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STLIYY OF TWE STOCHASTIC TJASTASILITY
OF THE BETATRO4 OSCILLATIOJS OF
Ad  ELECTRON SEAD IN A STORAGE RIUG

The authors undertake an experimental study of the behavior of
the beam in an electron storage ring under the combined influence of two

betatron-oscillation resonances and on periodic passage through a resonance.

They study conditions resulting in different types of particle
motion. Depending on the experimental conditions, they observed: a) the
existence of independent stable regions of phase stability; b) the ap-
pearance of second-order phase-stability regions and the formation of a
stochastic layer near the boundary of the phase-stability region;
¢) a complete destruction of the phase-stability regioné which imparts
a stochastic character to the variation of the betatron-oscillation ampli-

tudes.

The experimentally found conditions under which stochastic in-
- stability develops are compared with the theoretical findings of B.V.
Chirikov. Experiments are described that prove the diffusional character
of the particle motion in the stochastic region, as well as other experi-

ments elucidating the character of the diffusion.
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I. INTRODUCTION

The possibility of conducting experiments with proton-proton, and
especially proton-antiproton, colliding beams is largely determined by whether
the motion of the particles in thevstorage ring can be stabilized for a pro-
longed period, since various effects not observable in light-particle (e or
e+) storage rings can become appreciable through the absence of any natural
damping mechanism. One of these effects is a stochastic instability of the
betatron oscillations, possible under the combined action of several resonances
or on periodic crossing through any resonance.1

The study of stochastic instability is not only of practical interest
but also of theoretical interest, because it is here that we may find a tran-
sition from classical oscillation theory to statistical mechanics.1

Here we undertake an experimental study of the behavior of a béam in
an electron storage ring‘under the simultaneous action of two betatron-oscil-
lation resonances and on periodic passage through a resonance, and we ascertain
the conditions under which a stochastic betatron-oscillatién instability arises,

“and study the characteristics of the motion of the pa¥tiéles in that event.
The experimental data are compared with the theoretical findings of B.V. Chiri-
kovl.

Since an electron beam in a storage ring is an ideal model of a non-

2

linear oscillator with very low friction , the experimental results obtained

can be applied to other nonlinear systems too.

II. EXPERIMENTAL SETUP AND EXPERIMENT SCHEMES

. . . . 3
The experiments were conducted in the BEP-1 electron storage ring.
The betatron-oscillation resonances (simultaneous radial and vertical, and also

the sum resonance) were excited with the aid of an external resonant buildup



of the beam. This enaﬁled us, for any values of the betatron-oscillation fre-
quencies, to create one or another resonance; regulate the power of the reso-
nances, and change the frequency distance between resonances; which cannot be
done with the "machine" resonances excited by the imﬁerfections of the guiding
magnetic field at certain values of the betatron-oscillation frequencies.
Moreover,vusing an external resonant buildup with frequency modulation made it
technically simple to achieve periodic passage through a resonance, whereas

the study of periodic passage through a "machine" resonance with the same para-
meters would have necessitated creating a complex system for modulation of the

betatron-oscillation frequency.

1. Storage-Ring Parameters. For the experiments we used the upper
storage track of tﬂe BEP-1 storage ring. Its parameters are: equilibrium
radius Ri = 43 cm; working aperture AZ = *1.0 cm, Ar = *1.4 cm; gevolution
frequency fo = 110.S MHz; betatron-oscillation frequencies fZ = vzfo = 85

MHz, fr = vrfb = 70.5 MHz. The cubic nonlinearity of the guiding magnetic

field results in a dependence of the betatron-oscillation frequencies on the

betatron-oscillation amplitude:

Az 3 1 0Vz _ e 42
E)CZ% -/ 1(7 CM?2 E}(zﬁ - 4555 X 1\1 M=
Q\,L 31 OVe o A

92"10 cM2 ’C’j’”e—“1,8"10"'6»’1“c :

Moreover, the betatron-oscillation frequencies depend also on the

particle deflection from the equilibrium radius:

2) Z C )jP ~ -2 1
L3500 PE=10x107 -



The stability of the betatron-oscillation frequency due to

4

the ripple current in the storage-ring winding was usually %;-ﬁv6 x 107,

the ripple frequency 140 and 7 Hz. By using the lower track's magnet
winding as a ballast load, and by connecting in parallel to the upper track
a bank of capacitors with C = 26 mf and a storage béttery.with a capacity
of 22.5 A/hr (the voltage across the cells being set equal to the voltage drop
in the magnet winding), we succeeded in reducing the ripple v to
e x107

In addition to this spurious modulation of v , there was always a
"natural" modulation of the betatron-oscillation frequency due to the synchro-
tron oscillations and square-law nonlinearity. The synchrotron-oscillation
frequency was usually fS = 3-5 % 105 Hz, the amplitude of the radial phase
oscillations a. = 0.3 mm. With the existing quadratic nonlinearity, this

¢ ;
gave us a frequency deviation AfS = 105 Hz.

2. The System for Exciting Betatron-Oscillation Resonances. To ex-
cite resonances in the storage-ring chamber, we set up a special system of

" electrodes which in the region of the beam produces a potential distribution:

V(x.2) = ?{‘[x+&,zj+ %L-’}[xa-—z%%exzj, (n

where Vl and V2 are the dipole and quadrupole terms of the expansion of
the potential (V3 = V4 = ... ®%0), and d 1is a characteristic geometric di-
mension. €k is the angle between the plane of symmetry of the k-th multipole
and the plaﬁe z.f 0.

If to these electrodes we apply the HF voltage U = U0c052ﬂfpt , then
with the aid of this system we can excite resonances for any values of V. and
v, by selecting, as required, the builduﬁ frequency fp = vpfo’ since in this

case the resonance condition is



MV +mvVv =1 -V ,
T 27z =1 (2)

p

for |mr[ + |mz| <2, since V, #0, V,# 0 while Vg =V, =...=0.

We usually used the following frequencies:

a) f = fo(l - vz) to exciie the vertical betatron oscillations (Fig. 2a);
b) f = fo(l - vr) to excite the radial betatron oscillations (Fig. 2b);
c) f = fo(2 - V.- vz) to excite the sum resonance (Fig. 2c).

In addition to this system of electrodes inside the chamber, there
were three pairs of flat plates creating a uniform field with respect to =z
These plates were used for simultaneous excitation of several resonances of
the vertical betatron oscillations at the frequency f = fo(l - vz).

The voltage for exciting the resonances was fed through power ampli-
fiers from four master oscillators. The frequency of the oscillators was de-
termined with the aid of a crystal-coated frequency meter. Moreover, the dif-
ference between the frequencies of two osc¢illators was measured with a special
low-frequency frequency meter, with the aid of which the frequency distance
between two resonances could be determined dirgctly.

The master oscillators used allowed an external frequency modulation
with the modulation frequency fM = 0-60 kHz and deviation AfM = 0-200 kHz.
The modulation frequency was set from an audio oscillator, and the deviation
was determined with a deviation meter.

- In some cases the buildup voltage was fed thrdugh a pulsed on-off
switching unit operating as a key from the external trigger pulse. The trans-
mission coefficient was 1:500 at .f = 25 MHz, the voltage rise (decay) time
T ~10 ps.

The system for exciting the resonances is shown schematically in

Figure 1.



3. Ways of Measuring the Basic Parameters. Beam-Observation
Methods. The simplest and most convenient methods of observing an electron
beam in a.storage ring are based on recording the synéhrotron radiation (Fig. 1).
A special optical system produced an image of the beam cross-section with a
2:1 magnification. Absolute calibration of the optical system's transfer con-
stant was déne with the aid of "aperture' probes placed in the storage-ring
chamber on the beam-observation azimuth.
By observing the beam image near a resonance, we could determine
the basic parameters of the region of betatron phase stability (RBPS):2
a) the equilibrium amplitude (ao) from the visually observed beam image
or from oscillograms obtained with the aid of a dissector4;
b) the size of the RBPS from the dependence of the lifetime of the particles
in the RBPS on the size of the beam in the RBPS;  the beam size was increased
:
with the aid of a system of nonresonant beam buildups'and was determined with
the aid of a dissector;
| c) the frequency of the small phase oscillations f¢ by resonant excita-
tion of oscillations in the RBPS through modulation of the betatron-oscillation
frequency (%F-AVIO—z); to modulate v , a voltage from a standard audio oscil-

lator on a frequency f = f_  was fed through a ferrite-ring matching transfor-

¢
mer to the v-correcting plates; the increase in the oscillation amplitudes in
the RBPS was observed with the dissector;

d) ihe particle distribution with respect to betatron-oscillation amplitudes
frbm oscillograms obtained with the dissector; since the dissector's scanning
frequency was F = 25 Hz, in thé event of a fast change of position of the
equilibrium amplitude of an RBPS with a frequency greater than F, we observed

a stroboscopic picture from the dissector output (see Fig. 14d);

e) the particle distribution with respect to the betatron-oscillation



phases from the signal from a "fast'" photomultiplier with a slit diaphragm;
this photomultiplier made it possible to observe the coherent oscillations of

a beam with a frequency of up to 30 MHz.

4. FSeZecting the Basic Parameters for the Conduct of the Experi-
ments. The experimental study df the stochaétic instability of the betatron
oscillations in a storage ring was actually conducted against a background of
various processes that affect the beam's behavior, processes therefore capable
of blurring the effects being studied. Such processes are:

1) modulation of the betatron-oscillation frequency‘because of the .
synchrotron oscillations;

2) instability of the betatron-oscillation frequencies because of modula:
tion of the current in the winding of the power supply of the storage-ring
magnet;

3) scattering of the residual gas on atoms;

4) radiation damping.

]

Given our parameters,(AfS 105 Hz, fs =5 ><le6 Hz), the modulation
of tﬁe betatron-oscillation frequency due to the synchrotron oscillations and
quadratic nonllneariéy produces a series of synchrobetatron resonances at

a distance Af = nfS (n =1, 2, 3) from the main resonance.

We were unable to study the stochastic instability of the synchro-
betatron resonances because of the limited possibility of varying the distance
between these resonances, which is determined by the synchrotron-oscillation
frequency. Despite reducing the quadratic nonlinearity, we did not succeed in
completely eliﬁinating these resonances.

Actually there was also a modulation of the betatron-oscillation
frequency due to the ripple current in the winding of the storage-ring mag-
net. This resulted in slightly altering the position of the equilibrium ampli-

tude of the RBPS with a frequency of 140 and 7 Hz.

6 .



That is why the resonance power was selected so that the frequency
of the phase oscillations in the RBPS would be much lower than the synchro-
tron-oscillation frequency (fs) and much higher than the ripple frequency

of the current, in the magnet winding (fny Actually we were working

A)'
with 0.1 f > f > 50 £ .
S ¢ nyh

With f¢zv().1 fS , the size of the RBPS with respect to the beta-
tron-oscillation amplitudes was large enough to permit study of the oscillations
within the RBPS itself. Since these oscillations are essentially nonlinear,
we were able not only to excite forced oscillations of the particles in the
RBPS due to the external resonant perturbation but to watch the formation of
a second-order RBPS. We could not observe the formation of any higher-order
RBPS, because the steady-state size of the beam was apparently greater than
the sizes of those RBPS.
A

The natural beam dimensions are determined by the radiation-damping
time and the magnitude of the diffusion due to scattering of the residual gas
on atoms, and of the quantum fluctuations of the synchrotron radiation. Since
under our conditions the vertical dimension was determined solely by the
scattering of the residual gas on atoms,6 and since for this process the dif-
fusion coefficient Di decreases with increasing energy, the basic experiments
were conducted with resonances of the vertical betatron oscillations at an
energy E = 125 MeV.

) The beam's vertical dimension at this energy (2 GZ 22 0.1 mm) deter-
miﬁed the size of the natural stochastic region. The stochastic instability

due to interaction of the resonances was observable only when it produced

a diffusion coefficient greater than Di .



III. STOCHASTIC BEAM INSTABILITY UNDER THE COMBINED EFFECT OF TWO
BETATRON-OSCILLATION RESONANCES

7,8 . . .
72" on the interaction of resonances in non-

Many theoretical works1
linear systems have recently appéared. However, the mathematical complexity
of the problem has so far blocked construction of any rigofous theory, so
that an experimental study of the matter may serve as a useful supplement
to the exisf;ng theoretical endeavors. |

We shall begin our experimental study with a very simple case of

the interaction of two resonances. As the basic characteristics of the inter- -

action we take the overlap parameter

- |é£
£

ms=s —-—, 3
¢
which characterizes the power ratio of the interacting resonances. We recall

and the parameter f¢2
£ 1

that Af 1is the frequency distance petween the resonances, f¢1 and f¢2
~the frequencies of the small phase oscillations in the RBPS, while
Afp = 4f¢ is the frequency width of the RBPS.
The studied resonance we shall call the first resonance (RBPSl), and
the second resonance (RBPSZ) will be a perturbation.
Depending on the values of s and m , with co-excitation of thc
two resonances we were able to observe:
1) the existence of two independent regions of phase stability (Fig. 3a
and 3b); |
2) ; splitting of the resonances with the resulting appearance of new
stable regions of phase stability inside the first two (Fig. 3c and 3d);

3) complete destruction of the region of betatron phase stability

with a resulting stochastic character of the variation of betatron-oscillation



amplitudes (Fig. 3e and 3f).

For the reasons stated above, we studied in detail the one-dimensional
case of the interaction of two resonances of the vertical betatron oscillations
for different values of the parameters s and m . The entire range of varia-
tion of the parameter m can be divided (somewhat arbitrarily) into three
characteristic regions, though of course there is no sharp boundary between

one and another.

1. Main Effects Observed with Excitation of a Single Resonance
(m = @). The excitation of a single resonance has been studied in detail be-
fore.2 Let us just remember that, owing to a peculiar phasé—stability mecha-
nism, a region of stable amplitudes and phases arises near the resonance, the
region of betatron phase stability IRBPS). Of the particles that have entered
this region, the amplitude and phase are subjected to a beat having the ffe-

3

quency of the phase oscillations (f¢) and, owing to the radiation friction,
decay to their equilibrium values. The scaétering of the residual gas on atoms
and the magnitude of the radiation damping determine the steady-state size of
the beam in the RBPS (the size of'the beam in the RBPS is not dependent on the
‘ power of the resonance and is equal to the size of the beam in equilibrium or-
bit without resonance excitation). The spread of the betatron-oscillation
amplitudes and the resonance power determine the particles' betatron-oscilla-
tion phase spreéd. Hence the particles trapped in the RBPS constitute a co-
herent bunch having a relatively narrow spread of betatron-oscillation ampli-
tudes and phases.

~ We should note that, depending on the buildup voltage and on the
frequency separation with respect to the exact resonance, the existence of

either one or two stable amplitudes is possible. Figure 5 shows photographs

of the beam near the resonance for various frequency separations



Af=f - f - f
o z0 p

where fo is the revolution frequency, fZo the small-amplitude betatron-
oscillation frequency, fp the buildup frequency. The buildup voltage was

constant (U = 150 V). Figure 6 shows a resonance curve, the dependence

buildup
of the amplitude on the frequency of the buildup voltage, plotted from such
photographs. That same figure shows a skeleton curve plotted for a low build-

up voltage (U =3V).

buildup

The obtained resonance‘curve corresponds exactly to the theoretical
conceptsgvof the resonance excitation of a nonlinear oscillator. This once ~
more clearly shows that an electron beam in a storage ring is an ideal model
of a nonlinear oscillator with very little friction.

For the experiments we used the excitation of resonances wi}h both
one and two equilibrium amplitudes. In the first éase all the particles were
trapped in one RBPS, and the lifetiﬁe of the particles in the RBPS equaled the
lifetime of the beam in the ab;ence of any resonance excitation. In the
secoﬁd case the lifetime of the particles in the RBPS, which was situated
near the larger amplifude, was determined by the size of the RBPS and by the
pressure of the resi&ual gas2 and, for our parameters,was usually 1 < 50 sec.

A particle that slipped out of the RBPS was not completely lost, however, but

damped to the small amplitudes.

2. Resonance Splitting - Formation of a Stochastic Layer in the
Caselof Two Resonances of Unlike Power (m < 0.6). The main effect observed
with these values of m is the excitation of forced oscillations of the beam

as a whole in RBPS, with a frequency of f = Af. The presence of particle

1

phasing in the RBPS in the case of a single resonance has the result that on
this storage-ring azimuth the intensity of the synchrotron radiation from the

beam varies with the frequency f = nfo - £ . We recorded this intensity

L]

10 .



variation by using a photomultiplier with a slit diaphragm. The excitation
of the forced oscillations of fhe beam in the RBPS registefed through the
modulation of the HF signal from the photomultiplier. We should note that

in the case s =1 and s = 2 the modulation amplitude was substantially
greater thgn for other values of s . The excitation of the beam oscillations
in the RBPS with s =1 and s = 2 could also be seen from the density-
distribution oscillograms (see Fig. 7).

' Measuring the lifetime of the particles in the RBPS (see Fig. 8)
proved a convenient way to study tﬂe characteristics of the. interaction of
the resonances for these values of m . For this, a disturbed resonance was
excited so that there existed two stable amplitudes. We measured the life-

time of the particles in RBPSl, which was situated near the larger amplitude.

As seen from Figure 8, the dependence of the lifetime on s has a resonant
11
2’ 3 °

All of these results are readily explainable if we consider that

character, and the lifetime in the RBPS decreased as s = 4, 3, 2, 1,

the presence of RBPS,, is a nonlinear perturbation for the.oscillations in

RBPSl,rthe frequency of the perturbation being f = Af. Since the oscillations
in RBPSl are also nonlinear, resonances with Af = E—f¢1 (where p and q
are integers) are possible in such a system. Accordingly, with s = P

q
é second-order RBPS can form inside RBPSI. With values of s =1 and s = 2

the second-order RBPS will be fairly large in size and observable from the
particles' amplitude distribution (Fig. 7b). For other resonance values of
s the second-order RBPS will show up only as an intermediate zone for par-
ticles emerging from the main RBPS gwing to the scattering of the residual
gas on atoms, as reflected by the curve for the lifetime (Fig. 8).

Apart from this main, purely dynamic effect (formation of a second-

order RBPS), the interaction of the two resonances, given these m parameters,

11



will result in a partial destruction of the RBPS, i.e., in tﬁe formation of
a stochastic layer near the separatriss, as theoretically predicted in refs.
1 and 7. Thé thinness of this layer, compared to the size of the second-order
RBPS, makes it virtually impossible to discern its influence on the lifetime
of the particles in the RBPS. We were enabled to observe such a layer only

with the aid of the particles passing through the RBPS owing to the radiation

damping, as was done by Dikanskil et a1.10

For this, we used one of the buildup systems, connected via a pulsed-

switch unit, to create a resonance region (RBPSS) in which all the beam's par- .
ticles became trapped. By varying the buildup frequency, we gradually in-

creased the equilibrium amplitude of RBPS, and switched the particles to the

3

maximum amplitude. After this, two more resonance regions (RBPS1 and RBPSZ)
were created in the intermediate amplitude region for different powers and

frequency distances between them. Then, with the aid of the pulsed-switch unit,

the buildup voltage creating RBPS, was switched off, and the particles originally

3

trapped in RBPSS, owing to the radiation damping, decregsed their amplitude

and passed through the intermediate region. The instant at which the particles
of amplitude a = 0.5 mm passed through was recorded with the aid of a slit-
diaphragm photomultiplier. We also recordéd the spread of the particles'
betatron-oscillation amplitudes by measuring the time of the photomultiplier-

pulse trailing edge.

As was shown experimentally in ref. 10, when particles pass through

a single RBPS, the following effects are observed:

1) The particles become trapped in the RBPS, the capture probability

|3,
W =
c J + |J ?
c 1

being

where [Jcl is the phase volume of the RBPS, |J
8

ll the phase volume of the

small-amplitude region lying inside the RBPS.

12



2) The damping time of the uncaptured particles décreases owing to the
fact that, in passing through the RBPS, the particles abruptly decrease the
betatron-oscillation amplitude to the width of the RBPS, 2Aa (the '"phase-
shift" effect in the betatron phasé space).

3) The spread of the uncaptured particles' betatron-oscillation amplitudes
increases because of the betatron-oscillation amplitude beats in the region
inside the RBPS (we should note, though, that the arrival time of the very
last ‘particles was no later than Tzl , the normal damping time of the particles
with the RBPS switched off).

The passage of the particles through the region of interaction of
the two resonanceg ~ RBPS and RBPS2 had the result that:

1
a) The entrapment of particles in RBPSl decreased. The dependence of
the capture probability on the parameters s and m 1is shown in Figure 9.
b) There appeared on the oscillograms a long exponential '"tail" cor-

responding to particles whose arrival times were several times longer than

T, The dependence of T, on the parameters s and m  is shown in Fig. 10.
1 o

It is these results that do seem to indicate that, in addition to

the purely dynamic effects (formation of a second-order RBPS), the interaction

of the resonances in the m < 0.6 region, even in the absence of any diffusion
at the RBPS center, results in a decrease of the RBPS width due to the stoc
tic layer that forms near the separatriss. The decrease of the RBPS width is

evident from the decreased capture of particles (Fig. 9). That this decrease

of the RBPS width indeed is linked.to the stochastic layer is evident from the
simultaneous increase of T, for the uncaptured particles (Fig. 10). Such

an increase of the damping time characterizes particles which diffuse for a

time in the stochastic layer, then emerge into the small-amplitude region,

where they undergo normal radiation damping.

13



These results can be interpreted also as a manifestation of a particle-
heating mechanism in a certain amplitude region. An anaiogous result would be
obtained if the particles were to pass through a thin gas target instead of

a region of interaction of two RBPS.

8. Complete Destruction of the Region of Phase Stability in the
Interaction of Two Identical Resonances (m ~ 1). In this range of variation
of the parameter m the main observable effects are the diffuse ''spreading"

of the beam in the amplitude region determined by the size of RBPS., and

1
complete destruction of the RBPS.

The destruction of the RBPS can be inferred, first of all, from the
sharp drop in the HF signallfrom the diaphragmed photomultiplier. With
s = 0.2-1.2 and s = 2 the photomultiplier recorded only the noise signal,
which indicates a uniform distribution of the particles with respect to beta-
tron-oscillation phase§, and a complete absence of the phase—stability.mecha—
nism.

In Figure 4, which shows photographs of the beam, we see that for
s =1 and s = 2 the particles are almost evenly distributed with respect
to amplitudgs too in the amplitude regi9n determined by the size of RBPSl.
With s = 3 we observed a‘large diffuse increase in the size of the beam
in the RBPS, but the amplitude distribution still had its maximum at
axa; (ao being the equilibrium amplitude of the RBPS). With s = 1.5 and
s = 2.5 only the formation of the second-order RBPS was observed.

A variation of the particle distribution with respect to betatron-
oscillation amplitudes could be observed only in the case of excitayion of
a disturbed resonance (RBPSI) with one stable amplitude. But if the disturbed
resonance was excited with two stable amplitudes, then the switching-on of
RBPS2 when m > 0.6 caused the particles quickly to leave the RBPS near the

large amplitude and damp into the small-amplitude region. In this case we

14



found it convenient to observe the decrease of the electron density in RBPS1

after RBP82 was quickly switched on. The density decrease was recorded with
the aid of a photomultiplier whose diaphragm was tuned to the center of RBPSl.
The density decrease was exponential in character (see Fig. 11). The depen-
dence of the time constant on the parameters s and m 1is shown in Figures
lla and 11b. Characteristically the dependence on s 1is of a resonance
nature.

For a more complete understanding of how the character of the motion
of an individual particle changes as we go from m = O‘ to m=1 (s = 2),
we ran a special experiment. After switching on the first resonance, we

quickly switched on RBPS_ and, with the aid of a diaphragmed photomultiplier,

2
watched the particles pass from RBPS1 to RBPSz. The slit diaphragm was tuned
to RBPS2 so that initially there was no signal from the photomultiplier;

‘Since initially the particles in the RBPS are phased, by observing
the guidance of the entire beam for a length of time shorter than that required
for loss of coherence, we can infer the nature of the motion of one particle.
Figure'12 shows oscillograms of the photomultiplier current, from which we
see that the particles'<amplitude variation is jerky, and the amplitude may
either decrease or increase. The characteristic times of the amplitude varia-
tion are much longer than the betatron-oscillation period but shorter than the
phase-oscillation period in the RBPS.

iA Summarizing all the experimental results obtained over a broad range
of variation of the parameters s and m , we are able to conclude that:
1) The interaction of the two resonances essentially manifests itseilf
only in the case of the resonance overlap s = I%ﬁ <4,
- ¢

2) The main consequence of the resonance interaction is a splitting of

the resonances, the formation of a second-order RBPS at certain values of

s=L,
q
15



3) The resonance splitting is always accompanied by formation of a
stochastic layer near the separatriss.

4) Complete stochastic destruction of the RBPS is observed only for
certain values of s and mv, which clearly confirms the fact that the phase-
stability region is destroyed precisely because of an overiapping of the
second-order RBPS, which form at certain values of s and which apparently

overlap only when m 2«1.

Iv. STOCHASTIC BEAM INSTABILITY DUE TO PERIODIC PASSAGE OF THE
. ‘BETATRON OSCILLATIONS THROUGH A RESONANCE

The question of periodic passage through a resonance has long been
of interest to many investigators. We should note, however, that even until
very regently there were no clear answers to the following: = Where 1i§s the
boundary between a slow and a fast passage? What exactly is the transition
region? How do we allow for the amplitude increments in the case of a fast
passage? And so forth. Even gfter bublication of B. Chirikov's paperll,
in which the problem of periodic passage through a resonance was considered
theoretically in its most general form, a number of works appeared, of which
some were utterly inéorrectlz, while others dealt only with certain special

13,14

cases but without substantiating the limits of their analysis This

situation may be due in part to the absence of any experimental work.

That is why we ran a series of experiments to study the periodic
passage through a resonance under the most varied conditions. To some extent
these experimenfs are a continuation of the experiments aimed at studying the
interaction of two resonances, since the periodic passage through a resonance

can be regarded as an interaction among a large number of resonances.

For the experiments we selected the resonance of the vertical beta-
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tron oscillations that is excited by the resonant buildup of the beam. The
resonance was usually excited with one stable amplitude (Fig. 14b). The
periodic érossing was accomplished by introducing a frequency modulation of

the buildup voltage. We measured the parameters: a, and f¢ , the equilibrium
amplitude of the RBPS and the freqﬁency of the small phase oscillations in the
RBPS in the absence of frgquency modulation; fM the modulation frequency;

AfM the modulation depth (deviation).

Depending on how AfM s fM and f¢ were interrelated, the periodic
crossing of the resonance produced the following effects:
a) periodic variation of the position of the equilibrium amplitude
(the size of the beam underwent virtually no change)["adiabatic' crossing]l;
b) diffuse blowup of the beaﬁ:in a certain amplitude region
[stochastic instability];
c) appearance of new stable regions, '"modulation' resonances
(analogue of the synchrobetatron resonances).

We should note that no.sharp boundary is encéuntered on passing from
one regibn into another. By utilizing certain characteristic transition regions,
however, (concerning which, see below) we can assume an arbitrary boundary.

Let us look more closely at the regions depicted in Figure 13 and at the bound-
aries between them, and let us distinguish in particular the small-deviation
region, in which a periodic alternation of stable and unstable regions was

observed.

1. Determining the Boundqry of the Transition from a Slow
("Adiabatic") Crossing to the Stochastic Region. As shown in ref. 1, any
crossing, no matter how slow, through a resonance results in destructién of
the phase-stability region and in the formation of a stochastic layer in the

region of the separatriss. The relative thickness of this stochastic layer
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A fM fm

2
f¢

(3

S A

That is why no slow crossing through a resonance, no matter how slow, can be
called adiabatic. For the same reason Chirikov1 asserts that there is no
stochastic-instability boundary with a slow crossing.

‘However, we can introduce the concept of a lower bound of the com-

plete destruction of the phase-stability region, i.e., when
§ a1l and .E—E_Nl . . (4) -

The introduction of such a boundary is the more appropriate as a boundary
or limit of the complete destruction of the RBPS is readily observable ex-
perimentally.

Figure 14 shows oscillograms of the beam-density distribution ob-

tained for a constant resonance power (f, = const) and deviation (AfM = const),

¢
and varying modulation frequency fM . From these oscillograms we see that
for small fM (see Fig. l4c-and 14d) the beam as a whole moves over into the
amplitude range Aao. According to the measurements

Af

M
Y . S———
aay £ - av/ea?

This means that the thickness of the stochastic layer is small, the size of
the undestroyed RBPS is large compared to the dimensions of the beam in the
RBPS, and that all the particles remain trapped in the RBPS. As the modula-
tion frequency is increased, the thickness of the stochastic layer increases,
the size of fhe RBPS decreases, and particles not trapped in the RBPS appear,
which "spread out'" over the ba amplitude range (see Fig. l4e). As the
modulation frequency increases, the proportion of trapped particles decreases

(see Fig. 14e) until finally all the particles become diffusely spread out

18



(see Fig. 14f), which indicates complete destruction of the RBPS.

The extent of the destruction of the RBPS could be determined with
the aid of a slit-diaphragm photomultiplier, whose slit was tuned to the
amplitude a = a,. By measufing:the ratio of the variable to the constant
component of the photomultiplier current, we were able to find the ratio of
the numﬁer of particles trapped in the RBPS to those spread out over the
Aao amplitude range. The boundary of the complete destruction of the RBPS
was determined from the disappearance of the photomultiplier current's
variable component (see Fig. 15).

Figure 16 shows the dependence of the photomultiplier current's
variable componeﬁt’on the modulation frequency for various values of AfM .

We see that for small AfM either there is no complete destruction at all

of the RBPS, only individual bands of its partial destruction being observable,
or the boundary of its complete destruction has an oscillating character.

The boundary of the complete destruction of the RBPS is determined with suf-
ficieﬁp clarity only for AfM >-f¢. For this region we plotted curves of

the complete destruction of the RBPS as a function of the deviation (Fig. 17a)
and resonance powér (Fig. 17b). We found that for the case Af > fM

formula (4) qualitatively very well defines the boundary of complete destruc-

tion of the RBPS. The experimentally measured complete-destruction boundary

corresponds to f2
¢
x~ 4. (5)
2. Measuring the Diffusion Coefficient in the Stochastic Regiomn.
In addition to the diffuse amplitude blowup of the beam with increasing modu-
lation frequency, we observed at the same time a decrease of the signal, on
the frequency f = f - f;, from the diaphragmed photomultiplier. In the

o

case
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the HF signal faded out entirely, which indicates the absence of any phasing
of the particles and complete destruction of the RBPS. The character of the
variation of the betatron-oscillation amplitudes becaﬁe stochastic. Direct
measurement of the diffusion coefficient afforded proof of this.

The diffusion coefficient D , which characterizes the rate of

variation of the square of the betatron-oscillation amplitude,

[a(a?)] , : i
o D= —F—, (6)
is a basic characteristic of the stochastic-instability region. In periodic-

passage through a resonance whose power is B(az), when Af >> fM the

diffusion coefficient is written as1

_ 7 Bad fS
b LFm

The presence of diffusion and of radiation damping must lead to

(7)

establishment of an equilibrium size Aa. Taking into account (6), (7) and

(from ref. 8)

fg = B foa 75%2 ’ (8)
— fa
we get AQ= -2—,.7%—;“ -\ i (C” (9)
tolestz VA Afu

where f  is the frequency of the small phase oscillations in the RBPS
situated near the equilibrium amplitude a, s and T, is the vertical-
betatron-oscillation damping tiﬁe. Expression (9) is convenient for ex-
perimental verification, since it contains all the directly measured quan-
tities.

Figure 18 shows oscillograms of the beam-density distribution in
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the stochastic region for different values of the resonance power (Af = const,
fM = const). - From these oscillograms Qe see that for low resonance power and
high AfM the beam-density distribution is close to a normal distribution.
For high resonance power and low: AfM the distribution differs from a normal
distribution, the large amplitudes getting chopped off, so that the particles
can have amplitudes no greater than

' AT

= 1 M
Y f_-ov/sa?

which indicates that diffusion is possiBle only in a certain amplitude region
determined by the frequency deviation.

The presence of a sharp boundary between a stochastic region with
a high diffusion coefficient and é region in which the diffusion is governed
solely by the scattering of the residual gas on atoms can be inferred‘also

from the dependence of the beam lifetime on the aperture (see Fig. 19). Fig.
19 shows two curves fot a beam having one and the same size at the distribu-
tion-function half-height, but in the one case the increase of the beam size
was achieved through a nonresonant beam buildup5 giving a normal amplitude
distribution, while in the other the beam-size iﬁcrease was achieved through
stochastic instability.

Characteristic in this sense is Figure 20, which gives the beam size
as a function of the buildup frequency separation Af with respect to the
exact ;esonance (the buildup voltage, modulation frequency and deviation re-
mained constant). Figure 20 makes very clear that the region of stochastic
instability in the periodic passage through a resonance is strictly limited
by the deviation. From that_figure we also see that the beam size ihcreases
when Af = Af,,. This increase is apparently due to the fact that the points

M

iAfM are the points of slowest passage through the resonance, so that the

time that the particles spend in the resonance increases, as does the diffusion
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coefficient, which results in the increase in the size of the beam.

The diffusion coefficient and its dependence on the different para-
meters were measured by measuring the beam size in that region of the reso-
nance power, AfM and Af (see Fig. 18), in which the distribution does not

differ from a normal distribution, and in which expression (9) holds.

Figure 2la shows the dependence of the beam size on f2 for two

¢
values of AfM . Figure 21b shows the dependence of the beam size on the
deviation AfM . The beam size was not dependent on the modulation frequency

M7

Qualitatively, all these measurements show that

J[ <

when Af > 20 fM. . .

AQ ~

A F 2
Quantitative estimatg; were made for the following parameters: f¢== 6.5 x 103
Hz; a_ = 0.2 cm; 55; = 8.5 x 10° Hz/cn’; A%y, = 10° Hz. Calculation
per formula (9) givés is Zagal = 1.8 mm. Measurements of the beam size for
these parameters (see Fig. 21) showed that Zaﬁeas = 1.45 mm. We can there-

fore conclude that both qualitatively and quantitatively the experiment agrees

well with the theoretical predictions.

3. Determining the Boundary of the Transition from the Stochastic
Region to the Region of "Modulation" Resonances. On the basis of oscillograms
of the electron beam's density distribution (see Fig. 14) obtained with a high
modulation frequency, we can speak of the development of new stable regions of
phase stability, or "modulation" resonances. The dévelopment of these reso-
nances is a consequence of the frequency modulation of the exciting force,

which can be expanded intd a Fourier series:
S~ (AL
; F“':FonZ:o Zn(ﬂ,ﬂ) C032‘77(7£i‘nfn>'é , (10)
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Af
M . . .
where Jn(———) is a Bessel function of the first kind of order n . From

fM

this we see that, in addition to the main resonance, we get a series of

supplementary ''modulation'" resonances at a distance Af = * nf_ from the

M
Af
main one, the power of these resonances being Bn a,Jn(—?M-. When
] M
AfM >> fM , the power of all the resonances is roughly the same, namely:1
| fuy s
B BO(EE) ; (11)

where Bo is the resonance power without the frequency modulation.
The condition of transition from the region of 'modulation' reso-
. .1 . .
nances to the stochastic region” means physically an overlapping of the

regions of phase stability of the '"modulation' resonances and is written as
' 3

s=-f-—“1~1, (12)
oM
where fiM = angggz is the frequency of the small phase oscillations in

i

the RBPS of the '"'modulation'" resonance. When allowance is made for (8) and
(11), the stochasticity condition is written as
2/
Sy, L A
S:f/q LT //""7 . ’ (13)

n, L]
~
- The upper bound of the stochasticity was determined experimentally by measuring

the electron-density distribution (see Fig. 14). Figure 22 shows the position
of the boundary as a function of the resonance power for a constant deviation.
The dependence of the boundary position on the deviation is shown in Figure

13. Good qualitative agreement with formula (13) is obtained only when

AfM > 2f¢ . In this region the experimentally measured boundary corresponds
to jf'%égg*[ Y ‘
- IM Ao
§=LuTlin'l 4 a5 ()

7 .
T¢ 2t
4. Periodic Passage through a Resonance in the Presence of
a Small Deviation. The reéion of small deviations is of interest, and we

shall discuss it separately, because here Chirikov's results1 have limited



applicability, and because it is here that we see the tranéition from the
old classical results (from, say, the problem of the stability of the solutions
of equations with periodic coefficients) to Chirikov's findings1
Determination of the boundary of complete destruction of the RBPS
in the presence of shall deviations AfM has shown that in certain modulation-

frequency regions a partial or complete destruction of the RBPS is observed

fy

fMAfM

destruction can be inferred from Figure 16, while Figure 13 shows the width

even in the case < 4 (see Fig. 16). The relative extent of this

of these modulation-frequency regions as a function of the deviation. The

resonance power remained constant, and the frequency of the small phase oscil-

lations f¢ was 36 kHz.

Figure 13 is strongly reminiscent of the stability diagram for

the solutions of the Mathieu equationls, since the regions of destruction of

the RBPS lie near the modulation frequencies 2 f1 , f1 , % fl’ ‘%—fl,
2 1 : ‘
g-fl, g-fl, ..., where fl = 30 kHz when fcb = 36 kHz.

The destruction of the RBPS at these values of the modulation fre-
quency is apparently due to aﬁ interaction of the second-order phase—stability
regions that form as a result of excitation of a parametric or subharmonic
resonance in the RBPS. Excitation of these resonances is possible because
the frequency modulation of the buildup voltage produces two effects:

1) a change in the position of the equilibrium amplitude of the RBPS, hence

f

excitation of resonances in the RBPS when fM = 7?—; 2) modulation of the

frequency of the phase oscillations in the RBPS, hence excitation of para-

2f
metric resonances in the RBPS when fM = —Hi (n=1, 2,...). Since in the
f v
case of resonance at fM = ?? a parametric resonance is excited independently,

this results in an amplification of these resonance bands. The fact that

the regions of destruction of the RBPS lie not near the frequencies
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¢ .
fM == but near f,, = " (where f1 = 0.82 f¢) 1s apparently due to the

M
substantial nonlinearity of the oscillations in the RBPS. The relation
f1 = 6.82 f¢ held under variation of f¢ from 5 to 50 kHz.

The absence of a resonance structure in the case of large deviations
is attributed, on the one hand, to the experimental difficulties in distin-
guishing the narrow resonance bands of high order and, on the other; to
the overlapping of individual lower-order resonance bands. It is the

overlapping of the resonance zones that gives us the stochastic region

(Fig. 13).

V. CONCLUSION

.

The quite unique characteristics of an electron beam in a storage
ring (long lifetime, little damping, small nonlinearity of the oscillations,
simplicity of the observation methods) have made it possible to set up a num-
ber of '"'genuine" exéeriments for studying the characteristics of a nonlinear
oscillator, and to conduct an experimental study of interesting physical pro-
bléms formerly approachable only through mathematical experiments involving
numerical solution Sf the equations of motion on an electronic computerl.

‘In the present study we investigated the interaction of two reso-
nances and the periodic passage through a single resonance in a nonlinear
system. The interaction of two resonances is a very simple case of resonance
intefaction, whereas the periodic passage through a resonance is a more
general case, since it can be pegarded as the interaction of a large number
of "modulation' resonances.

The most interesting experimental results can be considéred to be:

1) We have demonstrated the possibility of a stochastic motion of par-
ticles under the influence of purely periodic perturbations. Our measurement

of the diffusion coefficient in the stochastic region during periodic passage
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through resonance, and our discovery of a heating of the particles in the
stochastic 1ayer in the interacfion of two resonances, afford surprising
experimentél confirmation of this fact.

True, we must emphasize that the stochasticity of course does not
signify the disappearance of the bétatron oscillations. The stochastic in-
stability results dnly in imparting to the variation of the betatron-oscil-
lation amplitudes a raﬁdom diffusional character. The characteristic |
period of this ﬁrocess is much longer than the betatron-oscillation period
but shorter than the period of the phase oscillations in the RBPS.

2) We determined the conditions under which stochasticity arises.

We have shown that the development of stochastic instability proceeds through
purely dynamic effects: resonance splitting and formation of second-order
RBPS. The-overlapping of second-order RBPS results in stochastic destruction
of the phase-stability region; This is why the stochastic instability ob-
served in the interaction of two resonances and on periodic passage through
resonance develops under certain resonénce relationships.

3)‘ We compared somé of the experimental data with Chirikov's theoretical
findingsl, and found a féirly good qualitative and quantitative agreement.

In a number of cases we-were able to write the numerical coefficients in
Chirikov's formulael, the latter proving correct only in order of magnitude.

_In addition, our experimental study yielded a few results of some
practical value:

a) We demonstrated experimentally the possibility of creating a spatially
sharply limited diffusion region with a recordable diffusion coefficient,
which can be used, for example, to increase the size of the beam in an electron
storage ring (which has been found necessary to suppress the collision effects

in all operating storage rings). The possibility of obtaining an almost uni-
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.form density over the beam cross-section, and the absence of '"tails'" in the
beam's.amplitude distribution, enable one, with the aid of the stochastic
buildup, to increase the size of the beam ﬁp to the half-aperture of the
storage-ring chamber without shértening the lifetime through'multiple pro-
cesses.

b) We demonstrated experimentally the possibility of limiting the sto-
chastic region of the betatron-oscillation amplitudes by reducing any stray
frequency modulations and by introducing a large constant component of cubic
nonlinearity. |

c¢) Experimental determination of the numerical coefficients enabled us
confidently to'make quantitative estimates of the different effects for

heavy-particle storage rings.

In conclusion the authors wish to express their profound gratitude
to B.V. Chirikov, whose continuous advice on many points hélped to make

this study possible, and to N.S. DikanskiY, S.G. Popov and G.M. TumaYkin

for numerous useful discussions, to B.A. Lazarenko for creating the electroric

apparatus, and to A.M. Chabanov for his assistance in conducting the experi-

ments.
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FIGURE 1: Diagram of the optical system of the BEP-1 storage ring and

resonance-excitation system: 1, 3, 4 - buildup plates; 2 - buildup
electrodes; 5 - lens; 6 - semitransparent mirror; 7 - diaphragm;

B H P - nonresonant-buildup unit; 3 r1-2 - audio oscillator; F1_3 -

HF oscillator; yl-3 - power amplifier; B UB - pulsed on-off switching
unit; B Y M - HF frequency meter; H Y M - LF frequency meter;

CM- mixer; W [l - deviation meter.
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FIGURE 2: Photographs of a beam cross-section near betatron-oscillation

resonances: a) vertical, b) radial, c¢) sum.
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FIGURE 3: Photographs of a beam cross-section under the combined influence

of two betatron-oscillation resonances: a), ¢) and e) two vertical;
b) and f) a vertical and a radial; d) a radial and a sum.
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FIGURE 4: Photographs of the beam under the combined influence of two

resonances of the vertical betatron oscillations as a function of the

parameter s (m = 1),

T ————
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FIGURE 5: Photographs of the beam cross-section near a resonance of

the vertical betatron oscillations for different frequency separations

with respect to the exact resonance.
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FIGURE 6: The equilibrium amplitude of the RBPS of a resonance of the

vertical betatron oscillations as a function of the frequency

separation. =3V, o 150 V.

* - Uhuildup " Upuildup *

Vertical scale = c¢m; horizontal scale = kHz.
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FIGURE 7:

of:

Oscillograms of the beam-density distribution with excitation

a) a single resonance;

b) two resonances m < 0.6; s = 1;

¢) two resonances m = 1; s = 1.
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FIGURE 8:

The lifetime of the particles in the RBPS as a function of the

parameter s @ S -m= 0.3, o-m=0.5, 03 -m=0.7;, e -m= 1,
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FIGURE 9: The probability of the particles' entrapment in RBPS&l as
a function of: a) the parameter m (s = 1); b) the parameter s

(m = 0.4).
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FIGURE. 10: a) Oscillograms of the signal from the diaphragmed photomultiplier

on passage of the beam through the amplitude region: 1- with no RBPS;
2~ with one RBPS (RBPSl); 3- with two RBPS.

b) Spread of the damping times as a function of the parameter s
(ma1). |

'¢) The damping time as a function of the parameter m (s % 0.6).
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FIGURE 111 rpe time required for the particles to leave RBPS, when RBPﬁz

is switched on, as a function of: a) the parameter m (s = 0.5);

b} the parameter s (m = 1},
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FIGURE 12: Oscillograms of the current from the diaphragmed photo-

multiplier (scale: 250 msec/cm).
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FIGURS 15t Stability diagram for periodic crossing through a resonance
(f¢ = 36 kHz): 1I- slow ("adiabatic'") crossing; 1II- stochastic region
(o - complete destruction of the RBPS; & - partial destruction of the
RBPS); 1III- region of "modulation' resonances. Vertical and

horizontal scale = kHz.
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FIGURE 14: Oscillograms of the beam-density distribution characteristic

of different regions: a) no resonance; b) resonance without periodic
crossing; c¢), d) and e) transition from slow crossing to stochastic
instability; f) stochastic instability; g) and h) "modulation" resonances.
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FIGURE 15:

Oscillograms of the current of the diaphragmed photomultiplier
in transition from an "adiabatic' crossing to the region of stochastic

instability.



FIGURE 16: Dependence of the variable component of the photomultiplier

current on the modulation frequency: o = AfM = 5 kHz; & - AfM = 15 kHz;
- &fM = 30 kHz; & - ﬁfM = 60 kHz; e - &fM = 120 kHz. Horizontal

scale = kHz.
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FIGURE 17: Dependence of the lower boundary of complete destruction of

the RBPS on: a) the deviation (f¢ = 34 kHz); b) the resonance power

(&fM = 100 kHz). Vertical scale =

kHz; horizontal scale = (kﬂz)?l and
(kﬁz}z, respectively.
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FIGURE 18: Oscillograms of the beam-density distribution in the stochastic

region {fM = 500 Hz; &fM = 100 kHz) as a function of fé = (0-8 kHz.

46



Lom 4’5
<00
200
260 ¢
109
i v
FeXa
IGURE 19: . R .
FIGU Dependence of the beam lifetime on the aperture with increasing
beam size owing to: o - nonresonant buildup; A - stochastic instability.

Vertical scale = sec; horizontal scale = mm.
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FIGURE 20: Dependence of the beam size on the buildup-frequency separation
with respect to the exact resonance {f¢ = 7 kHz, fﬁ = 5 kHz, &fﬁ = 200

kHz). Vertical scale = mm; horizontal scale = kHz,
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FIGURE 21: Dependence of the beam size in the stochastic region on:

a) the phase-oscillation frequency in the RBPS: o - g‘sfM = 100 kHz,

o - ,MM = 30 kHz; b) t!;e dwiation} (% = 3.5 kHz), Vertical scale = mm;
horizontal scale = (kHz)  and {kﬂz)wﬁ, respectively.
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FIGURE 22: Dependence of the upper boundary of complete destruction of
the RBPS on the resonance power (sﬁfM = 100 kHz). Vertical scale = kHz;
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