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ABSTRACT

Using a sum rule derived by Arbab and
Slansky, the Veneziano model is combined with unita-
rity and the over-all scale of the X  interaction

determined in reasonable agreement with experiment.
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Recent studies of finite energy sum rule (FESR) boofstraps
together with the assumption of straight line trajectories are leading
to new ways of analysing the S matrix theory of strong interactions 1).
Of particular interest has been a proposal by Veneziano 2) for the cons-
truction of a simple Regge behaved, crossing symmetric amplitude, which
is a solution of the FESR bootstrap. Recent evidence seems to show that
this model provides a reasonable parametrization for many strong inter-

3)

action processes y, despite having some unsatisfactory features, espe-
cially in connection with unitarity. However, the model can only give
ratios of coupling constants and hence widths (not over-all magnitudes),

due to its homogeneous nature.

An additional constraint is therefore necessary to fix the
scale of the interactions. We shall propose here a simple scheme in
which unitarity is used to supply such a constraint 4). As the basic
illustration, we consider Y% scattering, but the essential aspects
may be generalized to other processes. We start with the Veneziano
model for the I system 5), which is a solution of the FESK boot-
strap, linear in the Veneziano constant N . We impose unitarity fhrough
a sum rule derived by Arbab and Slansky 6). This gives us a non-linear

equation for N which enables us to fix the scale of the interaction.

Thus this dynamical scheme predicts not only ratios but also

the magnitude of resonance widths and scattering lengths.

Let AI(e ,t) be the signatured partial wave amplitude
with isospin I in the t channel defined for all € by the

Froissart-Gribov continuation

Atlee) = .".17' ds Q:(s.t)Q,(‘H .5.5—%) N
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Here Ki(s,t) is the s channel absorptive part with

isospin I in the t channel and VU, = L - @2

t 4
pion mass. The generalized unitarity relation in the complex ( plane

s, and M is the

is then
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with the normalization f(t) = (Qt/otﬂ;.z)z in the elastic region.
Arbab and Slansky ) noticed that Eq. (2) implies

- ! = {i.m, gt(Qv*‘)

Aipte) R o*
where ot(t) is the Regge trajectory function, and proposed that the
real part of this relation would be a useful tool, independent of FESR
for calculating high energy parameters.

*)

They thus obtained the sum rule

a©
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We shall use this sum rule to fix the value of N . In the evaluation
of the integral in Eq. (3), we divide the integration region into two
parts at s = N, above which we assume the Regge asymptotic behaviour
implied by the Tt Veneziano amplitude, and below which we saturate
with resonances whose widths can be calculated from the same Veneziano

amplitude, which is :

AT = B[ Vies)s Vo] - L Ve

T=1

Q = thl“ - V‘t'\"s

T (4)

g = V(so“)
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Since the integral in Eq. (3) is divergent for Re ® % Q y it
should be evaluated for Re &( t and continued to Q = o”.



where
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Here we take

Re xlc) = :1\‘ +°~("¢-'Mv) with &= 1 (6)
Qo - M)

in order to satisfy PCAC 5) and Reu(mf) = 1. By the Veneziano
amplitude given by Eq. (5), we mean the following : when unitarity
is imposed, the poles corresponding to resonances will be pushed onto
the second Riemann sheet, i.e., O (t) will be modified by acquiring
an imaginary part above the elastic threshold. Unfortunately one must
solve at least part of the unitarity problem before we can guess how
it will be modified 7). Nevertheless it will be interesting to try

to keep Eq. (5) valid for Im® # O as the first approximation.

One immediately notices that Eq. (5) for Im@ # O has
unwanted ancestors and implies that cdegenerate resonances have dege-

nerate total widths.

However, in our approach we use Eq. (3) at the p meson
pole (I=1, t = mg ) which we assume to be elastic 8 . This enables

us to express Im !(mi ) in terms of x s Since

: 3 o\ 3
l-c\o.s\'«- - A ‘w\; - 4.'“») v and q““ - LW\ GL(W\Q)
J 3w KX™e

and our assumption of elasticity for the implies £ total _
f ¢

?

Thus the high energy part of the integral depends only on x °
Also the integration from «4-»2 to N does not depend on the detailed

behaviour of Im & but only on the elastic widths of the resonances,

r\elastic
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which can be expressed in terms of X « Thus it should be possible
to extract information about x from the sum rule independent of

*
the detailed behaviour of Im@&d ).

EVALUATION OF HIGH ENERGY PART (s) N)

1
For the interval! s) N we substitute the Regge asymptotic

form obtained from Egs. (4) and (5) and we can then do the integral.

This gives

Rt Roma. S ds ﬂ; (‘\‘) QQ (\ * SIQOQ)

Q-»-t‘(w\e)

o ReBtmg) iy + wxtutm )
. 1etm“:*;)s f.j “"f’][]_ t[j( Q)J{a;’%f (7)

+de L-m} r O(Ima) + Of 1';*%::.:’))}
Here
Re Blwnz) = %‘;upa)\ (8)
and ylmg) = ATwmalmy) W (220)

- ‘.;_“l_ 0:'\ lv\(aiﬂ) (9)
e
with 1N - 1. N‘;Q?
C = ——?——— & \‘;(RQ&*“‘L)— ‘{/(di.\")
ARew +1

We assume that Imu(s) - ® as s —+ @ in order to have Regge

asymptotic behaviour for our amplitudes.
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It can be shown that we must drop the term I%%S(nf)/R%ﬁa(qf)
as we have dropped the non-resonating background‘g). We may also drop
the term 2c Im“(m')coty (m ) for realistic Im® (m') 0)
coty (m ) is not much larger than one, since c, = 0.28 for Re® =

The term sin(y(mi)) is non-linear in Imu(mf) (and hence )\ ) Dbecause

provided

ZN is large enough for N in the intermediate energy region.

EVALUATION OF LOW ENERGY PART (s€ N)

One can explicitly calculate elastic widths [; linear in A

1)

for all resonances with SR(N from the Veneziano formula 1 y €8y

I

p=Alm
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(10)

and so on. [Equation (10) defines our normalization.]

The function Kﬁ(s,t) is then

ﬂ (s,0) = Z %y Ef\' (W'+)) Cuone (s -5a)

tl=0

" (U‘:': )h' r (\ st[2ve)

(11)

where

a |
XII' ‘|3 \‘1

is a 2x2 submatrix of the isospin crossing matrix (theré are no
isospin two resonances in the model), and the elastic w1dths r

are given by Eq. (10)
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One can safely substitute the zero width approximation
for K’i(s,t), i.e., Eq. (11) into Eq. (3), and retain sufficient

accuracy because Im® is small.

Substituting Eas. (7)-(11) into Eq. (3), we obtain the

sum rule in the form

sim (e2) = ‘AZ ¥: cos (N 5:) (12)

where cA =y and Yi and 51 are calculable. The cos(siX)

factor comes from the relation

Re Qu*(2) = Qaew (®) “S[L““ An (“‘ﬂ (13)

for values of 2z corresponding to the resonances.

Equation (12) is thus a non-linear equation for X which
we solved for various values of the separation point s = N and the
results are shown in the Table. The values N = N1,N2,...,N8 are

defined by the Figure.

We give the values of :*1 for each value of N. Since
0
for our solutions 0.80 £ cos( Si\)\( 1. The values of Z‘rl give
the reader an idea of how much each set of resonances contributes to

the sum rule.

From the Table, it appears that k is approaching some
limit as N increases. We note here that k ~ 0.7 corresponds to
r .~ 145 MeV, [;o /R 125 MeV for widths and for scattering lengths
‘L‘a'or@ 0.28..;_1, 8, ~0.06m ~1. We chose each N; at the point
half-way between two sets of resonances but, of course there is some
freedom to vary it. However, AN/N becomes smaller as N increases.
Therefore it is better to take N large. This also improves our

approximations to take N large as we assume Regge behaviour for

sPN.
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A more accurate calculation including the term 2021m¢ coty

in Eq. (7) and improving our evaluation of the low energy part of the

integral by including Im/@(mg) (R#JD), changes our results by less
than 10%.

(ii)

(iii)

In conclusion, we would like to point out the following :

In our approximate dynamical scheme, the smallness of the widths
(which other bootstrap schemes have not reproduced), comes out

automatically from a bootstrap condition based on unitarity.

In the case of linearly rising trajectories, one has to give up
the usual N/D method of unitarizing the scattering amplitude,
at least in its familiar form. The scheme outlined here is very
simple and free from ambiguities like CDD poles. Also the gene-

ralization to more complicated processes would be straightforward.

In this note we have attempted to fix the scale of interactions
given the trajectory function dl(t). It would be possible to do
a nearly complete bootstrap [i.e., to fix both A and et(t]]
by imposing sum rules for both I =0 and 1. This more ambi-

tious case will be discussed in a later paper.
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reading the manuscript and for useful discussions, and Dr. C. Schmid for

critical comments. They are also grateful to Professor W. Thirring and
Professor J. Prentki for kind hospitality in the CERN Theoretical Study
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2 3 4 5 6 7 8
c 0.67 |o0.83 |0.94 | 1.03 | 1.07 |1.12 | 1.16 | 1.20
ir:‘ci 0.54 |o0.72 |o0.84 |0.92 |o0.98 |1.03 | 1.07 | 1.10
i=1
A 2.23 [1.38 |1.06 | 0.90 |o0.81 |0.74 |o0.71 | 0.69
y(mf, ) | 1.49 |1.15 lo.99 | 0.91 |o.87 |o0.85 |o0.82 | 0.82
p 459 | 283 |218 | 185 | 167 | 152 | 127 | 142
(in "MeV)
Zy 5.5 10 |14.5 | 19 |23.4 |27.8 |32.3 |36.7

Solutions of Eq. (12) for various values of N
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If we apply the sum rule at another resonance, we must know the
inelasticity and the relation between Im ﬂ.(mR) and W\
is changed.

Near =%(t), we can write AI(Q t) = (ﬁ (£)/@ -a(t)) + c(t).
Equation (2) applied at gives us the relation
ImA(t) = 2p(t) Re c(t) Re/S(t) and we now find that the
Im/s and Rec terms cancel in the relation

lim, Re AT(0,t) =

ﬂ
EEq. (3[] Therefore to be consistent we must drop
Imﬁ&(mz) as well as Rec.
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10) Note that inserting gxperimental values into Im& (mrg) = a[; my
gives Imel m') ~ 0.09.

11) There is a small problem here since the width of the £ ' reso-
nance (see the Figure) turns out to be small and negative.
Therefore we ignore its contribution.
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FIG.1 Resonances used to saturate the sum rule (marked o) and definition of N; )N, .....Ng



