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Abstract 
 

 The main physical parameters, and the equations to be solved, for numerical 
simulation of Laser Wake Field Acceleration (LWFA) are presented. Two different regimes 
are considered. In the highly non-linear regime the full Maxwell-Vlasov equations in three 
dimensions have to be solved. Recent works have demonstrated than 3D PIC simulations are 
now enable to be quantitatively compared with experimental results. These simulations 
however required a large amount of computer resources and are not well adapted to describe 
the acceleration of injected electron bunches over long distances. To deal with these latter 
case efficient methods have been developed that reduce dramatically the required computer 
time. Using these methods, a full 3D simulation of multi-stage acceleration by LWFA seems 
feasible in a near future. 
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Introduction 
   The laser wake-field acceleration  (LWFA) of electrons in under-dense plasmas [1] 
has been the subject of intense study for many years. As the performances of the laser 
installations are being improved in term of intensity, shortening of pulse duration, and control 
of the pulse shape, various acceleration schemes [2-3] are being experimentally checked and 
new ones are proposed for one or multi-stage acceleration of electrons by LWFA, and we 
assist to a continually growing number of published works devoted to this subject. Numerical 
simulations (NS) play a central role in the development of this field mainly because the 
processes involved in the experiments are in general too complex to be analysed, in a 
quantitative way, with analytical methods, but the physics is simple enough to be tractable by 
full ab initio NS. In particular, it has been demonstrated that NS can be in quantitative good 
agreement with experimental results of LWFA, even in the strong non-linear regime, for the 
energy distribution function of the accelerated electrons [4-5] and also for the emittance of the 
beam [6]. 
 The various proposed acceleration schemes pertain to quite different regimes, ranging 
from the semi-linear LWFA at intensities about 1017 W.cm-2, where the injected electron 
bunch is expected to be accelerated over several cm, up to the ultra-relativistic regime above 
1020 W.cm-2, for which a caviton, named a bubble by A. Pukhov [7], is created inside the 
plasma and accelerates electrons up to GeV energy within 1 mm. There is not a unique 
numerical method that is well adapted to describe efficiently the acceleration mechanism in 
all the regimes. In the following the main physical parameters of the interaction process, and 
the equation to be solved, will be briefly given. Then we will present a short overview of the 
numerical codes that are developed in the strongly and weakly non-linear regimes. 
 

Basic physical parameters 
 Here we present the main physical parameters entering the LWFA. It will allow to 
retain only processes that have a significant contribution for LWFA and also to determine the 
boundary between highly and weakly non-linear regimes. 
 Let us consider a laser beam with frequency ωL, wavelength λ= 2πc/ωL and duration 
τL≈(5-50) 2π/ωL, which is focused at the entrance of an hydrogen or an helium gas. The 
radius r0 of the focal spot is in the range of 10-100 µm, while a typical value for λ is 0.8µm. 
We thus have  r0/λ >>1, which indicates that the paraxial approximation can be applied in the 
vacuum. In the vacuum, the characteristic length for the intensity variation along the 
propagation axis is the Rayleigh length 2

0 /Rz rπ λ=  that has a mm range. Guiding is thus 

necessary when considering acceleration lengths of several cm. 
   The energy of one photon is 1.24 eV, which is much too low to have a direct binary 
interaction with the electron. The beam-plasma interaction can thus be described mainly on 
the macroscopic level. At a sufficiently high value of the laser intensity, the bound electrons 
are ionised by tunnelling. For a linearly polarised field, ionisation occurs at the intensity given 
by 
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with Ip the ionisation potential and Z the atomic number of the target atoms. For H and He, 
Eq. (1) yields I=1.4 and 3.6 respectively, in units of 1014 W.cm-2. These values are well below 
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the considered intensity for LWFA. Thus the light pulse interacts mainly with a fully ionised 
plasma. Ionisation occurs only at the front of the pulse, and is very fast. 

The dynamic of the plasma particles interacting with the laser can be separated into 
two time scales:  The high frequency oscillation at ωL, and the time related to the electron 
displacement induced by the ponderomotive force. The latter is proportional to the square of 
the gradient of the field, and tends to push the electrons outside the region of highest intensity. 
For sub-picosecond pulse, one can suppose that the nucleus remains fix, the ions can then be 
described as a uniform neutralising background. 
 If the displacement induced by the laser is small, the electron begins to oscillate, with 

a frequency given by the plasma frequency 2
0/p pn eω ε= , with np the density of the plasma 

electrons. For describing the dynamic of the electron fluid, we are in a density regime where 
the collisionless classical approximation can be safely used. The e-e and e-i collision 
frequencies are much smaller than ωp. It means that the associated damping plays a role only 
far from the laser-plasma interaction domain, and also plasma heating through inverse-
bremsstrahlung is inefficient. Moreover the fermionic nature of the electrons can be 
neglected. 
    For a specific value of the density, named the critical density ncr, we have p Lω ω= . At 

densities higher than ncr, the electrons can efficiently screen the laser field and the beam 
cannot propagate inside the plasma. At lower densities, the plasma is qualified as under-
dense, it can be considered as a dielectric medium with a relative dielectric constant given by  
 1 / ( ),p crn nε γ= −  (2) 

γ being the relativistic factor. In our case ncr=1.75x1021 cm-3, while np is about 1017 to 1019 
cm-3. We are thus in the case of an under-dense plasma. ε  as given by Eq. (2) being close to 
one. The phase and group velocity of the laser pulse are thus close to c and the γ factor related 

to the group velocity of the pulse is ( )1/ 2
/ 10 100G cr pn nγ = ≈ − . The propagating pulse 

generates a plasma wake with a wavelength of ( )1/ 2
/ /p p cr pc n nλ ω λ=; ≈ (10-100)λ. In 

the linear regime, the laser beam is only slightly affected by the plasma. The characteristic 
length for variation of the pulse shape along the beam axis is then still given by zR. The 
duration of the interaction between the electron and the pulse ≈τL, which is much shorter than 
zR/c. Therefore we can assume, as in the quasi-static approximation, that the electron interacts 
with a pulse of constant shape. 
 There are two parameters to determine whether we are in the highly or in the weakly 
non-linear regimes. The first one is [ ] 1/ 2 18 -2

0 / 0.85 µm 10 W.cmLa eE m c Iω λ= =    , the 

amplitude in reduced units, such that for 0 1a ≥  the dynamics of the electron is in the 
relativistic domain. Moreover  0 1a ≥  corresponds also to the limit at which the plasma 

electrons can be trapped by the wake, whereas for 0 2 Ga γ≥  we are above the cold wave-

breaking limit at which the plasma density exhibits a singularity within a cold fluid 
description. The second parameter is the critical power Pcr =17(ncr /np) GW. At higher power, 
due to the γ factor in Eq. (2), the beam is self-focusing inside the plasma. So even starting 
with a small value of a0, the intensity increases during propagation until the point where  a0>1. 
 In the case of acceleration of an injected bunch, the bunch generates its own plasma-
wake, the influence of which is called the beam loading effect. For relativistic electrons, the 
interaction with the plasma is weak. In particular, the range of the electrons in the ionised gas 
is much larger than the size of the target. Therefore beam loading can have significant effects 
only when the density of the bunch electron is comparable to the perturbation of density 
induced by the laser pulse. An important parameter for bunch acceleration is the dephasing 
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length ( )2 3 610 10D p GL λ γ λ= −;  that gives the maximum length of the target for which the 

acceleration is efficient. 

The  equations to be solved in LWFA 
 
 When considering a gas interacting with a high intensity laser pulse, the basic 
equations to be solved are the Maxwell-Boltzmann equations that connect the electromagnetic 
fields with the electron and ion distribution functions. The electric E and magnetic B fields 
are derived from the charge ρ and current j densities, through the Maxwell equations 

 2

0

0, 0

c
t t ε

⋅ = ⋅ =

∂ ∂+ × + ×
∂ ∂

∇ ∇∇ ∇∇ ∇∇ ∇

∇ − ∇∇ − ∇∇ − ∇∇ − ∇

B E

B E j
E = 0, E = 0.

 (3) 

  
The charge and current densities are determined from the distribution functions 

fi(x,p,t) for the ions of charge qi=Zie, x and p being the position and momentum of the 
particles, and fe(x,p,t) for the electrons of charge qe=-e: 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

, , , , ,

, , , , , ,

i i e e

i i i e e e

t q f t d q f t d

t q f t d q f t d t

ρ =

=

∫ ∫
∫ ∫ ion

x x p p + x p p

j x v x p p + v x p p + j x . 
 (4) 

The term ( ), tionj x  is introduced in the last equation to take into account the ionisation 

process [8]. It has a significant contribution  for channelling in a capillary tube. In this case, 
close to the inner-wall of the tube, the intensity of the field can be below  the value given by 
Eq. (1), and therefore the structure of the field in this region can depend on the ionisation 
process, particularly when considering helium gas. 
 As stated above, for the considered densities, we can safely make use of classical statistics. 
The distribution functions are thus given by the Boltzmann equations 

 ( ), ,
, , ,

col.

e i e i
e i e i e i

f f
f q f S

t t

∂ ∂ + ⋅ + + × = + ∂ ∂ 
∇ ∇∇ ∇∇ ∇∇ ∇x pv E v B  (5) 

In the right hand side (RHS) of this equation S is the source term, coming form the ionisation 
process already mentioned and the second term is a correction coming from close collisions. 

Equations (1-3) have to be solved with the boundary conditions relevant to the considered 
experiment. Let us suppose that the target is situated between z=0 and z=L and that the laser-
target interaction process begins at t=0, the boundary conditions are then: 
•  The electromagnetic field at z=0, has to be written as a linear combination of propagating 

modes that satisfy the Maxwell equation in the vacuum, to fix E, B at z=0- and t>0. In 
most calculations it is supposed that the incoming beam is linearly polarized and in the 
fundamental gaussian mode, the focal plane being the surface entrance of the target. In 
many laser installations however; the incoming laser beam is far from the diffraction limit. 
A precise comparison with experiment thus requires to take into account the actual 
structure of the laser field at z=0. This point was recently stressed out when considering 
channelling in capillary tube [9] 

•  fe(z=0-,t>0) is non-zero in case of an incoming electron bunch 
•  When considering the  guiding by an external structure, for a plasma channel one has to 

know the initial profile: fe(z>0-,t=0)= Zifi(z>0-,t>0), whereas for a capillary tube, the E.M. 
fields have to satisfy boundary conditions at the inner-wall. If the transverse flux at the 
wall, is lower than the threshold damage, then these boundaries do not depend on time, 
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otherwise  one has to include the influence of plasma formation on the boundary 
conditions [10]. 
To solve Eqs (1-3) with the above boundary conditions is in general a formidable task. 

When considering a sub-picosecond laser pulse at high intensity, which interacts with a gas, 
the problem can be simplified as stated in Sec. 2: the dynamic of the ions as well as e-e and e-
i collisions are neglected. Moreover in many situations, the influence of the front of ionisation 
can be disregarded. The problem to be solved is then the Maxwell-Vlasov system of equations 
for the electrons, which is by no mean a simple task. 

3D PIC simulation in the highly non-linear regime 
 In the strong non-linear regime, a clear distinction between well separated time scales 
is in general not possible. For example if the ponderomotive force is strong enough, it will 
expel all the electrons, and behind the front of the pulse a caviton appears, in which the 
electron density is zero. The group velocity of the field will then be different in the front and 
rear side of the pulse leading to a strong compression of the pulse [5]. In this case, no 
simplification can be made, and one has to solve the full relativistic Maxwell-Valsov 
equations. 
 The Particle In Cell method is now a well-established powerful technique to determine 
the dynamic of plasmas [11]. It is a full ab initio method, with no approximation other than 
the ones used to derive the classical Maxwell-Vlasov equations. The basic advantage of PIC 
simulation over direct molecular dynamics calculations is that the computer time increases 
only linearly with the number of pseudo-particles. It enables to treat much larger systems, 
presently of the order of 1003 µm3. The main difficulty still resides on its practical 
implementation, because it requires large computer resources and the implementation of 
efficient numerical procedures, which in general are machine dependent.   A typical example 
is given by the VLPL PIC code of A. Pukhov [12], who was the first to publish results 
obtained in 3D geometry. In the VLPL code up to 109 particles and 108 cells are considered, 
the code is parallelized and run on a cluster of 784 nodes. Similar values are used in the Osiris 
[13] and Calder [4,6] codes. An important point concerning the PIC codes is that they can be 
developed for many applications other than the LWFA. In particular the Calder code has been 
constructed for the French-CEA inertial fusion program LMJ. 
 Recently [4,6] is was demonstrated that 3D-PIC codes are now enable to reproduce, 
with a good accuracy, the experimental results of LWFA in the highly non-linear regime. It 
concerns not only the energy distribution, but also the angular distribution of the accelerated 
electrons. In [4,6] it was also stressed out, that the obtained results cannot be reproduced 
within a 2D approach. 

Simulation of the acceleration of an injected bunch 
 When considering the acceleration of an injected beam, for applications such that 
multi-stage acceleration, one needs to have a precise control on the electron beam dynamics. 
The non-linear effects have thus to be kept at a relatively low level. The pressure of the gas 
and the intensity of the field have thus the lowest values among those given in Sec. 2. 
However the distance to be considered is much larger than in the previous case being of the 
order of 106 λ. A direct 3D-PIC simulation of this process is thus not tractable even with the 
next generation of computers. In this regime however one can reduce significantly the 
computer time by averaging the high frequency components of the E.M. fields and of the 
particle dynamics, and also by using the static approximation. The Maxwell and Vlasov 
equations are modified, such that the terms that depend on the small parameter 

/p Lδ ω ω= are identified. Then only the zero and first order terms in δ are retained. This 
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procedure was first applied in the Wake code of Mora and Antonsen [15], in which a PIC-
type simulation is used but with characteristic time and length given by the plasma wake and 
not by the laser field. 

When the field is well below the wave-breaking limit, the electrons from the bunch 
can be distinguished from the plasma electrons. For the latter, the Vlasov equations can be 
solved by considering only its first moments, within the cold fluid approximation [3,8], while 
for the electrons of the bunch a particle method is still used. For the standard scheme, where 
the bunch is placed behind the laser pulse, the beam dynamics is only connected to the 
frequency plasma wake. In this case A. Reitsma [3] has shown that the main characteristics of 
the acceleration process can already be performed through analytical analysis. Numerical 
procedures are however still needed to investigate large beam-loading and 2 or 3D effects 
connected, for example to imperfect guiding over large distances. 

Situations that require further investigation are mainly the case where the bunch is 
interacting with the laser pulse. It has been recently proposed that by injection of the bunch in 
front of the laser pulse, it is possible to consider bunches with initial sizes much longer than 
λp [8,15]. In this case however, the bunch will interact with the laser pulse over a large 
distances, and the quasi-static approximation does not seem to hold. 
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