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ABSTRACT

Group representations are discussed from the point
of view of an arbitrary invariant form (WP , F‘EP ) in the
representation space. The relations between the metric
tensor r_ and the corresponding reducible or irreducible
representations D and the criteria for their existence is
investigated. Finally the invariant metric used in quan-
tumelectrodynamics and in certain wave equations is criti-

cally examined in terms of group representations.
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I. Introduction

There are many examples in physics where a general ané (n
particular an indefinite form (rather than the usual positive definite
form) is invarient under a group of transformations. The purpose of
thig paper is to treat these problems in & unified menner from the point
of view of group representations. First we illustrate the problem in

terms of simple examples:

(1) Consider the group of the canonical transformations of the classical
particle mechanics. Let U = Eofr P = Xop_yq2 k - 1, 2, .« n, then

the canonical equations can be written in the form

’ 2 H
X = on (1)
k lkJ BXJ- 7
where
) —
. 8 |
M= L W ={0%"] (2)
O P @0e)
W

Since the equations (T) and (2) are valid in any canonical coor-
dinates, the matrix rh is invariant, under:canonical transformations..
If x represents a point of the 2n-dimensional phase space, the

"norm" (x, r‘x) is invariant and always equal to zero. Furthermore,
for the subgroup of linear (hence unimodular) cenonical trans-—
formations C the bilinear form (X,iﬂ y), which always transforms

into (x', fﬂ y'), is itself invariant:
-+ sy
(x', [Ty') =(x, ¢ Tcy) =(x,1y),

where G denotes the usugl hermitian conjugate of C.” The last step

follows from equations (1) and (2), i.e. ' [ C = [ . The metric I
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(2)

(3)

(4)

is unitary but not hermitian. The phase space is the representation
space of the group of canonical transformations. They contain as a
subgroup the 3-dimensional rotation group. Thus, we have here, for
example, representations of the rotation group which leave the metric

r’ invariant (reducible representations, as it will turn out).

As a second example consider the Dirac equation. The bilinear

scalar form iﬁ‘qﬁ-z.(fqg 5“'QJ) is invariant under ho?ogeneous
Lorentz transformations. & transforms according to W ( L x) =
S(L)‘qj(x), where S(L) ere nonunitury 4x4 representations of the

Lorentz group corresponding to the metric XD . Hence” S+ X 5= 50.

There are other examples, where an indefinite metric plays a more
fundamental role in that the invariant bilinear form has a direct

1)

physical meaning. We mention first certain theories of spin O
2

and spin one-half ) particles where the indefinite invariant norm

in Hilbert space has the meaning of charge density. This example

will be treated more fully at the end.

An indefinite metric has also been introduced in Hilbert space of
the ususl quantum theory despite the fact that the norm here has the
physical meaning of probabili¥y and hence must be positive definite.
With this interpretztion of the norm the theory must be such that

no negative probabilities occur for the final obgervable quantities.
To this group belong mnotably the use of tue indefinite metric in
connection with the elimination of some of the divergence difficul-

ties in field theories 3), with the quantization of the electro-

S. Sekata, M. Taketeni, Proc. Phys. Math. Soc. Japan 22, 757 (1940)
H. Feshbach, F. Villars, Rev. Mod. Phys. 30, 24 (1958)

" A.0. Barut; Amn. of Physics, 5, 95 (1958)

P.A,M. Dirac, Proc. Roy. Soc. London & 180, 1 (1942); W. Pauli,
Rev. Mod. Phys. 15, 175 (1943)

9471/TH. 121



5)

« We shall

magnetic field 4 , with some certain field theoretical models

6) 7)

come bagk to some of these problems at the end.

with the non-linear spinor equations and others

The question, therefore, arises under what conditions one can

use representations of the symmetry groups which leave an arbitrary
. 4 \

s . . . 8 )
metric in the representation space invariant {. Recently this problem

9)

4 1
hag also been investigated by Shirkov 7’ and in particular by Schlieder 0

for the important case of the Lorentz group. In the following we offer
a different and general point of view valid for any symmetry group. In
Section II the general theory is discussed and in Section IIT the

results are applied to several examples.

4) S.N. Gupta, Proc. Roy. Soc. London 63, 681 (1950); K. Bleuler, Helv.
Phys. Aeta, 23, 567 (1950); K. Bleuler, W. Heitler, Prog. Theor.
Phys. 5, 600 (1950)

5) G. Kdllen, W. Panli, Mat.Fy.ledd.Dan.Vid.Selsk. 30, Nr. 7 (1955)
M., Markov, MNuelear Physics, 10, 140 (1959); 12, 190 (1959)

6) W. Heisenberg, Nucl. Phys. 4, 532 (1957): H.P. Dirr, W. Heisenberg
“H. Mitter, S. Schlieder, K., Yamazaki, Z. Naturf. 14a, 441 (1959)

7) There are many other papers on the indefinite metric. Not attempt
will be made to give an exhaustive list of these papers.

8) A preliminary report on this problem was presenﬁed earliers
4,0, Barut, Bull. Amer. Phys. Soc. 4, 30 (1959)

9) In. M., Shirkov, Soviet Physics JETP, 6, 684 (1958)
10) 8. Schlieder, Z. Naturf. 15a, 448 (1960)
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II. General Theory

1o PFormulation of the problem

The problem to be investigated is the following: Given a
group‘%% with elements &, b, ...., in particular, a groﬁp of transfor-
mations leaving a quadratic form (x,(i x) invariant, we are looking for
representations of‘%; such that in the representation space a quadratic
form (norm) ( af) K Q%) ) is invariant. [N is arbitrary and in
particular not positive definite. The problem has a priori two aspects:
(1) given an arbitrary representation D what is the invariant metricf')
if it exists 7, (2) given a metric [ , are there representations Dr

which leave [ invariant ?

We start from a linear space with the usual positive definite
metric ( qj, uj ) and then introduce the arbitrary quadratic form
( uj ,(ﬂ 1}’ )e Hence all the usual rules of the linear algebra are
valid.AA%, A" anmad AT will denote the conjugate complex, the hermitian
conjugate and the transpose of the linear operator A, respec%ively.
We shall refer to I~ simply as metric_(or fundamental tensor 10?).
The representation épace of‘the vectors iy is a finite or infinite
dimensional Hilbert space. The norm ('q!, ’ff%f)»does not necessarily
have the meaning of probability as the examples mentioned in tﬁé Intro-
duction show. Clearly, the use 6f arbitrary metric in quantum theory
depends on the existence and properties of such representations of
the underlying symmetry groups. The knowledge -of r- is equivalent to

constructing the invariants of the theory.

2+ General Properties of Representations

We assume first the metric | to be non-singular., An operation
of conjugation (adjointness), denoted by ™ , can be defined in two

ways: Either by (A Y, [ [ (KU) r‘ﬁ»iﬁ ), or by
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(Tﬂ\qﬂ) f’74}>'=: (TPZ r’ﬁ\7¢§> " which'we may call right and left con-—

jugation, respectively. It is easy to see that

Vas ”~ ..',
. co . — {7
(a) Aright = A o, if and only if M= )

~ +
(b) for both right and left conjugation, A = A if and only if =",

In general, hovever, [7 is not hermitian. In this case we shall choose

one of the conjugations and remember.(B). We take
A

-1 o :
A= 70 a4 | . - (3)
~
The self-adjoint operator satisfies 4 = A and has real expectation
values. Further algebrzic properties (eigenvalues, eigenvectors, ortho-

gonali%y, etc.) ére well=known and will not be discussed_11 .

A representation D which leaves (. ulif‘lp >  invariant

satisfies the relation
. » | _ N A
+ ll .
p [ p=[ ,orD=D , ) (4)
and will be called a norm-presérvihg (or pseudounitary) operators.

The concept of equivalence of two representations remains un-
changed. However, instead of unitary equivalence we have to define in
the sense of preserving the norm ( 1y) B ?}’ ) Two represéntations
D,, D

17 72
a norm preserving operator V:

are equivalent in this physical sense if they are connected by

N
D, =V 11>2v, ghere V=V = FTWT T (5)

Then we see that (a) if D1 satisfies Eq. (4) , SO does D2

unitarily equivalent representations have the same metric [ associated

y i.e. pseudo-

with them, (b) eonversely, if two representations leave the same metric
[T invariant, then they are connected by a norm preserving operator V,

(¢) D1 and D2 have the same expectation values.

11) See, for example, appendix of reference 2, Or L.K, Pandit, Nuov,.
Gim. Suppl. 11, 157 (1959),
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-1 - T
Given a representation D, then D¥, D+ and D ! are also

representations as can be seen by taking the complex conjugate or
hermitian conjugate, etc. of the equation D(2)p(b) = D(ab). It follows
from Eq. (4) that for non-singular metrics which we are considering, D

and D+-1 are equivalent:
D= [Tpr T (6)

-1 -
Furthermore, D* and DT are equivalents D¥ =I'"'r'L DT F’T. This follows

from the transpose of Eq. (4). Or,

. -1 =1 -1 ) -1
Comparing this with Eq. (6) we find [ r- » =" I T: T,

Then by Schur's lemma we arrive at the following result: If D+ or D
is an irreducible representation, then T must be (up t21factor)
hermitian, The converse of this theorem, i.e. if D and D" are equi~-
valent and D 1s irreducible thin there exists a hermitian mefric

1)

« Thus, for irreducihle representation
AN

X - . - - . . . {\
there is a unique operucion of c¢onjugation and v = D.

-1
Actually, D and D" are not pseudounitarily equivalent, unless

has been proved by Schiieder

~1 . . . s . .
[~ which in the case of irreducible representations, i.e.

-

=T +, implies T*Z — I and hence, in diagonal form, [ con-

Il

tains only + 1. In the examples (2) and (3) of the Introduction [~
has this property, but the linear canonical transformations preserve

a non-hermitian metric hence they are reducible representations.

3s Infinitesimal Operators

Let %% be a Lie group. If we write the representation in the

form
D(a) = K
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where ai are the real parameters of the group element a, then Eq. (4)

gives, by comparing the coefficients of the parameters,

(7)

=
[
)
!
IX:-L
|
i
f
L

i.e. the infinitesimal operators are self-adjoint. They will have

real eigenvalues, if 7 is hermitian (irreducible representations)
o N . _ 11)

and if the corresponding eigenvectors h&ve non-zero norms .

Consider a coordinate system in which 2 commting subset,

{' X 5 } o of the infinitesimal operators is in diagonal form., For

irrediucible representations their diagonal elements will therefore be

e + e

| — ) .

e 71 Ki } < and hence from Eq. (7)

4

real. In such a basis g K,
we see that [ commutes with all the commuuing diagonal operators

{ K %s’ and can be made itself ciagonal up to a factor. If this
factor is so chosen that [ lhag diegonal elements £ 1. then D and
D"’m1 are pseudeunitarily equivalent. These general statements has been

discussed explicitely for the inhomogeneous Lorentz group in reference 10,
B 1]

4, Existence of Nonunitary Representations

It is well-known that if a group is finite, or more generally
compact (i.e. if the finite number of parameters which describe the
group elements.run over a closed set in the parameter space), then any
representation (reducib]e or irreducible) by matrices with nonsvanishing
determinants can be transformed into a unitary representation by a simi-

2)

sentation corresponding to a given representation D is explicitly

larity transformation ! . (Schur—Auerbaoh,Theorem). The unitary repre-

given by,
R -1 L : Ce
D, =4 ‘U DU q* (8)

12) See, for exemple, E.P. Wigner, Group Theory, #cademic Press,
New York 1959, p. 74 and p. 107
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where U is the unitary matrix which diagonalizes the hermitian expression
+
r

the case of continuous compact groups) is over all group elements; d is
1

7 = %; D~ (a) D'_(a), where the summation (or the Hurwitz integral in
the positive definite diagonal form of Z and 42 the positive square root

of 4,

We must first see what types of metrics | can be transformed
into [ = I. In the previous section we have shown that pseudounitarily
equivalent representations have the metric [~ . Consider now two ar—
bitrarily equivalent representations D 4= ’S-1D28 (the infinitesimal
operators being also related by K ;= s K?_s), where S is arbitrary. Then

we can prove that

(a) If D, has the metric F2 in the sense of equation (4), then
D1 has the metric . {"1= 5" [(.S. Indeed (@, r1 @) is invariant under D
< .

1
if ( w, r:,/ q,‘ ) is invariant under DZ’ where ¢ - S—1 w :

(b) the positive definite cheracter and hermiticity of the
metric is preserved under the equivalence i.e. if |~‘2 is of the form
[ 5= MM, so is F1 = (us)"(MS). Note that although D, and B, have
the same eigenvalues {- " - 5 have not. Nevertheless, we can classify

and compare all normal [“ws by bringing them into diagonal form.

(¢) all metrics which can be put into the form [ ;=Ibya
similarity transformation are of the form r2 = M+_M, i.e. positive
definite, Hence an indefinite metric cannot occur among the irreducible
.representations of the compact groups. We shall show that.it can exisE y

for reducible representations. [T = I implies by Eqe (6) that D = D+ o

(d) the above Schur-Auerbach theorem can be generalized to any
positive definite metric: Given uny representation D r, we can obtain
a representation D - by

i
1 i
D :d2V1DrVd2 (9)

I‘ P2
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A 1
where V is the pseudounitary matrix, V =V , which diagonalizes the
: A
self adjoint expression Y = 2%; Dr (a) Dr (a) and d is again the
C 2 2
diagonalized form of Y. Of course, if ré is known to start with it may
1

be easier to determine 5 from f} = S+ réS, then Df—1 =3 Di-2S.

The situation is different for non-compact (such as Lorentz)
groups. Here the Hurwitz integral in Z or Y does not, in general, con-
verges . Therefore, the metric is not restricted to be positive definite.
Let us first shpw that indefinite metrics mugt occur. Consider the
group of transformations, g% , leaving ()p)Ci X ) invariant; (7 non-
singular, hermitian and G2=I. Any group element a &€ [Qj éatisfiES
a+ Ga= G. G itself belongs to the group, hence D(a+)D(G)D(a) = D(G).
If now a metric [ exists, then D' (&) ["p(a) = |7 and pt(c) ro(e) =7
For irreducible representations satisfying D(a+) =D (a) we find then
that f" = 14 D(G) (since the only matrix commuting with all D(a) is
a miltiple of identity), [ = | = [ =1, Therefore if G # I i.e.
indefinite, so is r;since:ﬁl'fuitnful rapresentations D(G)eﬁ.l. The
transformation groupgg with the above woperties of G is essenticlly,
the n-dimensional Lorentz group which res thus no unitary ( {” =I)
finite-dimension&l irreducible represensations, 2 result well-known |

for n = 4.

It follows from an application of Schur's lemma that an irre-
ducible representation cannot admit two different metrics (up to a fac-
tor). On the other hand a non-unitary representation may not admit any
metric at all. This is the case when D &nd D+_, are not equivalent. The
criterion for this to huppen is the following: If the representation

{ D }'contains an irreducible subset cm matrices { d.vg which
aliows a metric |, then D cannot &llow any metric, not even I~

itself. For example, the proper homogeneous Lorentzgroup is homomor-
1

phic to 2x2 unimodular matrices (Dﬁo—“epresentation); the latter

9471/TH. 121



- 10 =

contains an irreducible subset, ncmely the unitary unimoduler matrices.
.t
Hence the non-unitary representations DY 40 not have a definite metric.

.

5. Reducible Representations

In contrast to irreduc¢ible representations the reducible ones
may admit, in general, infinitely many metrics or invariant forms, For

example, let D; DT’ D_ and D, be unitary irreducible representations,

2 3
ab )

then one can verify’ from Eq. (4) that

! 0 .
D =< % O) admits arbitrary metrics of the form r =

ST~
o)
o

0D
) :
D= D, 0 admits arbitrary metrics of the form = (ao
O D, ‘ od
Py 0 , N . 2 9o
D= D admits arbitrary metrics of the form f-z obo
: 0?1 : . \0 o¢

3

etc. Therefore, the Kroenecker product of representations, D1XD2,
reduced out to its irreducible parts, will also admit various arbitrary

metrics.

If D is non-unitary then the only possible way of introducing
9,10)

a metric is by forming

D 0 '
_ (10)

-1
Whether or not D and D+ are equivalent. The representation (10 )
2 2 \ . which if it is hermitian

is always of the form'< é 2 } (up to factor). The example (2) of
- 1
70

the Introduction belongs precisely to this class: D is the D° repre-

admits metrics of the form = <

sentation of the proper homogeneous Lorentz group. Hence D is reducible

9471/TH. 121



- 11 =

for this group, but irreducible for the larger improper homogeneous
Lorentz group. Dirac wave function transforms according to s DS where

S is such that S (c B) S ig diagonal.

III. Applications

3,2)
a) Wave Equations for Charged Particles with an indefinite Metric1/’2

In these theories the norm of the Hilbert space state vector is
identified with the charge of the single particle state: (U [* QJ)==111.
Probabilities and expectation values &are calculated in.the usual way by

1ﬂ r’/\ Lp , irrespective of the norm of the state: The Hamiltonian,
for example, has positive and negative eigenvalues, but the indefinite
metric gives quite naturally always a positive value for the expectation
value of the energy, i.e. the almost fully occupied negative energy states
need not be introduced. For the case of charged spin % > particles the
Hamiltonian obtained is
A
H

2
SE X0 (14 ¥y, m=E=Y H ¥° (11)

“with the normaligzation
9 A1 (‘Q:!‘(\ o} (?,—' 3

Tndeed the co-dimensional representation in question of the Lorentz

group is not unitary but satisfies

px,) Y 0 -

9471/TH. 121



-12 -

and is explicitely given in reference 2. Here D is a function of the
infinitesimal operators Ki of the inhomogeneous Lorentz group and is
also & 4x4-matrix. This representation separates spin and angular

momentum so that they are separately constants of the motion.

This example shows that it may be possible to introduce an in-
definite metric in a second quantized theory such that due to the

existence of superselection rules, the norm of the state vector will

be identified with a physical quantity like charge, baryon and lepton

number, etc.

Not much is known &bout the non-unitary infinite dimensional
representetions of the Lorentz group. The above is an example of such
a'representatioﬁ. Another»simple example is given by the quantization
6f scalar fields with anti-commutators and spinor fields by commutators

using an indefinite metric.

b) Quantumelectrodynamics

In this section we discuss the indefinite metric in the quan-
tization of the electromagnetic field as there has been some questions

13)

view of the presen® formulation there can be no question ubout the

about the Lorentz-covariance of the procedure . From the point of

relativistic invarience since this has been built in from the beginning.
A11 we have to do is %o identify the invariant metric ond the represen-
tation satisfying Bq. (4), However, the metric ™ in quantum electro-

4)

dynamics is usually introduced by the equations

A“P Y , or Quﬁrraﬁ (13)

13) 8. Sunskswa, Prog., Theor. Phys. Japan, 19, 221 (1958), in his
investigation on the covarience of indefinite metric trans-
forms also the metric tensor [~ which of course destroys the
Norm,.

S.N. Gupta, Prog. Theor. Phys. Jepan 21, 581 (1959) shows the
invaziagce of the norm, but not of the commutution relations,
Eq. (13) .
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- 13 -

(k)

where A}L(X> are the field operaztors and a*L the corresponding

annihilation and creation operators. The relations (13) are not co-~

variant. Furthermore, since | is fixed, under a Lorentz transformation
1

(13) transforms into A1 M= 74 ) A1 = DAD_1 hence,

DD T = r DED .

This equation is not computible with (13) . In fuet, any relation be-
tween oper-tors 4, B, which transform under D, and the invariant metric
r of the form A = A [ B does not exist unless trivially i:D, Pj]z 0
which means that D is unitary (eq. 4). Thus, one must give up Eq. (13).
Actually, it is only necessary in the quantization to require that the
number operators have rewl cigenvalues and this is accomplished with
arbitrary (non—self adjoint) operator a, since N =k g a is self-
adjoint. Observable quantities or real quantities in the classical

limit depend on Q a, or a+ g, and hence are self-adjoint. For example,
the so—called "anomalous o3cillator" (Pauli 3>) is defined by the self-
adjoint Hemiltonien § = — & a & und [a, & ] =1,

The indefinite metric

gives positive cnergy walues 0, b, 2E, .... with the eigenvectors
Aps a2 . s .
| o >;, a |q> , = {0>,..... . Furthermore, a hermitian field
s

can be expanded in the form

' dl? e il A
(x) = z—l-gs — ( et a(k) + e i a(k))
27 2 k

where a need not be hermitian, or antihermitian.

The relativistic invarisnce being clarified the elimination of
the longitudinal photons with the subsidiary condition cun be carried

out in the usual fashion 14).

We would like to thank CERN for its kind hospitality.

10) G. KHllen, Encyclopedia of Physics, Vol V, part 1, p. 200. Springer
Verlag 1958, N.N. Bogoliubov, D.V. Sairkov, Introduction to the
Theory of quuntized Fields, p. 132, Interscience publishers, New York 1959,
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