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Energy and centrality dependence of antiproton and proton production

in relativistic Pb+Pb collisions at the CERN SPS

C. Alt,9 T. Anticic,21 B. Baatar,8 D. Barna,4 J. Bartke,6 L. Betev,10 H. Bia lkowska,19 C. Blume,9

B. Boimska,19 M. Botje,1 J. Bracinik,3 R. Bramm,9 P. Bunčić,10 V. Cerny,3 P. Christakoglou,2 O. Chvala,14
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G.I. Veres,4, 5 G. Vesztergombi,4 D. Vranić,7 A. Wetzler,9 Z. W lodarczyk,11 I.K. Yoo,15 and J. Zimányi4

(The NA49 collaboration)
1NIKHEF, Amsterdam, Netherlands.

2Department of Physics, University of Athens, Athens, Greece.
3Comenius University, Bratislava, Slovakia.

4KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
5MIT, Cambridge, USA.

6Institute of Nuclear Physics, Cracow, Poland.
7Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany.

8Joint Institute for Nuclear Research, Dubna, Russia.
9Fachbereich Physik der Universität, Frankfurt, Germany.

10CERN, Geneva, Switzerland.
11Institute of Physics Świ etokrzyska Academy, Kielce, Poland.

12Fachbereich Physik der Universität, Marburg, Germany.
13Max-Planck-Institut für Physik, Munich, Germany.

14Institute of Particle and Nuclear Physics, Charles University, Prague, Czech Republic.
15Department of Physics, Pusan National University, Pusan, Republic of Korea.

16Nuclear Physics Laboratory, University of Washington, Seattle, WA, USA.
17Atomic Physics Department, Sofia University St. Kliment Ohridski, Sofia, Bulgaria.

18Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria.
19Institute for Nuclear Studies, Warsaw, Poland.

20Institute for Experimental Physics, University of Warsaw, Warsaw, Poland.
21Rudjer Boskovic Institute, Zagreb, Croatia.

The transverse mass (mt) distributions for antiprotons are measured at midrapidity for minimum
bias Pb+Pb collisions at 158A GeV and for central Pb+Pb collisions at 20, 30, 40 and 80 A GeV
beam energies in the NA49 experiment at the CERN SPS. The rapidity density dn/dy, inverse
slope parameter T and mean transverse mass 〈mt〉 derived from the mt distributions are studied as
a function of the incident energy and the collision centrality and compared to the relevant proton
data. The shapes of the mt distributions of p̄ and p are very similar. The ratios of the particle yields,
p̄/p and Λ̄/p̄, are also analysed. The p̄/p ratio exhibits an increase with diminishing centrality and
a steep rise with increasing beam energy. The Λ̄/p̄ ratio increases beyond unity with decreasing
beam energy.

PACS numbers: xx

INTRODUCTION

Copious antibaryon as well as strangeness production
in relativistic heavy ion collisions relative to the corre-
sponding yields observed in elementary hadronic interac-
tions have been suggested as signatures of the QCD phase
transition to a deconfined partonic state, the quark-gluon
plasma [1, 2]. The enhancement was expected to arise

from gluon fragmentation into quark-antiquark pairs
which is believed to have a significantly lower threshold
than baryon-antibaryon and strange-antistrange hadron
pair production channels. More generally, such enhance-
ments should be a consequence of the creation of a large
volume of high energy density matter, uniquely charac-
teristic of central relativistic nuclear collisions [2].

Meanwhile, in the net-baryon rich systems, significant
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annihilation losses could occur before antibaryons escape
the collision volume. Thus a systematic study of antipro-
ton production has been proposed as an indirect way of
measuring the baryon density created at the instant of
hadron formation [3]. The latter is related to the degree
of baryon stopping achieved during the early interpene-
tration phase of the collision. Experimentally, the inter-
play between baryon stopping, baryon pair production
and antibaryon annihilation can be assessed through the
measurement of antiproton and proton yields, and the
yield ratios. This is the subject of the study presented in
this paper for the CERN SPS energy range.

As no antibaryons are contained in the initial nuclear
projectiles their yields and spectra are determined pre-
dominantly by processes occurring subsequent to the
primordial baryon stopping mechanisms. Of particu-
lar interest is the ratio of antilambda (Λ̄) to antiproton
(p̄) which, intuitively, reflects the relative abundances
of anti-strange to anti-light quarks at the stage of for-
mation of the finally observed antibaryons. The Λ̄/p̄
production ratio amounts to about 0.25 in elementary
hadron collisions at SPS energy [4], but it has been found
to significantly exceed unity in previous studies of cen-
tral nucleus-nucleus collisions at AGS energies [5, 6, 7].
From top SPS energy (

√
s

NN
=17.3 GeV) to RHIC en-

ergy (
√

s
NN

=130 GeV) this ratio is known to stay at
about unity [8, 9], a value also obtained as an upper
limit (reflecting the general observation on strangeness
enhancement in central A+A collisions) in recent theoret-
ical studies employing statistical, and microscopic trans-
port models [10, 11, 12, 13, 14]. As, in particular, the lat-
ter dynamical models attempt to incorporate both the ef-
fets of primordial net-baryon stopping and of antibaryon
annihilation (subsequent to the initial antibaryon forma-
tion phase) [13, 14, 15, 16] the observation at top AGS
energies, of Λ̄/p̄ significantly exceeding unity, remains a
puzzle. This effect might be related to the recent obser-
vation of a steep maximum of the K+/π+ ratio, occuring
in the vicinity of top AGS to lowest SPS energy [17, 18].
Similar to the Λ̄/p̄ ratio, the K+/π+ ratio also refers
to the anti-strange to anti-light quark abundance ratio,
prevaling at hadron formation.

The paper presents an extension of the previously
known p̄/p production ratio to the lower CERN SPS en-
ergies. New measurements of antiproton yields in cen-
trality selected Pb+Pb collisions at 158A GeV and in
central Pb+Pb collisions at 20, 30, 40 and 80 A GeV
beam energies were performed bridging the gap between
the data at top AGS and SPS energies. Previously pub-
lished proton yield measurements of NA49 at 40, 80 and
158 A GeV [19] are extended to 20 and 30 A GeV beam
energies. The Λ̄/p̄ ratios are then obtained using recent
Λ̄ results from NA49 [20] and NA57 [21].

EXPERIMENTAL METHOD

NA49 is a fixed target experiment at CERN with a
large acceptance detector [22] using external SPS beams
of nuclei and hadrons. The produced charged parti-
cles were detected in four large volume Time Projection
Chambers (TPCs). Two of them (VTPCs) are located
inside the magnetic field, the two others (MTPCs) down-
stream of the magnets on either side of the beam line.
The TPCs provide precise tracking and particle identifi-
cation in a wide range of phase space based on the mea-
sured momentum and the specific energy loss dE/dx in
the TPC gas with about 4% resolution.

Two TOF detector walls containing 891 scintillator
pixels each are situated symmetrically behind the TPCs
on both sides of the beam. The average overall time res-
olution of these detectors is 60 − 70 ps. In the present
analysis, the identification of antiprotons was primarily
accomplished by the TOF measurement, the dE/dx in-
formation from the large TPCs being employed to reduce
the background of charged pions and kaons in the mass
spectrum. To demonstrate the identification capability,
a sample of the particle mass spectra obtained from mea-
sured momenta and time-of-flight are shown in Fig. 1.

On-line event characterization and triggering is accom-
plished by beam definition detectors located in the beam
line upstream of the target and interaction counters, and
a calorimeter downstream of the target. The data sam-
ples were recorded with two trigger settings, providing
the selection of central and minimum bias events.

Central Pb+Pb collisions were selected by request-
ing the energy deposited in the projectile fragmentation
region to be lower than a given threshold. This was
achieved with a Zero Degree Calorimeter (ZDC) located
downstream of the detector measuring the energy EZDC

of the remaining projectile fragments and spectator pro-
tons and neutrons. The upper limit on the energy in the
ZDC was set to accept the 12% most central events at
158A GeV and 7% at 20, 30, 40 and 80 A GeV from all
inelastic Pb+Pb collisions. For the top SPS energy, the
5% most central interactions were selected offline.

A Gas Cherenkov counter provides a minimum bias
trigger for Pb+Pb collisions. It is placed in the gas region
immediately behind the target to veto non-interacting
projectiles. Triggering is accomplished by placing an up-
per threshold on the signal from this Cherenkov counter
in coincidence with a valid signal from the beam detec-
tors. Additionally, off-line cuts were made on the position
of the fitted primary vertex along the beam direction to
minimize the fraction of non-target background events.

DATA ANALYSIS AND RESULTS

For the analysis of 158A GeV Pb+Pb collisions the
data samples of 450,000 central and 400,000 minimum
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FIG. 1: Mass squared histograms for TOF-identified kaons
and antiprotons in Pb+Pb reactions at 20, 30, 40, 80 and 158
A GeV beam energies. dE/dx cuts have been applied to the
data to reject most of the pions. The particle momenta range
from 3 to 10 GeV/c.

bias events were used. In order to study the centrality
dependence the data were segregated into six centrality
classes, which were selected by subdividing the range of
the total energy measured in the ZDC. Each centrality
bin corresponds to an interval in the inelastic Pb+Pb
collisions cross section σinel as listed in Table I. A direct
estimate of the number of participating nucleons Npart

is made by calculating the net baryon number carried
by all particles emitted from the collision into the phase
space region outside the spectator region [23]. For this

calculation, the charged particle spectra measured in the
NA49 experiment for almost the full forward hemisphere
[23, 24, 25] were used with only a small extrapolation out
to beam rapidity. In a second approach, the number of
spectators and, hence, the number of participants Npart

in an event was estimated via a direct measurement of
the energy deposited in the ZDC by projectile specta-
tors. The above estimates of Npart from the measured
final spectra and the energy in the ZDC agree well and
the mean value from these estimates was used for 〈Npart〉.
Their spread was considered an estimate of the system-
atic uncertainty. The estimate of the impact parameter
b is also based on the EZDC measurement through the
correlation of b with the energy in the ZDC in the sim-
ulation. The number of wounded nucleons 〈Nwound〉 was
obtained from a Glauber calculation using the spectator-
participant model of nucleus-nucleus collisions [26]. Ta-
ble I presents the numerical values of centrality param-
eters used in the analysis. Note that bin 6 suffers from
a trigger bias, i.e. the listed 〈Npart〉 and 〈Nwound〉 are
not averages for 43-100 % cross section range, but refer
to those events accepted by the trigger.

TABLE I. The six centrality classes used in the anal-
ysis for 158A GeV Pb+Pb collisions, listing the covered
range in fraction of the total cross section σinel, the mean
number of participating 〈Npart〉 and wounded 〈Nwound〉
nucleons, and the range of the impact parameter b for
the corresponding cross sections.

Centrality Fraction 〈Npart〉 〈Nwound〉 b range

bin of σinel(%) (fm)

1 0-5 366 ± 8 361 0-3.4

2 5-12 309 ± 10 304 3.4-5.3

3 12-23 242 ± 10 226 5.3-7.4

4 23-33 178 ± 10 158 7.4-9.1

5 33-43 132 ± 10 110 9.1-10.2

6 43-100 85 ± 6 53 10.2-14.0

For the reconstruction of charged tracks, a global
tracking scheme was used which combined all track seg-
ments reconstructed in the TPCs that belong to the same
particle. For each event the primary vertex was de-
termined from the intersection of reconstructed tracks.
Events in which no primary vertex was found were re-
jected. Event vertex as well as track quality cuts were
applied in order to select the events for further analysis.
The event vertex had to lie within ±1 cm of the target
foil position. The global track was required to comprise
track segments in the MTPC and at least one of the VT-
PCs. The reconstructed tracks having momentum and
dE/dx information were extrapolated to the TOF detec-
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tor wall and assigned a mass squared value m2 derived
from the momentum, flight path and time-of-flight mea-
surements. Furthermore, cuts were applied to eliminate
tracks which impinge close to the edges of the scintillator
tiles or which point to tiles hit by more than one track or
which show a signal from event-correlated γ-conversion
pairs in the scintillator. The corresponding inefficiency
was determined experimentally from the TPC tracking
data (edge and double hit) and the charge measurements
in the TOF scintillators (γ conversion) and amounts to
25% on average, with a maximum of 30% in the region of
the TOF wall closest to the beam. The relevant correc-
tions have been applied to the measured particle yields.

Next, antiprotons were selected and their transverse
mass mt distributions reconstructed. The tracks were
subjected to identification cuts applied to the measured
dE/dx and m2 values in order to simultaneously maxi-
mize the number of antiprotons and minimize the back-
ground stemming mostly from pions and kaons. Correc-
tion factors for the p̄ yield due to the cuts were estimated
from the experimental dE/dx and m2 distributions using
parametrized descriptions obtained from a fit. The mass
squared distributions were described by a sum of a Gaus-
sian distribution for the p̄ signal and a background with
two components: an exponentially falling contribution
from the tails of K− and π− bands, and a flat random
distribution due to misidentified particles. The energy
loss dE/dx is well described by a sum of Gaussian dis-
tributions. The fits were performed for each (pt, p)-bin
of width ∆pt=0.2 GeV/c and ∆p=1.0 GeV/c in the full
kinematic range of antiprotons accepted by the TOF de-
tector: 0 < pt < 1.7 GeV/c and 3.0 < p < 10.0 GeV/c.
The correction factors for the antiproton loss and back-
ground contamination due to the cuts were then deter-
mined separately for each (pt, p)-bin. They were negli-
gible in the momentum range up to p = 6.0 GeV/c and
reached about 15% at large momenta.

Some fraction of the measured antiprotons are the
daughters of weak decays of strange antibaryons, mainly
Λ̄, including those from electromagnetic decay of Σ̄0

which are experimentally indistinguishable from primary
Λ̄. This so called feed-down was evaluated from a
GEANT-based Monte Carlo simulation of Λ̄ and Σ̄ de-
cays in the NA49 detector, including detector response
simulation and reconstruction of the charged decay prod-
ucts. This procedure takes into account the probability
for a secondary antiproton to be reconstructed as a track
from the primary vertex. As input for the simulation,
Λ̄ yields and phase space distributions measured by the
SPS experiments were employed. The Λ̄ yields in each
centrality bin were derived using the Λ̄ centrality depen-
dence obtained in NA57 [21] scaled to the Λ̄ yield in
central Pb+Pb collisions measured by NA49 [20]. The
relatively small fraction of antiprotons from Σ̄−-decays
was calculated using the RQMD model [27] simulation.
The calculated mt-spectra of feeddown antiprotons are

well described by an exponential function. The inverse
slope parameter of these spectra gradually changes from
265 MeV to 215 MeV from the most central to the pe-
ripheral bins, respectively. The overall contribution of
feed-down antiprotons was found to vary from 25% in
peripheral to 35% in central collisions.

The correction factor for geometrical acceptance was
calculated using the GEANT package for tracking parti-
cles and dedicated NA49 software to simulate the detec-
tor response. The reconstruction efficiency for primary
p and p̄ was determined by embedding simulated parti-
cle tracks into raw data events, which were then passed
through the same reconstruction procedure as the real
data. It was found to be nearly 100% in the kinematical
range covered by the TOF acceptance.

The discussed corrections have been applied to the
data in each rapidity- transverse mass (y, mt)-bin. The

transverse mass mt (mt =
√

p2
t + m2) spectra for an-

tiprotons were then obtained by integrating the data
over the measured rapidity region. The resulting p̄ spec-
tra as well as previously published proton spectra [19]
in centrality selected 158A GeV Pb+Pb collisions at
2.4 < y < 2.8 (ycm = 2.9) are shown in Fig. 2 along
with a fit function of the form:

d2n

mtdmtdy
= C1e

−(mt−m)/T + C2e
−(mt−m)/T ′

, (1)

A single exponential (first term in Eq. (1)) well de-
scribes the data at mt−m > 0.2 GeV/c2 and determines
the inverse slope parameter of the spectra to be discussed
further (hereafter denoted by T ). The second exponen-
tial term accounts for the flattening of the spectra at low
mt. Its contribution to the total yield diminishes from
nearly 10% in central events to almost zero in the pe-
ripheral bins. The double exponential parametrisation
of Eq. (1) was used for extrapolation to the unmeasured
mt region when calculating the midrapidity yield dn/dy
and the mean transverse mass 〈mt〉 − m. The extrapo-
lation of the antiproton spectra ranges from 8% to 15%
for the two most central bins and for the more peripheral
bins, respectively. Table II summarizes the results on
dn/dy, T and 〈mt〉 − m derived from the p̄ and p trans-
verse spectra for each centrality bin of 158A GeV Pb+Pb
collisions.

The sources of considered systematic uncertainties in-
clude possible errors in the determination of the efficiency
corrections, in particular those for selection of single
track hits in the TOF pixels as well as the corrections for
particle identification and background subtraction. This
is only relevant to the antiprotons at higher momenta
and the most peripheral bins.

The estimate of the particle yield dn/dy represents an
extrapolation into unmeasured regions under the explicit
assumption of a certain shape of the mt distribution.
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FIG. 2: (Color online) Transverse mass distributions for an-
tiprotons and protons [19] in the rapidity interval 2.4 < y <
2.8 for the six centrality classes in 158A GeV Pb+Pb colli-
sions. The circle and square points denote the data obtained
with the trigger settings selecting minimum bias and central
collisions, respectively. The errors are statistical. The curves
through the measured points represent the two-exponential
fit of Eq. (1) to the data. For clarity, the spectra are scaled
down by a factor of 2 successively from the uppermost data.

However, the major systematic error arises from uncer-
tainty in the phase space distributions of the parent hy-
perons decaying into antiprotons. The latter was derived
from the spread of the experimental data on Λ̄ produc-
tion used for feed-down corrections including the quoted
systematic errors. The overall systematic errors of the
antiproton results amount to approximately 10% for the

particle yield and 5% for the inverse slope parameter with
a weak dependence on centrality of the collision.

TABLE II. Particle yield dn/dy, inverse slope T and
mean transverse mass 〈mt〉−m for antiprotons and pro-
tons (2.4 < y < 2.8) at various centralities in 158A GeV
Pb+Pb collisions. The errors are statistical. Proton re-
sults are from [19].

Centrality dn/dy T 〈mt〉 − m

(% of σtot) (MeV) (MeV/c2)

p̄ 0-5 1.66 ± 0.17 291 ± 15 381 ± 18

5-12 1.27 ± 0.11 299 ± 15 393 ± 16

12-23 1.05 ± 0.08 274 ± 22 370 ± 45

23-33 0.76 ± 0.06 269 ± 29 320 ± 35

33-43 0.55 ± 0.05 255 ± 28 309 ± 32

43-100 0.33 ± 0.04 236 ± 26 284 ± 28

p 0-5 29.6 ± 0.9 308 ± 9 413 ± 13

5-12 22.2 ± 0.6 308 ± 9 415 ± 14

12-23 14.5 ± 0.4 276 ± 9 362 ± 12

23-33 9.8 ± 0.3 273 ± 10 355 ± 12

33-43 5.7 ± 0.2 245 ± 10 315 ± 13

43-100 2.9 ± 0.1 216 ± 10 259 ± 12

Analyses of transverse spectra at the lower SPS en-
ergies of 20, 30, 40 and 80 A GeV were performed in
the same manner as for 158 A GeV. Here, the online
trigger was set to the 7% most central Pb+Pb colli-
sions which corresponds to the number of wounded nu-
cleons 〈Nwound〉=349. The data set comprises about
300,000 events for each energy. Measurements were done
near midrapidity and covered the rapidity intervals of
1.5 < y < 2.2 for 20A GeV (ycm = 1.88), 1.6 < y < 2.3
for 30A GeV (ycm = 2.08), 1.9 < y < 2.3 for 40A
GeV (ycm = 2.22) and 2.2 < y < 2.6 for 80A GeV
(ycm = 2.57).

The geometrical acceptance at lower energies allows to
extend the transverse mass distributions for protons up
to mt − m = 1.5 GeV/c2 (pt = 2.25 GeV/c). Thus, the
extrapolation into the unmeasured mt region is negligibly
small. The background contamination due to misidenti-
fication of antiprotons at lower energies is less than that
at 158A GeV.

Corrections due to the identification cuts applied to
dE/dx and m2 for selection of the p̄ samples do not
exceed a few percent at the largest values of p and pt.
For the feed-down correction, the NA49 data [20, 28] on
Λ̄ and Λ production obtained for the same data sam-
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FIG. 3: (Color online) Transverse mass distributions for an-
tiprotons and protons at midrapidity in central Pb+Pb col-
lisions at 20, 30, 40, 80 and 158 A GeV. The errors are sta-
tistical. The solid lines illustrate the two-exponential fit of
Eq. (1) to the data. For clarity, the spectra are scaled down
by a factor of 2 successively from the upermost data.

ples were used. The p̄ feed-down contribution at lower
energies became larger as compared to 158A GeV and
gradually increases with decreasing beam energy reaching
nearly 50% at 20 and 30 A GeV. This increases the over-
all systematic errors towards lower energies approaching
15% for the antiproton yield at 20A GeV. The feed-down
correction for p at low energies amounts to approximately
15% which is rather close to that for 158A GeV.

Fig. 3 depicts the p̄ spectra for central Pb+Pb colli-

sions at all five energies together with fits by the double
exponential function Eq. (1). A deviation from a single
exponential shape is seen at all energies. The numerical
values for dn/dy, T and 〈mt〉 −m are listed in Table III.

TABLE III. Particle yield dn/dy, inverse slope T and
mean transverse mass 〈mt〉−m for antiprotons and pro-
tons in central Pb+Pb collisions at 20, 30, 40, 80 and 158
A GeV beam energies. The errors are statistical.

Ebeam dn/dy T 〈mt〉 − m

(AGeV) (MeV) (MeV/c2)

p̄ 158 1.66 ± 0.17 291 ± 15 388 ± 20

80 0.87 ± 0.07 283 ± 30 385 ± 41

40 0.32 ± 0.03 246 ± 35 355 ± 51

30 0.16 ± 0.02 290 ± 45 395 ± 60

20 0.06 ± 0.01 279 ± 64 394 ± 60

p 158 29.6 ± 0.9 308 ± 9 413 ± 13

80 30.1 ± 1.0 260 ± 11 364 ± 16

40 41.3 ± 1.1 257 ± 11 367 ± 16

30 42.1 ± 2.0 265 ± 10 362 ± 14

20 46.1 ± 2.1 249 ± 9 352 ± 13

DISCUSSION

The midrapidity mt-spectra for 158A GeV Pb+Pb col-
lisions become progressively flatter from peripheral to
central collisions (Fig. 2 and Table II). Both the mean
transverse mass 〈mt〉 − m and the inverse slope param-
eter T increase towards central collisions, although this
trend is slightly different for p̄ and p, namely the proton
inverse slope increases somewhat faster, as clearly seen
in Fig. 4.

A deviation from a single exponential at low mt values,
the so called ”shoulder-arm shape”, is most pronounced
in central Pb+Pb collisions (Fig. 2) and observed at all
five energies (Fig. 3). These features are generally ex-
plained by a strong collective expansion (radial flow) in
hydrodynamical models [29, 30, 31]. A blast wave pa-
rameterisation based on these models provides in fact as
good a description of the mt-spectra [32] as the double
exponential function. Fitted parameters yield an average
radial flow velocity of about 0.5 c and a temperature of
120-140 MeV in the expanding fireball at its disintegra-
tion stage.

Interestingly, the p̄ and p transverse mass spectra re-
veal within errors quite similar shapes in spite of the fact



7

200

300

400

500

100 200 300 400
<Nwound>

<m
t>

-m
 (

M
eV

/c
2 )

p

p
_
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Nwound at midrapidity in 158A GeV Pb+Pb collisions. The
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that at these energies a significant fraction of protons
carry baryon number from the incoming nuclei, while
antiprotons are predominantly pair produced. This ob-
servation may indicate similar expansion dynamics for
both particles comprised of thermal motion and collec-
tive radial flow that determine the transverse spectra of
particles at the late stage of the expansion. As discussed
in the introduction, substantial annihilation of primor-
dially produced p̄ might occur in the baryon rich fireball.
This effect is expected to lead to a decrease of the p̄/p
ratio at mt −m below about 0.4 GeV/c2 [13, 15]. In par-
ticular, at 158A GeV the close similarity of the shapes
of the measured p̄ and p spectra do not support such a
prediction. At lower energies a decrease of the order of
30% cannot be ruled out due to the larger uncertainties
of the measurements.

In contrast to the strong centrality dependence, the
shape of the measured transverse mass spectra does not
change noticeably with beam energy at SPS energies.
This is illustrated in Fig. 5 where the 〈mt〉 − m values
for p and p̄ in central Pb+Pb collisions at the five SPS
energies are plotted versus the nucleon-nucleon center-of-
mass energy. Also shown are measurements at lower and
higher energies from the AGS [33, 34, 35] and RHIC [36],
respectively. It is seen that the mean transverse mass
for both p̄ and p steeply rises with energy at the AGS,
remains approximately constant at the SPS and resumes
a slow rise towards RHIC energies. A similar non trivial
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FIG. 5: (Color online) The mean transverse mass 〈mt〉 − m
for p̄ and p at midrapidity as a function of the center-of-mass
energy per nucleon pair

√
s

NN
in central Pb+Pb collisions at

SPS energies (NA49) together with data for central Au+Au
collisions from the AGS [33, 34, 35] and RHIC [36]. The errors
are statistical.

energy dependence was also observed by NA49 for kaon
and pion production [18, 28, 37] which was considered
a possible indication of the coexistence of hadronic and
partonic phases in the created nuclear systems at SPS
energies, an interpretation motivated by theoretical con-
siderations [38, 39, 40].

The measured particle yields dn/dy differ significantly
between p and p̄. Both increase with increasing central-
ity, but the proton yield rises about two times faster. The
yields of p and p̄ per wounded nucleon (dn/dy)/〈Nwound〉
as a function of Nwound for the six centrality samples are
depicted in Fig. 6. An increase of this ratio with central-
ity for protons is clearly seen which can be understood as
a consequence of the increased baryon stopping in cen-
tral Pb+Pb collisions [23, 25]. On the other hand, the p̄
yield per wounded nucleon shows a slight decrease with
centrality. This could be a sign of increasing antiproton
absorption from peripheral to central collisions as pro-
posed in a recent theoretical study employing the micro-
scopic hadron transport model UrQMD [15]. This study
suggests a concurrence of the p̄ enhancement in Pb+Pb
collisions with respect to p+p reactions and an increasing
antibaryon absorption with centrality due to the growth
of the net baryon density at midrapidity. However, the
observation of nearly identical spectra for p and p̄ does
not support the UrQMD model calculation.

The different dependence of p̄ and p yields on Nwound

results in significant centrality dependence of the p̄/p ra-
tio as shown in the bottom panel of Fig. 6. This ratio
steadily increases from central to peripheral collisions by
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FIG. 6: (Color online) The yield dn/dy of p̄ and p per number
of wounded nucleons Nwound and the p̄/p ratio plotted as
a function of Nwound at midrapidity in 158A GeV Pb+Pb
collisions. The errors are statistical.

a factor of about two within the considered centrality
range. A similar result was obtained in Au+Au colli-
sions at 11.7A GeV/c [35]. The data for smaller collision
systems indicate an even steeper increase of the p̄/p ra-
tio reaching values of nearly 0.3 for p+p [41] and p+Be,
p+S and p+Pb [42] interactions. In contrast the p̄/p ratio
measured at RHIC shows very weak variation with cen-
trality at the collision energy

√
s

NN
=130 GeV [43, 44]

and almost no dependence on centrality at
√

s
NN

=200
GeV [45, 46]. Thus, the net baryon density, which is
significant at lower energies, strongly affects the midra-
pidity p and p̄ abundances through baryon stopping and
baryon-antibaryon annihilation in central collisions at the
AGS and SPS, but not at RHIC energies.

Fig. 7 displays the midrapidity p̄/p ratio for central
collisions as a function of energy at AGS, SPS and RHIC.
The numerical values are listed in Table IV. The p̄/p
ratio rises steeply within the SPS energy range by nearly
two orders of magnitude. The figure illustrates how the
collisions evolve from producing a net baryon-rich system
at the AGS through the SPS energy range to an almost
net baryon-free midrapidity region at the RHIC.

Measurements of Λ̄ production in central Pb+Pb col-
lisions [20, 28] make it possible to analyse strange and
nonstrange antibaryon production for all five beam en-
ergies. Of particular interest is the Λ̄/p̄ ratio which was
briefly discussed in the introduction. Note, that the Λ̄
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FIG. 7: (Color online) The p̄/p ratio at midrapidity as a
function of the center-of-mass energy per nucleon pair

√
s

NN

in central Pb+Pb collisions at SPS energies (NA49) together
with the data for lower energies at the AGS [35] and higher
energies at the RHIC [43, 44, 46], respectively. The data [47]
at top SPS energy are also shown.

yields used for calculations contain the contribution from
electromagnetic decays of Σ̄0 hyperons, which are experi-
mentally indistinguishable from those created in primary
interactions.

Table IV. The p̄/p and Λ̄/p̄ ratios at midrapidity in cen-
tral Pb+Pb collisions at SPS energies. The errors are
statistical. Preliminary results for the Λ̄ yields at 20 and
30 A GeV [28] are used.

Ebeam(AGeV) p̄/p ratio Λ̄/p̄ ratio

158 0.058 ± 0.005 1.09 ± 0.15

80 0.028 ± 0.003 1.22 ± 0.14

40 0.0078 ± 0.0010 1.31 ± 0.19

30 0.0038 ± 0.0008 1.81 ± 0.37

20 0.0013 ± 0.0002 1.72 ± 0.58

The measured values of the Λ̄/p̄ ratio for central
Pb+Pb collisions at 20, 30, 40, 80 and 158 A GeV are
listed in Table IV and plotted in Fig. 8 together with
those from AGS [5] and RHIC [9]. The AGS experiments
reported a Λ̄/p̄ ratio of about 3-3.5 for central Au+Au
and Si+Au collisions at top AGS energy. As illustrated
in Fig. 8 the measurements at the SPS indicate a grad-
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FIG. 8: (Color online) The Λ̄/p̄ ratio at midrapidity as a
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in central Pb+Pb collisions at SPS energies (NA49) together
with the data from AGS [5] and RHIC [9]. The total error bars
are drawn. The curve shows the prediction of the statistical
hadron gas model [48].

ual increase of the Λ̄/p̄ ratio from 158A GeV to 30 and
20 A GeV, and tend to corroborate the large values for
this ratio found at AGS energies. At 158A GeV the pub-
lished prediction [16] for the midrapidity Λ̄/p̄ ratio from
the UrQMD model, which takes into account antibaryon
absorption, agrees well with the measured value. Pre-
dictions for the full energy range are not yet available in
the literature. Since both Λ̄ and p̄ are newly produced
baryons having no valence quarks in common with the
projectile nucleons we may compare the midrapidity ra-
tio with the full phase space multiplicity ratio predicted
by the statistical hadron gas model [48] which uses a
smooth parameterisation of the energy dependence of the
baryochemical potential. As demonstrated by the curve
in Fig. 8 the hadron gas model underpredicts the ratio
but shows a rise towards lower energies similar to the
measurements. Similar predictions were obtained within
non-equilibrium versions of the hadron gas model [49, 50].

The increase of the Λ̄/p̄ ratio towards top AGS en-
ergy may also find an explanation in a quark coalescence
model scenario. Note first of all that we deal here with
an antihyperon to antiproton maximum because this ra-
tio has to fall down again at yet lower energies (where
no data exist due to insufficient statistics) owing to the
higher Λ̄ production threshold. Such an antihyperon
maximum is reminiscent of the maximum in the same
energy range that was reported recently for the K+/π+

production ratio [17, 18]. The steep maximum in the rel-
ative strangeness production was predicted as a signal of
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FIG. 9: (Color online) Impact parameter dependence of the
Λ̄/p̄ ratio at midrapidity in central Pb+Pb collisions at 158A
GeV. The errors are statistical. The curved line presents the
result of hadronic cascade (UrQMD) calculation [16].

the onset of deconfinement [51]. In fact if hadronization
occurs by quark coalescence at the QGP phase boundary
the Λ̄/p̄ ratio essentially reflects the ratio of s̄ to ū quark
densities, while the K+/π+ ratio follows from the s̄ to d̄
ratio. The d̄ quark density is expected to be proportional,
in turn, to the ū quark density. These considerations thus
provide a possible explanation of the similar rise of the
Λ̄/p̄ and K+/π+ ratios with decreasing collision energy.

For 158A GeV Pb+Pb collisions the data allow a study
of the centrality dependence of the midrapidity Λ̄/p̄ ratio
which has been suggested to be particulary sensitive to
the interplay between production and subsequent absorp-
tion. As data on the centrality dependence of Λ̄ produc-
tion are not yet available from NA49, numerical values
for the ratio were calculated using the present minimum
bias data for p̄ and the centrality dependence of Λ̄ pro-
duction obtained by NA57 [21] scaled to the Λ̄ yield in
central collisions from NA49 [20]. As shown in Fig. 9 the
Λ̄/p̄ ratio increases from peripheral to central collisions
by about a factor 2. A much stronger increase has been
observed at the AGS [5, 6]. Interestingly, the results at
158A GeV are in agreement with a UrQMD model cal-
culation [16] which incorporates antibaryon absorption.

SUMMARY

The midrapidity transverse mass distributions for an-
tiprotons were measured in Pb+Pb collisions at 20, 30,
40, 80 and 158 A GeV filling the gap in the data between
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AGS and top SPS energies. They are compared to the
relevant data for proton and antilambda production.

The shapes of mt-spectra show a strong dependence
on collision centrality. In central collisions and at small
mt the spectra exhibit a pronounced deviation from
the exponential Boltzmann shape. The data reveal the
shoulder-arm structure characteristic of prominent radial
collective expansion flow. The observation of nearly iden-
tical spectral shape for antiprotons and protons indicate
a similar expansion history for both particle species.

No visible change in the mean transverse mass for p̄ and
p was found in central Pb+Pb collisions within the mea-
sured SPS energy range. This is similar to what has been
observed in kaon and pion production and could be at-
tributed to the possible formation of coexisting hadronic
and partonic phases created in the collision.

The yield of p normalized to the number of wounded
nucleons strongly increases with centrality while this
quantity for p̄ exhibits a slight decrease. The former ef-
fect can be understood as the result of an increase of
baryon stopping with collision centrality which leads to
contraction of the proton rapidity distribution around
midrapidity. The slight decrease of the yield of p̄ per
wounded nucleon may point to some contribution from
annihilation.

The p̄/p ratio is found to increase by almost two orders
of magnitude in central Pb+Pb collisions at 158A GeV
as compared to 20A GeV beam energies, reflecting the
rapid decrease of the net baryon density at midrapidity
with collision energy.

In central Pb+Pb collisions the Λ̄/p̄ ratio shows a
steady increase with decreasing beam energy approach-
ing a value of almost 2 at the energies of 20 and 30 A
GeV. This confirms earlier evidence for this ratio to sig-
nificantly exceed unity at AGS energies. There may be
an analogy to the K+/π+ maximum also observed in the
domain of top AGS to lowest SPS energies.

No fully satisfactory theoretical description of an-
tibaryon production is available in the literature. The
new experimental results on p̄ production should help
to elucidate the possible role of annihilation processes in
antihyperon production in collisions of heavy nuclei.
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