Abstract
| Current ideas for designing neutrino factories and muon colliders require unique configurations of fields and materials to prepare the muon beam for acceleration. We have continued the development of the 3D tracking code ICOOL for examining possible system configurations. Development of the ICOOL code began in 1996 in order to simulate the process of ionization cooling. This required tracking in magnetic focusing lattices, together with interactions in shaped materials that must be placed in the beam path.* The most important particle interactions that had to be simulated were energy loss and straggling. Since the optimum way of designing a cooling channel was not known, the code had to have a flexible procedure for specifying field and material geometries. Eventually the early linear cooling channels evolved into cooling rings. In addition the designs require many other novel beam manipulations besides ionization cooling, such as pion collection in a high field solenoid, rf phase rotation, and acceleration in FFAG rings. We describe new features that have been incorporated in ICOOL for handling these new requirements. A suite of auxilliary codes have also been developed for pre-processing, post-processing, and optimization. |