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ABSTRACT

The usual proofs for the wunitarity of the 5
matrix are based on the assumption that the wave functions
in different channels are orthogonal to each other. This
is not the case in rearrangement collisions where the colli-
ding particles and the collision products are composite
fragments (overlapping channels).

A correct proof for the usual unitarity property
of the S matrix is given for the case of overlapping
channels. The proof is greatly facilitated by a systematic
use of the spectral representation for a complete system of
commuting observables.

Each channel defines as a consequence of the
asymptotic condition a pair of wave operators. These are
partial isometries with orthogonal ranges for different
channels. This orthogonality property, which was proved in
an earlier paper, is the essential property which implies
unitarity for the S matrix in the usual sense, Unitarity
is then shown to be a direct consequence of the asymptotic
condition and nothing more.
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I.~ INTRODUCTION

The unitarity of the S matrix for general reaction and
scattering processes is generally postulated as a basic property in
all treatments of such processes. It would therefore be of the grea-
test interest to know the physical foundation for this property. In
the case of simple scattering systems (one channel only) the unitarity
of the S matrix can indeed be thus related to the asymptotic condi-
tion which expresses the fundamental property of any scattering system
that the interaction between the scattered particles is described by
an energy operator which differs from the kinetic energy of the par-
ticles only in a finite region bf space. Thus for one-~channel systems
one has a perfectly satisfactory explanation, in p ysical terms, for the

unitarity property of the S matrix.

One has tried, by an obvious adaptation of this reasoning
to extend this explanation to the case of many—ohannel'scattering°
However all of these reasonings are either based on the assumption
that the wave functions in different channels are orthogonal to each
other 1) or they use reasonings which are mathematically insufficient

and have therefore only an exploratory significance 2 .

The difficulty has been noted by many people and has been
discussed in numerous publications, of which we cite a representative
selection 3)_7).

TLet us examine in this introduction a commonly used "proof™
for the unitarity of the S matrix, such as it is found for instance
in Ref. 1).
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Consider the situation sketched schematically in Fig. 1.

Figure 1 . Schematic representation of a three channel
scattering process :

a) Situation before scattering : incident
wave in channel X approaches scatte~
ring region (shaded area).

b) Situation after scattering : outgoing
waves in the three channels escape from
scattering region. ‘

Initially, the system is supposed to be in channel ok .
After the reaction has occurred the system is distributed over all the
open channels and the probability amplitude in channel /3 is %WG .
Thus the probability of finding the system after the ‘collision in chan-
nel /3 (when it was in channel X before the collision) is therefore
given by ’S u(3|2f Using now the constancy of the norm of the wave
function jp one concludes that

(TL)=1 = /&2'\&«@\2‘, -



A slight generalization of this same argument, using the constancy of

the scalar product of any pair of wave functions leads to

> \S;_,/j" S = d

= \deﬁ> o d~ (1.2)

If this relation is written as an operator relation, interpreting S/
<

as the matrix element of an operator S, 1t becomes

S*S =T

) (1.3)

which is one half of the unitarity relation. The other half

LK
*5;“3 = _I: (1.%)*

is usually assumed to be also true, although it is in fact a new and

independent relation.

The validity of this "proof" for the relation (1.3) depends
in an essential way on the assumption that the different channels are
orthogonal to one another. Indeed, if we have a superposition of nor-

malized wave functions 3?13 in different channels of the form

v oo- 2 Sy, Tl;g , then the norm of this function is given by
/} i
S X . )
L 12; M) — D \:5’ O g }gf .
(l’z , I = &(!’.’3/ >/‘/_3 . g/;/l ! ] (1.4)

%

“ u . §
This is only equal o the right-hand side of (1.1) ( jéé"’ygéu) =Cyy i
/e 7 ,i"fj

It is easy to see with simple examples that this assumed
orthogonality is not always satisfied. ©Let us for instance examine

the scattering of a deuteron on a fixed centre of force. If the
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4.

incident energy is larger than the binding energy of the deuteron then

there are two open channels for the final states, namely the deuteron,

>
4 n

or the free proton-neutron (cf. Pig. 2).

(2) (v)

Pigure 2 : An example of a two-channel reaction with
non-orthogonal channels : the final states
of reaction (a) are linear combinations of
the final states of reaction (b).

Since the deuteron is a composite particle, containing as its
constituents a proton and a neutron, we cannot assume these channels to
be orthogonal. Indeed, in the elementary theory of the deuteron, one
calculates precisely the matrix element of the deuteron in an orthogonal
proton-neﬁtron system., This matrix element is the wave-function of the

deuteron.

On the other hand there are cases where the assumed orthogo-
nality may be satisfied, for instance always then when transitions from
one system of elementary particles to another system of such particles
are considered. The problem occurs only for transitions involving compo-
site particles. Such transitions are often more explicitly denoted as

rearrangement collisions.

‘The question then reduces to this : is the § matrix unitary

also for rearrangement collisions ?



66/141/5

It was pointed out by Ekstein 5) that in general there does
not exist a linear operator the nmatrix elements of which are the 8
matrix eclements for a multichannel system. Subsequently, Jauch 8) has
shown that for simple scattering systems one can define two different
unitary operators which can be related to the 8 matrix elements in
a simple way. Only one of these operators can be gencralized to the
multichannel case and again the § matrix elements are related ecasily
to this operator. It will be seen in the following that the conside-
ration of this operator will be very useful in the proof ot the unita-

rity property of the S matrix for rearrangement collisions.

It should be remarked that the distinction whether certain
particles are composite or elementary is notoriously difficult to
answer, be it from the experimental or theoretical point of view.
This difficulty has incited some to declare it as meaningless, or at
least irrelevant, and to replace it by a self-consistent formalism
("bootstrap" calculations) where each particle is in a sense elemen-

tary and composite at the same time,

We point out here that if the S matrix for rearrangement
collisions were not exactly orthogonal, but satisfied instecad a rela-
tion such as (1.4), this procedure would be doomed to failure from
the start, since the relation (1.4) would permit us to make a clear

distinction between elementary and composite particles.

The result of this paper will thus be that unitarity in the
usual form is generally valid, even for overlapping channels, and it
is not possible to distinguish elementary from composite particles by

a consideration of the S matrix alone.

In the course of the preoof we have made extensive use of an
important mathematical tool, the spcctral representation, cstablished
in a previous publication 9). This tool enables us to dispense enti-

rely with the expansion in non-normalizable eigenfunctions of the encrgy



operator., This exransion procedure is almost exclugively used by phy-
sicists today and it is a source of major mathematical difficulties.
Because there are not sufficiently strong theorems available concer-
ning such expansions, most of the results obtained so far with such
methods are open to questions.

_ For the convenience of the reader, not familiér with Ref. 9),
‘we shall briefly recapitulate in Section 2, in elementary terms and
without proofs, the results obtained therein. They‘arezslightly gene~
ralized and adapted to the needs of the problem on hand. In Section 3
we give'then with the aid of this tool, the proof of the unitarity

condition for the multichannel scattering matrix.

66/141/5



IT.- THE SPECTRAL REPRESHENTATION FOR A COMPLETE SYSTEM OF

COMMUTING OBSERVATLES (C.8.C.0.)

In this Section we shall review some of the basic notions.
of mathematical nature needed for the subsequent part of this paper.
All results will be stated without proof. The necessary proofs for
establishing the spegtral representation in sufficient generality
were given in Ref, 9). Here we merely state some selected results
from this paper for convenience, as well as some easy corollaries and

generalizations not mentioned in this paper.

Let A1, A2, vee An be a CeS5.,Ce0. They are a set of

n self-adjoint operators in a Hilbert space gﬁ; , which commute
pairwise and generate a maximal Abelian algebra of operators in;zv .

We shall assume that the spectrun /\ r of the operator Ar is a
(closed) segment of the real line. There are thus no discrete eigen-
values and no eigenvectors in 'Qfl’for Ar' (This is the situation
encountered in scattering theory.) We denote by /\ = /\1 x/\2 X eos x,ﬂ n
the Cartesian product of the spectra. An clement Xwé./\ is thus the

n  tupel of numbers A = (Awklzy cos ’>\n>’ with /X r C N

The theorem on the spcctral representation affirms the
existence of a uniquely determined measure class [gﬂ] on /\ (which
will contain Lebesguc measure in our applications) and an isomorphism
between the abstract Hilbert space E}ﬁv and the function space ng(/@>
cf square integrable functions over /\ which associates with each élement
element x ¢ ai a function T(N) & L?(/\).

In order to facilitate the statement of the properties of this
isomorphism we introduce the following slight gencralization of Dirac's

bra~ket notation.
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The function f(A,), image of x € Zﬁ,in the above=mentiocrnod
isomorphism, will be denoted by <;\lx). The complex conjugate of this
function will be denoted by (X|A;> = <i) |x)". The isomorphism is then

expressed by the following relations

dA1Gx) = O <A x ) forall Gmplex &

(2.1

</H><+<7‘) = A)+ <Ay ) fra k,;ggﬁ‘%
)

(% 9) —_:f(xl.f\></\ gy,
4\

The measure d:fm,\) in this last equation will be the Lebesgue measure

on the Cartesian product space for all applications of this paper and

will be denoted simply by d A in the following.

66/141/5

The usefulness of this isomorphism is due to the fact that it
can be so constructed that the operators Ar(r = 150ee,0) are mulii-

plication operators :

</\{Ar><) - A </\/><)

(2.3)

\

9)

provided that they satisfy a condition stated in Ref. which charac-

terizes them as "independent'.

If B = u(A1 eeo An) is a function of the operators A then

we have

<% ,BX >: LL(A, )/L-,j</l | > )

(2.4



Operators of this kind are said to be "diagonalized" in the
spectral representation. They are then multiplication operators in

12 (/\).

An important class of more general operators are those which
2 i
can be represented as integral operators in L“(/\). For such an ope=

rator T we may thus write

CUT)= AT > ot A

(2.5)

Here 4: A,l T [A ‘>> is the kernel of the integral operator. We shall
also call it the representation of the operator T in the spectral
representation. However not all operators T are of this kind. An
equation such as (2.5) is often interpreted in the literature as a
symbolic equation for a distribution. Since this extended symbolic
meaning of the equation (2.5) can cause mathematical difficulties we
shall avoid it in this paper and restrict the use Qf equation (2.5)

to bona fide integral operators.

Of special interest in the following will be operators which
commute with some function of the Ar. Let T %be such an operator
and H = H(A1...An) the function of the Ar with which T commutes.
We can then always choose (in many ways) a new set of commuting operators,
containing H as a number, and such that they are again a new C.3.C.0.
We change the notation here and designate from now on this system with
Hy Agy ooo 5 A . The Cartesian product of the spectra A . Of AL
will be denoted as before by /A = /\1 X /ﬂg X eeeX /\n’ and a general
point of /\ will be denoted by )\ .

We designate with E a point in the spectrum of H which we
assume also to be continuous. The isomorphism of the spectral represen-—

tation takes then the form x — <iE ),[ %)

66/141/5
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An operator T which commutes with H 1s diagonal with

respect to the variable E so that it may be written in the form

)

—_— —_ / / /
ENT) = [AUTEIDEN x yd)
In the subsequent applications the operator H will be an energy'
operator and the operator T of (2.6) is then said to be an operator

"on the energy shell',

For every fixed value of E and every x é:éki, the func-
tions .<:E;\| x) are square integrable over the variables ).. They
are thus themselves a Hilbert space which we denote by ZZL(E); The
function <<E ).l x) is then the spectral representation of a vector
X(E)Efzhgv(E). Thus we have explicitly constructed a "direct integral
of Hilbert spaces X = {\X(E)}~ with || x [!2 = ;f~”X(E)|F (&) az,
where fD(E) is some density function proportional to the volume of

the energy shell,

In this representation the operator T which commutes with

H may also be written as a direct integral by setting

They - {TExe)

This is the abstract version of (2.6), but it is correct even for the
more general case that T(E) is not an integral operator on the energy
shell, '

In the following applications we also need the formulae for a

change of the spectral representation. These are the obvious generali-

‘zations of the formulae for the change of a co=ordinate system.

66/141/5
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We begin with the simplest special case which suifices as a
point of departure for the more general formulae needed in multichannel

scattering theory.

Tet us assume first that there exist two energy operators
HO and H which are unitarily equivelent so that their spectra are
identical. There exists then a unitary operator ”fz, which has the

intertwining property

L O = £ Hg
(2.8)

This is the situation for the simple scattering systems
without bound states, which we examine here first for the purpose of
introducing the concept of the transformation of the spectral repre-

sentation. The generalization to the multichannel situation will then

be easy and will be made later on.

Por this special case the operator _!2_ is unitary

N - £ *‘
) = 1 = O)
AL ﬁ ‘_AZ =L, (2.9)

* -
so that %gl ::~§l 1.

The operator ) is not unique if the spectra of H and HO
are degenerate., It can thus be subjected to additional restrictions
which in scattering theory are dictated by the physical situation of
a scattering process. Tor the moment we shall not need to specify

these conditions,

Just as in finite~dimensional spaces, we can, here 100,
interpret the operator _jl in two ways. We can cconsider it as a trans-

-

~ & i
formation of the vector space ¢j_ which assigns to any x & j%_ the

66/141/5
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transformed ~f>,xm We can also interpret (2 as a change of the refe-~
rence system in a particular representation of the space. Thus _ﬁ2

will induce a change of the spectral repregentation.

x) the spectral representation of

S
Let us denote by B A,
O .
the vector x with respect to HO and a certain number of additional

operators A1"°&’Ar needed to obtain a complete system of observable
1

We define then a new spectral representation <:E A,I x) by setting
| N\ = IF
<E rah , -/-Q X j " O\,\ . A ! ><- ) |

It follows from this definition that for every ¥y =) x we uave

<<E‘ <:t;k\ +4(1)<> <E;A {JQ’JO)i) =255EZA [Hax )
— \ = )} V= ol N
,EO<E/1‘\4) m.t<E/ ‘_(2)() E—< = } 9)

or

CEn[HY Y = E{EX |

[ty
N

(2.11)

This relation shows that in the new representation, defined by (2@10)00

l_l.

the operator H i1s diagonalized. Since »fz sgumed to be unicary,
every yfige\ ig of the form y =X)zx with x jl y. Thus {(2.11) is

valid for &ll y(f'yie

S a

The representation which we have constructed here is the

spectral representation with respect to the new C.eS.Ce0«

{Hyfh&fl } (r = 1,¢000yn), in fact
XN VS O
{E A QAr_Q x)__ :)vl;«“%{,_g[‘x)‘:/lrgtz\;Q’X}

66/141/5



13

We now proceed to generalize first to the case where the
intertwining operator mﬁl is no longer unitary but only an isometry.

Tnstead of the relation (2.9) we have then

, ) o .
O nN=7 0QnN'=F<L, (2.12)

. . . . LM Loem e N
where ¥ is the projectiocn operabor onto the range of - L o L. (22707,

is then still valid for all y in the range of rl that is all y
which satisfy Fy = y. The equation is valid for all y & Eii if we
replace in (2.11) the operator H by TFH = HF = FHF. It is thus the

spectral representation of the operator'FHF.

Let us now examine the transformation of operators under
ohange of the spectral representation. Let T be an operator which
commutes with H and assume Turther that in the spectral represen-

tation <:E %

may write

LEMTH) = f LANTENIN Y (E k) N

it is a bona fide integral operator, so that we

Chsnging the spectral rcpresentation according %o (2.10)0 leads to

<E/"l | Tx ) = fQ /4774”}’"(,;:)/)’)(5)} />< ) d‘A/ (2.13)

where we have used the notation
Q| OTOXE N D= <EN QT EL >

* .
It is conform to the fact that the operator 51 T~CL is on the

* .
energy-shell in the new representation gince Jllﬂiz commutes with H.

66/141/5
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Formula (2.13) shows that we have for the change of the representation

of an operator T which commutes with HO the formula

N . . X /
®</\,|}(E)l) >O':- </\/ AVERY; (E)l/\ > (2.14)

This formula will be essential for the purpose of this paper.

Tor the treatment of multichannel scattering problems we need
to generalize these results still further. We must deal with situations
where we have not just one energy operator Ho but & whole sequence of
"channel operators" H, (% =1, 2, +ss)s The channel index & dis-
tinguishes the different channels. The range of X may be finite or
infinite, but it is always countable 8). The channel operators I,

are the energy operators for the free particles in channel X .

If the system is a multichannel scatterlng system then there
exist sequences of intertwining operators Jil( ) (X =1, 2, ves)

with the propertles

Q= Q" H,

(2.15)
%
and 4) (:2[d') — E; .
A (
0" gw* =F
The projection operators I = and QX are in general
different from the unit operator. Hence the 2~(K are in general

no longer unitary, they are only partial isometries.
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Corresponding to this notion of partial isometries we may

introduce the notion of the partial spectral representation. While the

ordinary spectral represcntation so far considered furnishes an iso-
morphic mapping of the entire Hilbert space _{2» onto an L2 space of
functions, the partial spectral representation maps only a proper sub-
space M C 9&» onto such a function space. In order to formulate this
situation properly we revert for a moment to the one-channel formalism,
the generalization to the multichannel being then obtained by adding in

the subsequent formulac a channel index at the proper place.

We assume then that we are given a free evolution operator H
togetﬁgf with a C.S.C.0. A1"'°’An’ all of which leave a proper subspace
M C 'Vﬂi invariant. This means that the projection operator B with range
¥ commutes with Ho and all Ar' We say UM (or ‘E) reduces the opera-
tors HO and Ar. Instead of the operators Ho and Hr’ we may then
consider their reductions to the subspace I, that is the operators
HOE = EHO, and ArE = E'r' These operators, 1f they are complete, generate
g maximal Abelian algebra in ., The theorem of the spectral representation
can now :e taken over word for word by substituting the subgpace I Tor the
space 44? in the previous formulation.

Thig lcads to the following results s
There exists a uniquely defined measure class 47{7 on the
product space of the spectra of HOE and ArE and an isomorphism of

M to the Hilbert spacec LQB of functions over the spectra of these

operators. If we denote by O‘<E A X) She function in L?; which
corresponds to the vector x & M then we aave for this function again
the relations (2.1) and (2.2) of this section with the only change that

i .
M must be substituted for'gﬁb in these formulae.

A change of the spectral representation can now be induced
not only by a unitary operator as before, bui more generally by a par-

tial isometry. Indeed let _Sz be & partial lsometry with initial

66/141/5
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projection E and final projection T, so0 that E =.f2%J§l and
F=00% Tet u=ETJL be the range of & and N = F £, the range
of P. The operator _{) furnishes then an isometric mapping of WM
onto N. Unlike the previous cese, these two subspaces may be situated
arbitrarily : M may have a common part with N or it may be entirely
outside of N. In any case this partial isometry defines a transformed
spectral representation which attributes to every y & N, (that is

every y of the form y = SLx, x& M) the function
{EY | Ox )E O<E/\(x)

It is seen that this formula is identical with (2.10)0. The only
difference is that in the last formula the vectors x and y = (2 x

range only over M and N respectively.

Figure 3 : Illustration of the transformation of a
partial spectral representation by a par-
tial isometrye.
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Returning now to the situation encountered in multichannel
scattering we may for each channel o¢ assume the existence of a
0.9.0.0. and thus define for each X a partial spectral representation

' L . Glo)* O (=) . :
%<\b Ay { x) for x € Exﬁv , (ch = ! RS ). The partial
isometry induces then a transformation of the spectral representation

given by the formula

§ () — g
<<E)¥l@) x) :'y<L"A* } > >@ (zmo%<

It follows then from the intertwining property (2.15) that for each
- . ~( o
v G—Eijﬁ , that is each y of the form y = 42< )X x € EQ,JCV we

have

X IHy)=E CEAw )

(4- (1))(
for all y G-Eggﬂ .

The transformed spectral representation <<E ’AN\| y) is

thus diagonal for the operator HE\ .

Tn the case of the multichannel scattering theory the projec-
tions Fu onto the range of _KQ(O‘) are all orthogonal and their sum

is the unit operator :

— K

o F;3 = GL#@ ‘F;é

(2.17)
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In thlo case thc lgomorphisn from the elements y & P ?%;
to the space I ( /\ V\’) defined by {2.10) can be extended to an
isomorphism of the entire space as follows : t0 every x we .assoclate
a sequence of functions <fID,AC4 I x) (=1, 2, ...) in Lz(fq (Q'))

by setting

({'—:..,X__J x)i—‘; G Al Fy X)“ <PA°< ‘:‘;M%X>

(2.10)

Any linear operator can then be represented aunc studied in

this extended spectral representation.

In the following we shall be primarily interested in operators

T which have the intertwining property

04[.7
HO/T:/@ — Ty/b H[b (2.18)

o

This gives rise to the new notion of the mixed spectiral repre-

sentation of an operator. The operator mx/“ maps a subspace Mg = Eﬁ&i
into the subspace I, = Ex’aﬂm We shall consider the special case that

the mapping is onto and is expressible as an integral operator such that

o<<E—)\ex ryfb%) . k/} l’/ﬂ k/\/&> Qt’\ /X) d/\é

valid for all x¢& NQBR We have already implied with the notation that
the operator TCX(3 is diagonal in the variable E as it follows from
the intertwining property (2.18). In fact

o((/_{ D [H, 7;(45 ) ZE/A, >Q: O<< £,/ 7}/4 [ E //],: ?/5

= KElTp sl Ea = B S I Ta ) €705 5g

X =Y

66/141/5



19..

therefore

A<E .

N
o
m
e
im
™~

We shall use the notation

QT Ay = SEAITy 1B 2,

(2.19)

for the integral operator "on the energy shell", This representation of

an intertwining operator is an example of a mixed spectral representation.

If T has the intertwining property (2618) then one veri-
) D‘(b (a() (G)-ze
fies easily with the help of (2.15) that the operator _ﬁl T~§2 !
commutes with H so that we may transform it to the spectral represen—

tation of H in analogy to the formula (2.14)

i

%
RCARN wMW> =] 2T T2 1 )

In the following we shall also need the formula

<<: onl 375 !A/‘j) <§A4 i %p ‘ A/“>7C5\ (2.;%)

for any bona fide integral operator sz/b which maps the range of Fﬁ
onto the range of Ex and which commutes with H. Similarly, we may

also affirm

< >\o(! F«)“'"Ez/; ‘ X!/Ev>= <Aaz | T"ﬂ ‘ ’\{6 > O{\; -

(2.22)

Thesé formulae are easy consequences of the defining property of the
spectral representations used here, and the orthogonality relations

(2.17),

66/141/5
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IIT.~- THE MULTICHANNEL SCATTERING MATRIX,

For this'séction we shall need some of the results of a paper
on the "Theory of the Scattering Operator IIV 8>, which will be briefly

reviewed here.

A multichannel system is defined by a total energy operator H,
together with some system of channel operators H which represent the

kinetic energy of the free fragments in channel X .

The characteristic property of a scattering system is the

asymptotic condition which affirms the existence of the limits

oe) o ’ '7¥ ' '
.KQI | :i.,/Zhﬂ LQ 5LQFN) (3.1)
o L= 10 ’

where Lé _ ezf—fvf4bt' C/;ﬂ#) —

J

€~cHdtl

‘The limit (3.1) is understood in the strong topology of the Hilbert

66/141/5

space. It will in general only exist on some subspace (‘;Qi
with projectimn operator :Ed . It can however be proved t at the
8)

dimension of va is infinite « The operators _fz i are partial

ismmetries and D, 1s defined by

) A ()
5%: lzi B EN‘ (3.2)

The notation 1na1d9ntally 1mp11es that E(x is independent of the

(%) ,«(y)

sign +. The ranges R + of are closed linear subspaces

and are also defined as the ranges Qf the projections

F@) /2@) CZH)*
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The matrix element for the scattering from channel X (with
energy E and channel variables ‘a ) into channel CB (energy =
and channel variables /’(B) 1s given by the matrix element of the
operator Sm”% = (l(y % ﬂz ; ). This matrix element does not exist
in the usual sense with respect to the energy variable since Sqé@

is an intertwining operator for the operators H  and H
N
(cf. Ref. 5>). -

e
e,
|

X Tl T 5;( H/b (3;4>

The mixed representation of S contains a " Ji-funotion~like”
Af
kernel, and we can write a correct equation only if we use the diagonal
spectral representation not for the operator Sﬁmﬁ but for R,
A /o

S - E%a&ﬂ). For this operator we may in fact write (Eq. (2.19))
C WAL

dﬁ>
<1:'Ad]e<4p "" 55:) <<A }E"}! A/% j)ﬁ ’ (3.5)

In all scattering problems of physical interest this operator is a

bona fide integral operator.

The unitarity condition for the S matrix can now be expres-

sed by the following relation

of:A:X “<;Q@ (E:} ‘ A/@ :?3 +

S\
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This relation is the unitarity condition in the multichannel

case. We shall now examine under what condition it is correct.

We first translate this relation into another equivalent

form by using formula (2.20) of the prebeding section.

8 . ) ~ ( (/1’ %
Sl Rpe) Aoy = Iy [20R,, 21

a2

(3.7)

'Y
For the _§2( ) which appear in this equation, we may
choose any of the intertwining operators defined by (3.1). Let us

choose for instance .§2(+ ). We then find

A = : _ : =) % *}- ) ?Q¥‘
SMIREE 2, = G282 Ly

%

A A%y )
:<%L&+ltxﬁfl“@AFj'!&ﬁ> ' (%.8)
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By using formula (2.20) we can drop the projection onto the

R * (A ~
range of F+#> on the right. Furthermore since 12 (q ) § ) 9] (X )#

(%)) (0% W

we can replace the term J;l by the sum over the cnannel

index . In this way we obtaln

where

= ~ () "
:EZ ::2 +{v ) \gz )v
-

(3.9)
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Tt is now easy to verify equation (%.6), because 1t expresses the fact

that the operator S+ is unitary in the subspace I :&iwith

F = :Z.F ., It is thus equivalent with the equation
. x o ™ Iy '*— —
< = < Q = (N)
i D, = = P =
E>+ ’ D4 >4 = %3— + (3.10)

In order to verify this relation we substitute (3.9) into (3.10) and
use the relations (3.2) and (3.3). Thus we obtain for instance

Xe = o ( {* . X
0N, E ((5)*' _/f ¥

%‘& ek oﬂQ ZoMaML TR = F

¥ (2 ' ~ A

A - 5)
N ey ¢ A — L
xé— N4y aX(B —a Sy = 2 JZJM 2¥/ ) :'Et (%) = F,
},\J O(\ ol

This relation (3.10) is proved and with it the unitarity relation (3.6)

In order to obtain this last result we have used two properties
of multichannel systems contained in the following two equations

270 = 2R
T (3.11)

+ Pra—
ol o
and
C fory -“ ) S‘ (Xw
+ -;~ =

(3.12)
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representation (3.7) with the operatnrs \(ZK3(> instead of Jﬁz(
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The property (%.11) is an essential hypothesis which scatte-
ring systems must satisfy if the S matrix is to be unitary 8). It
is independent of the asymptotic condition (%.1). The seéond relation
(3.12) which states that the ranges for the different channels are pair-
wise orthogonal, on the other hand, is a consequence of the asymptotic
condition and the fact that the spectra of the channel operators are
continuous. This theorem was stated and proved in reference 8) (cf.

Theorem on page 617).

We note here that the projections EX’ do nof satisfy any
orthogonality relations. In fact one of these projections may be the
identity operator as it is the case for instance in the example discus-
sed in the first section. This lack of any orthogonality relation for

the EC>< is the cause of the overlapping channels.

Instead of working with the operator S+ (3.9) we could also

have used the operator §5_ defined by

| ) Mt
S. =0 Qf }Qf’) |
&

which would have appeared instead of S if we had chosen the spectral
)
+

are dif-

(313)

as
()
X

ferent for the two signs, the result would have been identical, since we

we have done from Eq. (3.8) on. Although the ranges of T
would have obtained again a spectral representation of the operator rela-
tion

(3.14)

which is proved similarly tn (3.10)

The unitarity of the S matrix is thereby proved even for

rearrangement collisions with overlapping channels.
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IVe- CONCLUSION

RS —

We have succeeded of proving the unitarity relation of the
S matrix for rearrangement collisions on the basis of the following

&

three hypotheses,

1) There exists a self-adjoint evolution operator H for the entire
~1H%
e .

scattering system which generates the unitary group Vtz

2) Each channel is characterized by an asymptotic condition, which
o 9

defines a self-adjoint channel operator H,_ , representing the

kinetic energy of the channel fragments, and which implies the

existence of the limits

with

JC) = g Mt
E

o)

3) The projections F<f%> onto the ranges of the operators J2 (+

satisfy

< —~0) _ 5 (= )

o F, 2

o X

The physical interpretations of these conditions is the

following : 1) says that the evolution of the states is the unfolding
of a continuous symmetry transformation of the system. It is equiva-
lent with the existence of a Schrddinger equation ; 2) expresses the
physical content of a scattering process and %) says that every state

in the continuum part of H 1is a scattering state.

66/141/5



66/141/5

5)

6)
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