y"lwf(g,?,?h...)gk)] l* > = &? Lz‘(Bis )l (5.5)

The first term which originates from the incoherent part is more com-

plicated but is calculated in the same way as (5.5). Feeding in
(2.12) we get

<tlegpl- 7(- Y s,sh.A.,‘:.A)].u‘,L&%M(1,3,;“,_,;5A)l 1>

-ufti"("")*r?-“h“] ep LE (B BT, (5.6)

where \ v &2 = 2 -
-l (Vi3 LIS U S YR 3
-_ 3 - * J.q.( ™ % # ‘Z&IU”E‘&\
2,553 = ASLO eGF0-Lote +9-e
) S _3.\2
- ) ——L 4=~
,r,)u._e-%; (E‘-m-*/h]{ e i
L (5-7)
< C\,-—S.:-'E \1 L (b8 ) - Ta
the W X e ®
This expression is evaluated in the target thickness approximation
(2.18). In order to clearly expose the symmetry in the primed and
unprimed variables we introduce two new shorthand notations,
= .7 -
E= s Bib 54t 5-b 4 I3 )]
B35, =T( ) op [ 5= (B + 52
X( $0°) ( ﬂ ) |4 ) (5.8)
- ) T b 7.
YE3E) =7( 2k S el BE-E -3

) (5.9)
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and can then write

=in+%\x*1z‘+ 12"' ! (5.10a)
- v, T=.7\ 2 --Z"'-' --"--"3'
ELES el (CERRIED (R VSR> 1Y )5)5)"3(""(;’;%))} )
£, =-EralP LY @t YEHENE (5-100)
1,,=-Evabi o {YEFB+Y TYETS I S (5.104)
b T .1 -2,=12
$ae = f;-_' ‘q T(M ) e (l> b)*- “T st )] (5.10e)

Here index 2 refers to eclipse terms. Using this artillery of notation

the incoherent elastic cross-section can be written

do; 3b-%) ., N
Sl h Jvdve? ) [ | g™ fast Jelsn 1™ -
43 ‘11‘-

PIRETIIORS RS BN ENCOE RN,

(5.11)

This is a rather complicated expression. Nevertheless we want to show
that through series expansions and approximations it is possible to
calculate the multidimensional integrals and essentially boil them down
to the effective nucleon numbers introduced in Section 3. This is

achieved by expanding the whole exponential 2 and the eclipse term

2

of Z1. We calculate these contributions term by term.

A - First order in ZZ' Zero order in eclipse term.

This term is given by

dot” 2

%
1)0(: \‘&t Y&zbibe
A h

1(5 b

sd‘ls\q(t‘)\" Sdzs‘ lq(z')\"; (5.12)

&uFL-'LTI w')*Tz(;:"‘)— ').Tab)'-\‘z(;)ﬂl * 13’0.;);')-5)3 ) .
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We make a further subdivision and calculate separately each of the terms

in our decomposition (5.10) of Z and start with the biggest term.

2’

1) The term 7.,

We first note that TQ(B,E) = TQ(B,-E). Therefore the four

terms in the decomposition (5.10b) can all be transformed to the first

one. We get

kN N E
S, -i:_....qun)\ 1o Lo ¥
X

b')
S&zs letx)[* Sdzs' | (8" \7. -
) ] (5.13a)

)

s t{v[f‘” (- e

c v < 1)

E = epl-1ray T, (5,2 -may Tt(if‘)l"‘gh‘("%ﬁqi')gﬂ%&. I3 )}
(5.13b)

We now want to show that the main contribution to the integral (5.13a)
comes from the region s ~ s' and b w~ 5', a fact which allows us to
perform some of the integrations explicitly. We first note that due to
the exponential damping factor in (5.13a) the b integral can be
performed in the target thickness approximation. In E: we thus put

b = b + (s-s8')/2 and get after integration
L’

Sum el a ] fot S s el T e

el 52

We now come to the second approximation and then first note that

(5.14)

i

pOlari iy \‘?( Ol e ( ) I (5.15)

The damping factor in .(s-s!') is not as powerful as before. We only
have the damping provided by the deuteron wave function. But we also

have an oscillating factor exp[}ia‘(g—g')/él. Thus we conclude that
for large values of q, i.e., in the incoherent region, the main con-

tribution for (5.14) will come from the region 5 x 5'. In [} we

therefore put s = s!', and combining this with our previous findings

we also have b = b'. Performing the integral over s — s' we are left
with
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T

kd 2 -2 K; —
T em—— . - . Q'+ —) . x

X,= [ [os lgat ek By R ANER). (4

Using the methods of (3.7) and (3.8) we have

X.i = NA‘LLG‘)"l‘La,‘.MnU'«)‘ HZ(LG‘)l (5.18)

All the relevant effective nucleon numbers are found in the Tables in

the Appendix.

2) The_terms 7,, _and__7,,
We use the symmetry property TZ(B,E) = TQ(B,—g) to write
the contribution from Z12 as
) N ., z
S, =—-'§* ‘;mv,\* + {2b Lo ’*‘E")Va‘s\ce(z)\‘fd‘s' le(x)1™-
3 LR B (5.19)
‘Qkf t"‘ ( & "q;, ] — )
where this time
o TEp] TR )
&P&-mq\) ‘(L s) ?.Troug 55)] "“ (5.20)

The contribution from 2 is related to A varigble transform-

_ 21 S12'

ation and a simultaneous conjugation show that
'y

Su = Sn . (5.21)

The two exponential damping factors in (5.19) allow us to perform the

s' and D! integrals in the target thickness approximation. We get
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X
& J 1
S ::--—‘!‘-*--[‘hrq Lot - epl-2ag2]«
\u “1_ N ')l P 1+23,\l‘ E[ N 1] ‘
M (5.22)
* Sd"b Sd‘s\y(a) \z-eqab“; 3zl =
— - - R
where in the new function =, we have put s! =0 and b!' = b + s/2.

The s integration is similar to the integration over s-s' in (5.14).
Due to the oscillating exponential and the démping effect of the deuteron
wave function the integral (5.22) receives its main contribution from the

region s ~ 0. In this approximation

S = - § e T PEA N 1 . Q?L—ﬁf'(sq-\— ®d )']
¢ %2 Na ) e ,
(5.23)
‘S&lb Q?L-Xﬂ'a. 2&.\) T(E)IT(E) .
Collecting the contributions from S,]2 and 821 we get
ey ‘
R ! _=t(3
S +S L |4raghten N(z.o-) expl- (-u )J
SRC T ERRTT M P ©(5.24)
2

For the values a =7 GeV © and & =40 mb of (2.11). we have

R 1
2 — = O.1o (5.25)
% 1‘(‘ 24./‘(« ~
and therefore 812 + 821 is, in the region |t| S Oe1 'GeV2, at most

a 25% correction to the main term S11 in (5.16).

3) The_term_Z,,

We now have

S = ’;* x it 524 G0 < VP (glalett lws')l"

1‘

TEE) gl b B mED ] )
gl G- 1
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This is straightforward. The integrals b', s and s' can be performed

in the target thickness approximation. In the deuteron target thickness

we thus put b!' = s = s' = 0. After integration
S . = f-:-'-..\\mm)\?‘. ‘Zf. ‘.‘ -lz}] (Lc\l-u)e \."’.;_a'i"'l ’
22 ywt 1 S14RiNa ' (5.27)
For a=17GeV > and & = 40 mb we have
2.
2
.l.E.\.[——l——:‘"“‘] = 0.003( . (5.28)
e LA A FYET

As a consequence, in the region |t| & 0.1 Gev? we find that S50

is much smaller than S For larger angles the situation changes

11°

radically. 822 depends only on the nucleon-nucleon amplitudes whereas

S“, 812 and S21 depend also on the deuteron form factor. In fact

already at -t = 0.3 GeV2 we find that 322 is of the same magnitude

as these amplitudes.

We now come to the higher order terms in our expansions.

They can be calculated with the techniques described above.

B - First order in Z2. First order in eclipse term.

This term is obtained from (5.12) through the replacement

- - e 2 t 2
1,(5,9;5,0) Jrag? Thregle 3 147a9™ " T) epl- A § * (5.29)

As above we consider separately the contributions from 2 + 7

Y/
and 55

12 2

1 12 21

1) The_term Z,,

We first note that the additional factor in (5.29) is invariant
under the transformation bz?b', s&s' and a simultaneous complex
conjugation. As it is also invariant under the change s — -s or s! — -s!

we get the contribution
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S, = ’“ B imen " Rew®™ [42) 4V c"f(b )
, - -1 - .
‘ Sdsltc‘f)l (45 Lo eep[- iz BRF Y -5 15, (5.50)
- _
i T(.b) ka{-E S"g )‘e-‘(f[‘?-““")"‘z(b;;)'lw“)* Tt[g;s')] (5.31)
A translation in Db! gives
R &t \ ‘-_' -\t
Su= o Wmay L Re o [d LF epligh- 1
<1 _ .3 (5.32)
. Sd‘s l‘eliﬂtxd‘“ \Y(g\){‘.q‘[-%"-\ . - 1 =

From this expression we immediately conclude that the main contribution

to the integral comes from the region b! 0, or in the original for-

mula (5.30) from the region b'! = b and S = s' = 0. Exploiting this
fact all integrations are straightforward in our approximation. For real

9 we get the result

Su = )"& \‘-U\"N)["- 2-;‘-——-‘ . N; (Lcﬂ .

s 2 Hc‘/-m
11 _ (5.33)

cep L-F Lot

lb "@4"(«/&‘\

2) The terms Z,, _and_ %,

We first note that Z21 - Z12 through a simultaneous

complex conjugation and interchange of b and b' and of s and s'.

As the new factor in (5.29) is invariant under this transformation, we

get 3(2 -%)

e, e &&
$L+SU )

\1: V)\ Re v 517'5 be

= 32 | _12
F (gl [t le@) P e b5 E3-EV-53 (5. 50)

[ 2T (5) e =T N w “PE) ¢ -® "'“] = )
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- ol
=T{-§;-}: 2). Q&Y[-a.‘t«') T (,b,?)«?.l‘\V)T;(h,s)]

L |

a - (5.35)

The first term in (5.34) contains exponential damping factors in

and b-b?¥,

whereas the second term contains exponential damping fac-
tors in s' and Db-b' but an oscillating damping factor in s (in
addition there is a damping from the deuteron wave function). For both

terms we cocnclude that the approximation scheme developed above can be
applied and we can put b = b' and s = s' =0 in the 3 of (5.35).
The integrations are then straightforward and we get for real*q
*
e e ’t % lv)\
£58 == 2 Juma N, (26) e --

1
L | . =y -~
[STPESTIRE u"\, RO TI )]*‘\ ST "‘(": 1}(5 36)

LY

3) The term Z,,

We now get

t 2qlb- )
s& =% AR vayt [ & bed® ®) Tl § & et
‘n"
.2.«‘,{_—- GU) =L, 3+ 91 - 1, (5.37)
o= T(E\‘T(.’{:, ) exp Lozmay? Ta(B)5) - 2man T (5,9 ] (5.38)

We have exponential damping factors in b-b', § and s' and therefore
-y

o in (5.38) can be evaluated at b = b', s = s' = 0. The integration

gives for real V) the result

e f.: 2 ‘0 A - (2
> = ;r"‘H“’l 3, (\-H’-a/u) (14 9~a.)~|u) b 6)" '-'(.5.39)

. Q:(? L=a i'.ll,]
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Again we have a term where the slope depends only on the nucleon-nucleon

amplitude and which therefore is'impOrtant for large t .values, It is
55,5 85, and S5, at -t = 0.35 GeV2. The

21
slope for ng is the same as for S but as Se

22’ 22
correction to 822 its absolute magnitude is smaller.

comparable in magnitude to

is an eclipse

C - Second order in Z2. Zero order in eclipse term.

Upon expansion we have

i .
1= i,.+1% \ (5.40)
where the contribution to be calculated in this Section comes from Zg.
We have
XD
l:: o 3‘(4.\\“'1 11\*17_1.)

. 1 -
S "f. {lk + 43, (%\1*22\) + (2\{" %u‘t"\‘ L) T + 2‘(2’".* LAY )%“+2“§<5.41)

We shall only consider the term Z§1, which is the most imporfant one.

Due to the symmetry of Z11 in the variables s and s' we have
THISY) .
= LT P, "‘ e (b LY e 3 )Sa‘s\qml‘ d's he(zH?
ep [-27m 9% '[‘,_(s, ) -zray T (B,0)] TEE +“‘ EEMISAC S S
< =) oz = -3\ qiy 3+s’
LS ) ot RO TR 1),

S

(5.42)
- --;.‘ T ) -', ---\ ’*-) .
'Q%&.%a(b‘e_sf )‘l*'lq‘(b%-&-x.ﬂf ).u‘;[- ‘Eq(b b 5_,:3 ) 1}

The three terms present have different structure. In the first one we
first evaluate the Db' integral in the target thickness approximation
and then the = (s=s') integral by exploiting (5.15) and the oscillating

exponential factor. For real \7 this gives

I,= ‘_‘:‘; A4vay \* .-. wp (-§ (“* = )] ? ) (5.43)
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P\ = T Sd.ix Sd}s \?(i)\t""tﬁ’)'u‘(-«?“\- d T(;-% ) 1 * (5.44)

The integral defining P1 does not exhibit the nice symmetry in s
found in all previous cases but it can of course be treated with our

expansion methods. We get
X = 2
T REERCE A LT (5.45)
)

= N?. (_2_4—) — MB (a5) +

We now come to the middle term in (5.42). This is the most
interesting one. The b' and (s-s') integrals are performed in the

target thickness approximation. We also use (5.15) and find for real )

£y A
I.= ;;‘-‘W o u.' \+Ry 14F2 Na

%‘."“1'1-1 P ) (5.46)

-

P, = E& b 345\‘(’“)‘ &VL-O'T (5,9] 7 (5+3 ) T(b- i) (5.47)
Also P2 has a new structure. The usual methods give
P, = Ny (20) + M, (3) =My (26) ... G

Finally, in the last term of (5.42) the b' and s!' integrals
are performed in the target th;ckness approximation and the s integral

with the aid of the oscillating exponential factor, yielding

‘k‘l.
n 4 a ,
T 3= My ™ T H%lls * Ny (24) 0«\»{ (-,_'v )} (5.49)

Collecting all the terms

Sneyg = HtTatIs (5.50)
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The most interesting term in (5.50) is I2. It does not
contain the deuteron form factor and is therefore the only term in
(5.50) which survives at large momentum transfers. It has the same
slope as §,, and SZZ of (5.27) and (5.39) respectively, but it is
in fact about four times bigger than 522.

We also remark that terms containing the deuteron form factor
decrease rather fast with increasing momentum transfer. Already at
-t = 0.5 GeV2 we find that 12 is ten times bigger than those contri-
butions to the cross-section which contain the deuteron form factor.
However, for such large momentum transfers one should also look at

higher order contributions before comparing with experimental data.

6. - INCOHERENT ELASTIC SCATTERING : TOTAL CROSS-SECTION

Integrating the differential cross-secticn (5.11) over solid

angle we get the total cross-section
o = 3D [&s le@T a8 e expl 22 (BR)H (] -

‘{uﬂ,‘[z@,‘!;&‘s')}— ‘} y (6.1)

where the notations were explained in Section 5. The evaluation of

this expression goes as before. We expand exp[Zz:l and the eclipse
part of exp[21:1. In this way each term in the series obtzined can
be expressed in effective nucleon numbers. In the following we will
not give the detailed evaluation of every term in the expansion. For
those terms where the calculation is straightforward we only zive the
results whereas terms with new features are given in some detail. We

calculate terms down to contributions of 2%.
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A - Pirst order in Z2. Zero order in eclipse terms.

Straightforward integration gives, when the imaginary part
of 9 is neglected,

* x,‘ s (6.2)

Uh = 0 -

1*Rz/81

I; = "5‘. Sdbf&‘;\vp(!)\"?(b’r)(‘?‘ oT, (\;,ﬁ ]

= N (2e) + ;‘.M|("<’)"Mzu‘)1 N (6.3)
€, 40, -6 = .q% A — ~— + N, (2¢)
DR 30 TWRS e R ye ! ) (6.4)
£ A
- lv - & * ¢
O, = % [ =1 M9 (6.5)

1?“‘,%«

It is interesting to note that these partial cross-sections are equal
to the corresponding integrated partial differential cross-sections
given in Section 5.

B - Pirst order in 2 First order in eclipse terms.

20

These terms are the eclipse corrections to those listed

under A. We have
NIER] AP ')5 (d* 1455 1@t 1A' \Q(i‘)f‘
- v ™ - -.L
e L-E TR (B3 -E T8 @] - 71 (6.6)
UL (CE P LTEMTE BT 38) b
Here we argue that due to the second exponential damping factor s x st

and due to the first one s ~ 0. Thus we can put s = s! = 0 in the

deuteron target thickness. This yields

1,
6'“e -o. 2. A v N, (zo') . (6.7)

C&
[1+ X +”L
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In the remaining eclipse terms the damping factors appear separately

in s and s'. We find
e e
T * O = -e"- - Na, (26 -
L 2 A LA 1 (6-8)
4R35 /20 113 [Na el na 1HR] [2a

Zero order in eclipse terms.

C - Second order in Z2.
The first term becomes after rearrangement
<

(wc.v,'-]" Sd b Sds\qls)l SJ.;' \ce(g')lz'.u‘)\: ;1‘1“’ 3)-< T.(5 0]

\&\
- 3-3! N Y :
4T ) b RGE NI NE ) 622 (69)

_ us 3-3' 12

-Q_e,\o[ wls H-a( ) ] } .
Here the second term is trivial
- ' : ,

) (6.10)

T V 4 ! A
: A reynl %t el Ny (ao) |

—
Tuxn —

SatbSd‘slupls)l‘-T:(E,%)-in“¢T;( =1 o
(6.11)

2 Ny (26) +1 T M (28) -y )]

The following terms are again straightforward

A
6.lhth.-\-z.\) 3 ‘) ‘_\.g. 1 - qS'_" R}_ 17' N"‘z’) ) (6.12)
¢ —- : + - N
o—mn.m(mu) 9 Ly 1485 [ea W E:Iu 1+ 11’/3;&1] 2l29) . (6.13)

First order in eclipse terms

D - Second order in 22
Here only the eclipse correction to (6.10) is of importance,

A A
¥ 18] /g0 1+3R} In] N3 (20) .
(6.14)

e ¢
I\*\\ l.“ "\Hﬁa/qalz f-‘ [u
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E - Third order in Z2. Zero order in eclipse terms.

Only 0)11x11x11 is of interest and it requires special

attention. After some trivial rearrangements it can be written

Toeunn = 5 Taq2)2 S0 S le @ [ Lo ep HEMB)] TL60] -
7 - 743 3-3) - T8 - o=l .
0{?:((.,5_%; )Qrt’q’;(? '-1 +3T|:(L) S_::‘ )‘Tl(bis ¥ ) ) (6 15)

z
z <! ~“f“|

The last term is trivial but the first one needs special care. We get

3 1 <! 3 A
S PR . Ny Lo |
Tonnnn® % 10 LTvTer g B0 +1+%’;Hq t+ Ra[ga 3 1 (6.16)

\

Ty= & I8 ]Gl T (5.4) wl-oTalb, )]

= N (2a) + 3 I M 20 —My(20) . (6.17)

Finally we comment on the relative magnitude of the different terms.

The leading one is of course < Next we have © + 0oy and

11° 12
6‘?1, each in the region of 13%. As they have opposite sign only

a few per cent survive in the difference. Next we have 6‘11x11

which is about 10% but is much diminished by the joint action of

e
S 1op01 24 Sy (12421)°
a sign opposite to that of Cf1

that each contributes about 5% but with
1x11° The remaining terms are smaller
than 3% of 0‘11. Adding all terms together we find that the true

correction to 0411 is in fact much smaller than 10%.

Comparing the total incoherent cross-section with the total
coherent cross—-section we see that the incoherent one is much smaller
than the coherent one. For light nuclei it is about 5% of the coherent

one and for heavy nuclei it is only 2%.
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Te - COHERENT DIFFRACTIVE DISSOCIATION

In the coherent dissociation process the deuteron disihtegrates
into a proton and a neutron whereas the nucleus remains in its ground
state. Such processes are expected to give small cross-sections. In
our approach the coherent dissociation cross-section comes out as a
difference between two rather big numbers and much care is therefore
necessary. We shall show that our apprOXimafion scheme allows a cal-
culation of the magnitude of the coherent dissociation errors to a

reasonable accuracy.

First we use the closure approximation to calculate the sum
of the coherent dissociation and coherent elastic cross-section. Then
we subtract the coherent elastic part to get the coherent dissociation
part. The amplitude for a process which changes the deuteron state from
Id? to ld'> - but leaves the nucleus intact is according to (2.1)
and (2.5)

B (q)= 5. (i e

ol

A= el bt (3,3,5,., 301 >
- ik {d's A W eptz (BD1Y 1> (7.1)

where the last step follows from the definition (3.2). Using (2.4) we

obtain the integrated cross-section as
%t Tt =L 10 Gl G 'S
| -tz B0} e (7.2)

We now apply the closure relation
»* . - - < o
L ¢, @) () = 3(¢-+) > (7.3)
al
and get

6wt Se diss = D [ @t (M| 1-epl 2,301 |© L (1.4)
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We now subtract the coherent elastic cross-section as given by (3.5).
Terms linear in exp[21:] cancel due to the normalization property

of the nuclear wave functions and we are left with
=18 [ S 1ot |enf b ) = (4% eta \,%LS')\"]
% = M L5\ | e lby s e\ el bs) 1«(7.5)

This expression is certainly positive but not easy to evaluate.

In our attempt to estimate O . we neglect as usual
C,ydiss

the real part of the nucleon-nucleon amplitudes. We also introduce

a few new notations

%,(5,3) = ~e TG+ $2,(5;3) , (7.6)
- .. =t'Na

C2,(,5=-F FT(B3)+e 2 Th)e , (7.7)

§ .53 = T2B6-2TE) . | (7.6)

It is then important to realize that if we expand the exponentials
in the small quantity S'z1, then the linear terms in (7.5) will
cancel identically, i.e., independent of any approximation scheme.

The second order terms in this expansion give

-2 (e - -
e  <Vdber “).[S¢‘s\~,(x)\‘is1,c»\a>& -1 3d% o) 32,0591 J7.9)

(diss

We lump together the eclipse terms in d'g diss and obtain after some
H
calculations
d | 2
S =0 .+ . 7.10
C dass <y diss C)dass ) ( )

| . . ’
o;:u“ = %'t fa'b ¢ um)-UcL"slvm\‘ BLEY - {14 \,{:)\‘S'!‘,tb,:)ﬂm. 11)
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In evaluating (7.12) we have used the‘fact that when S.T2 and eclipse
terms appear on the same time in a deuteron_intégral the result is zero.
Putting in numerical values for the effective nucleon numbers we find
that © 5 is about 4 mb for Pb and 1 mb for Al, indeed =

C,dis
small contrlbut ion.

We shall now try to give a reasonable estimate of & C ,diss®

In S T (b s) we then keep the first term in the MacLaurin expanslon
ST (b,s) = ~($V) T(b) . (7.13)

The second term in (7.9) has already been calculated in this approxi-

mation, but in the first one we meet a new kind of average, namely

d ?(b) oL J-le)} X (7.14)

[Eqml [ErPrEl =y L {am e {2 A0

In ocur Gaussian wave function
s = LR
{3'> = 8 . (7.15)
If we introduce a new effective nucleon number

3

%2 ~sT(E) ) > (5) =
SM(o-):«QN’)Snb {&‘Nb\ !J.Ib k 1 (7.16)

v b

we can write

s ° oS M, (20) - (7.17)
C)a‘:“ ' .
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Numerical values of S MO(ZG') are given in the Appendix.
They clearly indicate that the coherent dissociation is not completely
negligible as SMO(ZG') is about 0.4 for Al and raises to about 1.3
for Pb. Therefore the eclipse correction as given by (7.12) is very
small, being only 6% of ‘d'g,diss' A word of caution is also necessary.
The coherent dissociation cross-section comes out as a difference
between two big numbers and becomes very sensitive to the deuteron
wave function. Use of a more realistic wave function can therefore

affect our predictions.

The diffractive dissociation due to the Coulomb interaction
was calculgted by Akhieser and Sitenko 4). At high energies they found

it to be much smaller tkan the coherent dissociation.

8. - INCOHERENT DIFFRACTIVE DISSOCIATION

In an incoherent dissociation process the deuteron disinte-
grates into a proton and a neutron and at the same time the nucleus
changes its state. Such processes are expected to be more important
than the corresponding coherent processes and their magnitude is more
easily estimated in our approximation scheme. The method to obtain
the incoherent dissociation cross-section is similar to the one used
for the coherent case. We first calculate the sum of the incoherent
dissociation and incoherent elastic cross-sections by means of the clo-
sure approximation. Then we subtract the incoherent elastic part to

obtain the incoherent dissociation part.

The amplitude for a process where the deuteron state changes
from [d ) to |d'> and the target state from [t to [t') is
according to (2.1)

iy \"'I o ) - -
e it e - wpli X FEa IO IR S
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We now sum over final deuteron states and all target states different

from the ground state and get after integration

ﬁi‘us;*'°3qd:==
T §d2h k| e -0 (BEa i T e a1 - eq Tk (530 50]Hat>
d'y (8.2)

- }\ [ dt | {1 eqls L)Lze(i,s:?,'),..,'s; ML - e < XM(i,f,i,,.‘,},,)ﬂ 44>

Applying the closure relation for the deuteron states (7.3) as well

as for the nuclear states we obtain

O 4iss ¥ S, ™

fa*p 2at) U-%\,L.;,L:t@,;,;‘,...,r,,n}{1-««1&' X 555, 3D (8. 5)
=5, < all- el it (65,3 ST o s V- e Ay (352 144>

Here terms linear in éxp[i Xtot:[ cancel due to the normalization

property of the nuclear wave functions yielding

GI,MS& =°.'“°-‘..t,¢£, ) (8.4)

S0 = 4% [<dt {op LKy BF Ry SN cp Lt Xy (515,34, ,8a)1 Lde>

~Lat| v.q\:i XL ('\;)f,f,‘).-.,g; )1ty &\ ey A%y, (5,584,551 144>
(8.5)

= (a0 85 | oo 1*-acpLEX (5543 (5,571 4 aplz, (5.5, 531 -ﬂg’

where in the last step use was made of the definitions (3.2) and (5.6).

The incoherent elastic cross—-section cri,el was calculated
in Section 6 and the calculation of o‘o of (8.5) is similar, but
simpler in the respect that only one deuteron integration is present.
Therefore we shall here confine ourselves to listiang the contributions
to o‘o bigger than 2%. The notations for the partial cross-sections

are the same as in Section 6. We get
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Zero order in eclipse terms,
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B - First order in Z2. First order in eclipse terms.
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C - Second order in Z
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¢
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?
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9

A

q
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4

1+ ZRj/sq

1+31€5 /1za

N, (L)

+ v}
1+Ri/Na 1+ RS /2a
- T (b,s)

]

1]

(8.6)

(8.7)
(8.8)

(8.9)

(8.10)

(8.11)

(8.12)
(8.13)
(8.14)

(8.15)
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D - Second order in Zz. First order in eclipse terms.

e 2 1
i = 51‘ ') [_11' R¢/\a+ 1t ¥$Iu+ \+32‘; /*{mlN?‘(“). (8.16)

E - Third order in Zz. Zero order in eclipse terms.

‘) A
o-.um\v.\\ [X3+ "H- %2 H’% Iu» 1+3Qz IQQKN3(M)? )
8,17
2, - (b)s
R, = 5 (b Vs leny A, B0 P Te bE)

(8.18)

® Ny (26) + My (20) =1y (29)

The dominant term is of course G"H. Next in magnitude we have

0‘12+21 and 6.11><11' Each of these terms is about 15% of o,

As they appear with opposite sign they tend to cancel each other

leaving a rest of only a few per cent. Going down in magnitude we
. e

next find ¢ 11 and 0’11x(12+21)’

have opposite sign and therefore give a very small rest. All the

each about 6%. Also these terms

remaining terms are 3% or smaller. In conclusion we find that includ-
ing all the terms listed the correction to the leading term 0"11 is
in fact only about 10%.

We are now in a position to give the incoherent diffractive
dissociation cross-section. According to our formula (8.4) we have to
subtract dI,el from O’O. We will certainly not give all the terms
obtained but only the leading one

d:l.' l.us‘ =d - N‘ (lc‘) {1 -

A5 . 8.19
1+ﬁ&/ga+ ey /“]3 (6:79)

In particular we note that an appreciable part of o’o survives also
after the subtraction of & . If this would not have been the case

I,el
our approximation method would have been rather useless.
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Comparing our predictions for the incoherent and coherent
dissociation cross-sections we see that the coherent one increases more
rapidly with atomic number than does the incoherent one. For light
nuclei the incoherent dissociation cross-section is almost twice as
large as the coherent one whereas for heavy nuclei the coherent dis-

sociation cross—section is slightly bigger than the incoherent one.

9, - COHERENT PRODUCTION AND STRIPPING

We shall now make some comments on coherent production pro-
cesses. We shall then consider the case where, e.g., the proton causes
the production whereas the neutron is scattered elastically. In (2.22)
we used rﬂ < to denote the profile function for production on a single
nucleon, and in (2025) we gave the total profile function for such
reactions. In a coherent production where the nuclear state does not

change we thus obtain the production amplitude
: A ~ : 1
- ite b 19 %1 =T =P (t.5.=1\1.
F.o@ = _w.}i Ll fdhe®” cdle w3) I, bei-55) -t (6551
)=

-

4
‘Py.(t*s;:gs“o(l*’%;)]‘d{ o .

Here ld':> is the final x neutron state. When final state inter-

actions can be neglected we can use the simple plane wave approximation

f(*)- ecpl- ok al . (9.2)

(tw)3'1

As long as we do not distinguish between the different nucleon-
nucleon amplitudes and use separable wave functions for the nucleus then
all terms in (9.1) are in fact equal. Due to the complications intro-

duced by the longitudinal momentum transfer and the © functions the
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integrations over the nuclear wave functions cannot be reduced to
target thickness functions. Only the integrations over the transverse
part of the nucleon variables can be performed. In the usual appro-

ximation we get for the production factor in (9.1)

FEe) = [0 \ e T (B4 -5) - 0G- -5

+$3.)_4a R T SR N T (9.3)
7-‘“,,..‘)»&? 1) - atary ‘)‘?“*i';{;v"ﬂ"‘fl TN

Similar expressions arise from the elastic scattering factors. In

order to get manageable expressions we define

‘ZA;(L)_S-} l-l-) = S &lsk\ ? (;&)\1 {“1-““ (G— ‘;Q)\.\‘\-\‘,(S* ’;'-ik)]- 1} (9 .4)

which yields

Z (") )%*‘='L\’q*v”~ f(b )}-lr) + LTWan: ?(b- )2*)

- - (9.5)
§ A~ - .
SVMCANUAE S axoy ) ) Q&f[ 2(a ta, )-X

a
- A
Ax0,

We also introduce the symbol égnp(zt)’ which is obtained from (9.5)
by the replacement a, — a, Dx:* D . Our amplitude (9.1) now takes

the compact form

Felg) = "" 1db e b folre"‘(‘)cﬂ' Uz SN AFG,3,3)-

-eepl- (- \)YZ (\nz)b — (n- \)SZ (b))%*)&%‘_} . (9.6)

L

This expression is rather complicated. It must also be stressed that
it applies only to a very limited number of production reactions. We
shall not try to analyze it further. Instead we discuss a few special

cases.

In order to exhibit the connection with proton-nuclear col-
lisions we neglect all eclipse terms. If we furthermore neglect the

difference between A-1 and A we obtain



- 44 -

2, -

-(&& 2 \ﬁ; 3 & c <l i)
FLL(?ﬂ = P Yd be Sa P (?)eg(?)-l'i%i < A'?.T«P* Vpw

g (45,3 aploway T B -1H]. (5.7)

, - - po - -
. '.2,?[— ﬁ-lﬂ'«v’ YA}*'?(L"%'\%*) - A"."tk,. X S&l{f(b*i)%k) ]
-vo 2'_,'

The origin of the different factors is easy to trace through their
dependence on the impact parameters. The connection with proton-
nuclear collisions is also clear. The factors containing the proton
impact parameter are exactly those encountered in the proton-nuclear
case. The new elements are the last exponential describing the simul-
taneous elastic scattering of the neutron, and of course, the weighting
over the deuteron wave function. It is the scattering of the neutron
which distorts the neutron momentum distribution. Only the longitu-
dinal component is unaffected by the interaction. Qualitatively, it

is clear that the transverse momentum distribution will be narrower than
in the neutron spectator model, because stripping is larger for deuteron
configurations with large s than for configurations with small s,
since for large s the probability that one particle collides while the
other one escapes is larger. But large s in configuration space

implies small kn in momentum space.

For high energy processes where the longitudinal momentum
transfer can be neglected an additional simplification arises. The

integration over Zj in (9.7) can be performed explicitly and yields

Fg)= gl (b e P lLe ey T2
" £otor-£,(0) ooy
9.8

. iq‘\-ﬁ&*\);\‘\%*gﬂ - ka\-h&v)'\‘(ﬁ-k% )1 } : Qxf[‘n‘l‘)'v(g'g)} .

Of course, also this amplitude has a direct counterpart in proton-

nuclear collisions.

Finally we consider the case | p(E) = ‘1X(5), i.e.,
a_ = a, 5x:= ) . This is not an entirely unrealistic case 1f we re-
member that x is an excited nucleon. The exponential in (9.6) now

reduces to the well known Z1(E,j) of (3.5) and we get
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LAk [ \'EM 2 oo 0 (8) .X.&z' eag,L(z;—’%)
Fag) = Ty ldd e Pldee (D0 (0) 1 7% :

(9.9)

- ARG ) wp(2,(3,0]

When the longitudinal momentum transfer can be neglected the integration
over z. gives target thickness functions. The zero order approximation

becomes very simple

: <3b
Fd@ = «% 2A £, (o) Yb e ' Jis PNCTICE
(9.10)

TR ) -y RGBT,

which is nothing else but the limit %_-hH, a -a of (9.8)

The sum of all coherent production processes of the type
dt - xnt constitutes the coherent stripping. This summation is dif-
ficult to perform in our approach for several reasons. Firstly, the
amount of coherence depends on the longitudinal momentum transfer in
the inelastic p nucleon collision. Only for qL-Rt4$ 1 coherence
will be complete and this will not be the case for all production
reacticns. Secondly, we have several times used the requirement that
the differential production cross-sections are steep, which again is

true only for a limited number of processes.

10. - INCOHERENT PRODUCTION AND STRIPPING

Large angle incoherent production cross-sections are consi-
derably simplified when summed over final states of the target. The
production can then be considered as taking place incoherently from the
individual target nucleons. Here we shall only treat a simplified case
and leave the general one to the interested reader. Thus we neglect
the longitudinal momentum transfer and assume equal elastic scattering

in the initial and final states, i.e., s = n, a = a, where 9 <
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and a_ refer to the produced particle. Then the amplitude for a
production process where the nuclear state changes from |1:> to
lt':) will be

- @e x&a ZS &“’f\’ LAV T55,3)3,., 5044 (10.1)

r‘s"% )E)gh"')EP‘) = P?,_(g*'g'{_’.ga ) L\- F,‘(’B'%-;a \l

= T _ g-_
- -GBS T- G+ 5]
£43

Summing over all final target states and using the closure relation

(5.2) we obtain

DIRl = PR NN

;:l =1

<d£\p (b‘ —\- "'s‘h\\‘!‘>L¢‘ lr‘i(g,g,;w‘_,ik) ldt >

(10.2)

(10.3)

Here the terms with j = j!' constitute the incoherent production
cross-section. Due to our assumption of equal elastic scattering
in the initial and final states, the matrix elements in (10.3) fac-
torize in the nuclear variables, and all the terms in the sum become

identical. Neglecting simultaneous production and scattering on the

same target nucleon, the sum comes down to
2, _.n R(b-b
%onk-?(ﬂ) L[R5 P,,A\r’d"'-—— (“*" ) §e g, @ret Y
f

-4, pn gl ) Map ]

(10.4)

where the last step is valid only for Gaussian amplitudes (2.21). The
elastic scattering part of the nuclear matrix element in (10.3) was

already evaluated in (5.6). When we neglect the difference between
(A-1) and A the final formula reads

“ LB' s
%. L ey 30 (2 uw(v)ﬁdwu‘)‘f’("’fp(* )

\@(“¥‘¥r;
 exp [+ 2,642,650 17 (s\( (@l )(10.5)
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The natural way to continue is to perform an expansion in Z1 and Z2

but we shall not do this. Instead we want to discuss the total.stripping

cross-section. As the approach developed above only applies to individual
stripping reactions it is not a convenient starting point and we prefer to

use probability considerations.

The probability for the neutron to traverse the nucleus at
impact parameter En = b - s/2 without colliding in exp [}d’T(BnZ].
The probability for the proton to collide an impact parameter
Bp =b + s/2 is (1—exp[}6‘T(5pI]). The cross-section for stripping
is then given by the product of these two probabilities properly
weighted over the deuteron wave function. However, this argument does
not take into account the intertwining of proton and neutron inter-

actions caused by the eclipse term. When this is done we get

T stecy = )b s el e TEN %Lc‘r(‘fh’-;'j'l‘(;)é‘l"‘]}

Y X 2 - - \Cg ')
= [ Jds et | [T _-2ths } (10.6)

n A
~ & -V () +2M 2| -2 . ——— N, (2¢) .
—-— [LNQ(L‘) [ 3 lL } 2 \*g;'*a \ )
Later on we shall show that this is the appropriate way to incorporate

the eclipse correction. The result for proton stripping is of course

the same,

When comparing with experimental data at 3.54 GeV/c we are
still in a region where the difference ketween ¢pp and G-pn is
appreciable, and we would like to take it into account. As the re-
sulting correction turns out to be very small we only consider the

non-ecliptic term, the ecliptic term being itself small. We put
c. = _=6+3¢ (10.7)
P AN

Tom = -3¢ , (10.8)
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For a nucleus with Nn neutrons and Np protons the average proton-

nucleus and neutron-nucleus cross-sections become

Ny = N .
g = 6~ LA , (10.9)
P NM+N‘:
-
C,=c+ " 3¢ . (10.10)
u,_+v,,

The non-ecliptic contribution to (10.6) is then modified to

s, T(5.) - e—cs‘,T(b,)} (10.11)

\ 2 -
q-ms\-vir = de\) Sd s \‘("E)\z e

Now, as O)p + O‘n = 26° we can write
\ T (Lt
Gm)s;,;‘, < {4 3&15\?(33\1'{‘\—9, T L,:)} —c. No(el) (10.12)

where the neglected contribution is extremely small. The correction
to (10.6) therefore comes from the last term of (10.12). Expanding

in the difference O"n - & we obtain

deo b= " Nuu™ Wy ‘3. Ny (e) (10.13)

Myt N.-(—Nf
e s c?' ,k“’ >
For 86" = 3.5 mb the corrections are 0.6, 1.9 and 5.7 mb for
27Al, 64’Cu and 2OBPb respectively, They are included in the values

of Table I, which were calculated with @™ = 45 mb.

The cross—-section for collisions where both proton and neutron
collide can be obtained by similar arguments. The probability that both
collide is obviously (1—exp[:—0"l‘(5nﬁ)-(1—expl:—d‘T(Bpﬂ). Correcting

for eclipse contributions we get
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= Jab §d's @G - 2¢ ‘; o
e 26 [N (6) =N, (26) =M, (zc)}-\-o-" .._.--—— Ny (26)
T 4Ry
J ‘o
The sum of all inelastic reactions becomes
23 (5,3
6;;{.,;#"" ?)““? "P Sthds\cp(s)\ {1‘ ' }
(10.15)
~ Lo [N (26) + M (zc)]-o-_. N, (2¢) o

1+ ?-a/w

We now remark that it is possible to test our probability
‘ argﬁmeﬁts. If we add the elastic and dissociation cross-sections to
bthe‘total reaction cross-section (10.15) we should4recover the deuferon
nucleus total cross-section. By adding (3.15) and (7.5) we get the

coherent cross-section

2 2 ‘7'_ - 1\(%)3) P
G a T e = b Mkl |1- < |
':'_Lc[N,(«\-N,(mlnc[v\‘,(ﬂ—n.cu)l ~ (10.16)
-2 2 ‘LNl(cﬂ'N\(ZG)] .

L+ Ry /\a

The corresponding incoherent cross-section can be obtained directly
from (8.5)

2 4 2 B EOFEEH | 2FBR)
6;,d+°}.,1\':s= Y‘“’Sd‘\ Gl e X_ '1}'7(10.-17)

but is already included in (10.15) as we there used total nucleon-
nucleon cross—-sections and not pure collision cross-sections. Adding
up all contributions we get

—
——

Taihip T Serskip + S
= 2 Y&‘h §.A‘s \ng)\l, i 17- e‘*u(b,s) }

e e [N() M ()] —& 2 N, (s
[o() L} 1 R +21’\'0~ \ )

- (10.18)

}
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Indeed the same result was found for tke total cross-section in (4.2)
and (4.7) as calculated from the optical theorem. We conclude that the
optical theorem is valid not only for the over-all result but also for

fixed impact parameter b.

11, - ELASTIC PRODUCTION

With elastic production we mean reactions with an outgoing
deuteron and one or more produced mesons. Since the deuteron is only
loosely bound such reactions will be rare, but nevertheless may have a

certain interest.

We first consider reactions which are caused by one of the
nucleons in the deuteron. For such reactions the amplitude for coherent
production is easily obtained from the considerations in Section 9. In
(9.9) we just change the neutron-proton scattering state <P ' into the
deuteron wave function. In this formula we also neglect the term ari-
sing from simultaneous production and scattering on a target nucleon.

This yields

Fog) = [Q.,Jﬂ’r&u‘ﬂ fd's € f& sl * .

YA e"‘( Ag@*%s")%‘»[%,(g,z)] . (11.1)

Here we have used the symmetry property Z1(B,s) = Z1(B,—§) to transform
the neutron collision amplitude into the proton collision amplitude. The
result (11.1) is of course the impulse approximation prediction and, in

particular, gives the selection rules predicted by this approximation.

A formula for the corresponding incoherent production is also

easily established. In analogy with (10.4) we get after some calculations

&cr -\ < )1 2 %™ -1 |& b +;‘ ‘i(;-g)
Fol ;Ja bILE s Lo o erenl®- (222 ) ¥

Q-tf‘-%" )+1(B )3) Z(B’f)-'g,jn)] Y‘f‘@ “."(}) t -EWC}) ‘le\'é(kt.br\(j 1.2)
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where we used the notation Bp =Db + s/2 and 55 = b' + s'/2. To
arrive at this result we have several times used the symmetry of Z1
and Z2 under transformations s — -s and s' - -s'. The canonical
way to proceed is now to expand in the eclipse term of Z1 and Z2.

As the calculations are straightforward we leave them to the interested

reader and instead turn our attention to double particle production.

Double particle production reactiohs with outgoing deuterons
are also possible. Of course, when the proton has produced two pions,
say, the probability that it holds together with the neutron is quite
small, On the other hand when the proton and the neutron produce one
pion each they may very well hold together if the momentum transfers
obtained are not too different. This process is analogous to the flat
contribution to elastic scattering [;f. (5.27), (5.39) and (5.462].
The actual derivation of the amplitude is similar to the derivation

of (11.2). When we neglect terms of order 1/A we have

T (=T

is‘ ‘E‘_"_ Sfllkgdt\" e\ﬂ,(b b) S’dzs “e(z)\t S&?S\ ' (@) \z
N1 ymv

%L%*(v )42, (53 + 065,531 T(K-\-E B ( .\;c

(11.3)

g b fe @I Y9 e {G. E")\:;M Rl
2 (b.-b = -
1y M ot @ S @) |

where the notations Bp =b+s/2, b =b-8/2, etc., are used.

n

In order to learn something from this complicated expression

we consider production amplitudes of the form (2.21), i.e.,

=23 2

{' L3) = {:w“l) = kv"‘\"‘"’o* ¢ ) (11.4)

O, =T¢l,_ b t . '
br v \ Px‘ (11.5)
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We also neglect eclipse terms. For this case the integrations over

b' and s' are immediately performed in the usual approximation.

We get
t | =1
de 1 25 A ap =T /a
an = ~ X 11.6
an b 1425 Mag P ’ (11.6)
§\ -sT(s
P oo 12 a7+ Eg )15 & S HR)
(11.7)
o N, o)+ L [N, Gs) - My (@o)]
This term gives an integrated cross-section
& =L = Nl(zs) 1.6

o 1 I
15 EJ, ‘!‘Q‘)x
The results can also be obtained from probability considerations.

Similar formulae can be worked out for the production of
anti-deuterons, since deuteron and anti-deuteron have identical wave

functions.
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- APPENDIX -

In this Appendix we collect definitions and numerical values
for the effective nucleon numbers used in the text. The definitions

are as follows :

No(e) = & §a%b {1-e‘°"“m} ) (a.1)
o - L (@b (e 1T ) oy
he = Hs oiy,*.u,:y,s,n\,_ ()¢ S 50EwT)

(A.4)

-{1~€°m*”x {1 Q'.‘T(b.)k
)

Y a _sT(% (k )\
SHols) = o T_:') Wb e b)[(af(‘(\.)) (v o%;\z )] (1.5)

The numerical values given in the Tables are calculated with a particle
density of the Woods-Saxon form, with radius R = 1.14-A1/3 fm and
surface :diffuseness parameter = 0.545 fm. By interpolation it should
be poss1ble to get the effective nucleon numbers for any nucleus and

any cross—sectlon desired.
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A 30 35 40 45 50 55
16.0 12.16 11.68 11.23 10481 10.42 10.05
27.0 18.85 17.90 17.04 16.25 15453 14.86
40.0 25.96 24 .44 23.08 21.85 20.74 19.73
64.0 3770 35.11 32.84 30.82 29.03 2T7.43
108.0 56.44 51.94 48.06 44.70 41.77 39.19
140.0 68.65 62.80 57.83 53.56 49.86 46.64
208.0 92.08 83.51 76434 T70.28 65.10 60.63
Table III : O (mb)
Effective nucleon number NO(%O')

A 30 35 40 45 50 55
14.4 157 1.68 1.75 1.81 1.85 1.88
16.0 1.82 1.93 2.01 2.07 2.11 2.13
27.0 3462 3.T4 3.81 3.84 3.84 3.81
40.0 5.83 5.92 5.92 587 5.78 5.67
64.0 9.92 9.83 9.64 9.38 9.09 8.79

108.0 17.12 16.54 15.87 15.16 14.46 1%.79

140.0 22.07 21.08 20.02 18.98 17.98 17.04

208.0 31.96 30.01 28.11 26.3%4 24.72 23.25
Table IV T (mb)

Effective nucleon number
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A 30 35 40 45 50 55
14.4 8.70 8.42 7.93 7.50 Te11 6.76
16.0 9.71 9.09 8.54 8.06 7.63 T.24
27.0 14.25 13.16 12.23 11.42 10.72 10.10
40,0 18.82 17.22 15.87 14.72 13.73 12.88
64.0 26.00 23.54 21.51 19.81 18.37 17.14

108.0 36.92 33%3.0& 29.98 27.44 25.31 23.50
140.0 43,81 %9.08 35430 32622 29.65 27.48
208.0 56.74 50.32 45.24 41.13 37.74 34.89
Table V S (mb)
Effective nucleon number NO(G')

A 30 25 40 45 50 55
14.4 6.45 5.90 5.44 5.06 4.73 4.44
16.0 6.89 6.29 5.80 538 5.02 4.71
27.0 9.55 8.62 T.87 Te25 6.73 6.28
40.C 12.13 10.87 9.87 9.05 8.37 Te79
64.0 16.07 14.31 12.92 11.80 10.87 10.08
108.0 21.95 19.42 17.45 15.86 14.56 13.47
140.0 25.62 22.61 20.27 18.39 16.86 15.57
208.0 32446 28.54 25.51 23.10 21.12 19.47

Table VI : & (mb)

Effective nucleon number
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A 30 35 40 45 50 55
14.4 5.46 4.80 4.26 3.81 3.4% 311
16.0 5475 5.02 4.43 3.95 3.55 3.21
27.0 7.21 6.14 5.30 4.65 4.12 3.70
40,0 8433 6.97 5.95 5.16 4.55 4.07
64.0 9.68 7.96 6.72 5.80 5.09 4.54

108.0 11.19 9.09 7.62 6.56 5.76 5.14
140.0 11.94 9.67 8. 11 6.98 6.14 5.48
208.0 13.14 10.62 8.91 7.68 6.76 6.05
Table VII S (mb)
Effective nucleon number N1(6‘)

A 30 35 40 45 50 55
14.4 2.85 2.42 2.10 1.86 1.66 1.51
16.0 2.93 2.48 2.15 1.90 1.70 1.54
27.0 3.35 2.82 2.43 2.14 1.92 1.74
40.0 3,68 3.08 2.66 2.35 2.10 1.90
64.0 4410 3e44 2.98 2.62 2.35 2.13

108,0 4.65 3.91 3.38 2.99 2.68 2.4%

140.0 4.96 4.17 3.61 3.19 2.86 2.59

208.0 5.48 4.62 4.00 3.53 3.17 2.87
Table VIII : € (mb)

Effective nucleon number
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A 30 35 40 45 50 55
14.4 2,19 2,09 1.98 1.85 1,72 1.60
16.0 2.40 2,28 2.13 1.98 1.8% 1.69
27.0 3.65 3.29 2.94 2.6% 2.35 2.11
40.0 4,73 4.10 3.56 3.09 2.71 2.39
64.0 6.10 5.07 4.25 3.60 3,09 2.69
108.0 7.60 6.06 4.93 4.10 3.49 3,02
140,0 8430 6.51 5.25 4.35 3.69 . 3.20
208.0 9.29 7.15 5.72 4.72 4.02 3,49
Table IX S (mb)
' Effective nucleon number N2(d‘)
A 30 35 40 45 50 55
14 .4 1.48 1.28 1.11 0.97 0.86 0.77
16.0 1.56 1.33 1.15 1.00 0.88 0.79
27.0 1.90 1.57 1.32 1.14 1.00 0.89
40.0 2,12 1.71 1.45 1.24 1.09 0.97
64 .0 2,38 1.92 1.60 1.38 1.22 1.09
108.0 2.67 2.15 1.81 1.57 1.38 1.24
140.0 2.82 2.29 1.93 1.67 1.48 1.32
208.0 3,09 2.52 2.13% 1.85 1.63 1.47
Table X 6 (mb)

Effective nucleon number
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A 30 35 40 45 50 55
14.4 0.88 0.95 0.99 1.00 0.99 0.97
16.0 1.02 1.08 1.11 1.12 1.10 1.06
27.0 1.93 1.93 1.87 1.77 1.65 1.53
40.0 2.89 2.74 2.53 2.30 2.07 1.86
64.0 4.31 3.84 3436 2.91 2.52 2.19

108.0 6.12 5.09 4.21 3.49 2.93 2.50
140.0 7.02 5.66 4.57 3.74 3.11 2.63
208.0 8.22 6.43 5.05 4.06 3.35 2.84
Table XI 6 (mb)
Effective nucleon number N3(d.)

A 30 35 40 45 50 55
14.4 0.94 0.86 0.78 0.69 0.62 0.56
16.0 1.02 0.92 0.82 0.73 0.64 0.57
27.0 1.41 1.19 1.00 0.86 0.74 0.65
40.0 1.67 1.35 1.1 0.94 0.81 0.71
64.0 1.92 1.51 1.23 1.03 0.89 0.78

108.0 2.16 1.68 1.37 1.15 1.00 0.88
140.0 2.27 1.77 1.44 1.22 1.06 0.94
208.0 2445 1.92 1.58 1.34 T.17 1.04
Table XII : 6 (mb)
Effective nucleon number N, (26 )




-
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A 30 35 40 45 50 55
4.4 0.79 0.83 0.85 0.86 0.87 0.87
16.0 0.87 0.90 0.92 0.93 0.94 0.93
27.0 1.30 1.32 1.33% 1.32 1.31 1.28
40.0 1.71 1.71 1.70 1.67 1.63% 1.59
64.0 2.29 2.26 2.21 2,15 2.08 2.01

108.0 3,09 3.00 2.89 2.77 2.66 2.55
140.0 3.55 3,42 3,27 3.13 2.98 2.85
208.0 4.34 4.13 3.93 3473 354 3436
Table XIII s O (mb)
Effective nucleon number M1(6)

A 30 35 40 45 50 55
14,4 0.86 0.85 0.82 0.80 0.77 0.74
16.0 0.9% 0.90 0.87 0.84 0.81 0.78
27.0 1.26 1.20 1.15 1.09 1.04 0.95
40.0 1.55% 1.46 1.37 1.30 1.22 1.16
64.0 1.94 1.80 1.68 1.57 1.48 1.39

108.0 2.44 2.25 2.08 1.93 1.80 1.69

140.0 2,72 2.50 2.30 2.13 1.98 1.85

208.0 3,20 2.91 2.67 2,46 2.29 2.13
Table XIV 6 (mb)

Effective nucleon number M1(26')
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Effective nucleon number M2(2d')

A 30 35 40 45 50 55
14.4 -0.25 -0.20 -0.14 ~-0.08 -0.02 0.03%
16.0 -0.25 -0.19 -0.12 -0.06 0.00 0.06
4-000 _0011 OnOS 0019 0030 0039 0047
64.0 0.11 0.31 0.48 0.61 0.70 0.77

108.0 0.48 0.73 0.91 1.04 1.13% 1.19
140.0 0.73% 0.99 1.18 1.30 1.39 1.44
208.0 1.18 1.46 1.64 1.76 1.82 1.85
Table XV : ¢ (mb)
Effective nucleon number Mz(d')

A 30 35 40 45 50 55
14 .4 0.07 0.15 0.21 0.25 0.28 0.31
16.0 0.11 0.18 0.24 0.29 0.32 0.34
27.0 0.32 0.40 0.46 0.49 0.52 0.53
40.0 0.53 0.61 0.65 0.68 0.68 0.68
64.0 0.83 0.89 0.92 0.92 0.91 0.90

108.0 1.23 1.27 1.26 1.24 “1.21 117

140.0 1.47 1.48 1.46 1.42 1.37. 132

208.0 1.86 1.84 1.79 1.72 1.62 1.58
Table XVI ¢ (mb)

N
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A 30 35 40 45 50 55
14.4 0.27 0.28 0.29 0.30 0.30 0.31
16.0 0.29 0.30 0.31 0.32 0.32 0.33
27.0 0.41 0.42 0.43 0.44 0.46 0.45
40.0 0.52 0.54 0.55 0.55 0.56 0.56
64.0 0.69 0.70 0.71 0.72 0.71 0.71
108.0 0.92 0.94 0.94 0.94 0.93 0.92
140.0 1.07 1.08 1.08 1.07 1.05 1.04
208.0 1,32 1,32 1.31 1.30 1.27 1.24
Table XVII 6" (mb)
Effective nucleon number SMO(zo')
A 30 35 40 45 50 55
14.4 -0.07 -2.68 -2.06 -2.24 -2.15 -2.31
16.0 -3.74 -3.14 =334 =3.54 -2.85 -3.52
27.0 -3.87 -3.84 3.78 3.45 3.82 3.73
40.0 -4.20 4.30 4.15 4,22 4.02 4.45
64.0 6.44 6.35 6.41 6.27 7.23 T.76
108.0 7.89 7.73 7.04 8.06 8.51 7.36
140.0 9.15 9.86 9.93 9.08 9.79 9.97
208.0 10.22 10.18 10.11 10.49 10.19 11.74
Table XVIII G (mb)
Effective nucleon number S-M (66)
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FIGURE CAPTION

Definitions of the transverse components s and 5j of the
nucleon co-ordinate vectors in a deuteron-nucleus collision.
The impact parameter between the deuteron c.m. and nuclear

c.m. is denoted D.



