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ABSTRACT

A resonance model for deep inelastic ep
scattering and ete™ annihilation is studied making
use of a generalized crossing relation. Scaling in
deep annihilation is- predicted and the scaling func-
tion Fz in this region is given. The multiplicity
stays finite in this model except for the 1limiting
case of vanishing slope of the trajectory of the re-
sonance widths where the multiplicity grows logarith-

mically.
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In a previous paper 1) locality and spectrum properties have
been used to propose representations for the scaling functions of deep
inelastic electron scattering and electron positron annihilation. In
particular, a generalized crossing relation among the scaling functions of

the two processes was obtained.

In the present note we start from a resonance model for the
structure function W2(q2,v ), 2) Y=p-+q, for deep inelastic electron
proton scattering

e+p —e' + " +hing" (1)
P anything |
and predict with the help of the generalized crossing relation of Ref. 1) the

scaling function Fz(a)) for the deep electron positron annihilation
1 n . n
e
e+ e P+ any}hmg : (2)

Resonance models for the process (1) have been proposed by
several authors 3)_6). The papers referred to under 4), 5) and 6) show that
an infinite set of resonances on a linearly rising Regge trajectory is able
to produce the observed scaling. In particular, the models discussed in
Refs. 5) and 6) reproduce the qualitative features of the experimental data
even though they treat W2 like a structure function in a scalgr theory.
Because of this observation and for reasons of simplicity we treat W2 the
same way, and saturate the triple discontinuity gz(q2,Q2,s,O), Bq. (4) of
Ref. 1), of the virtual Compton amplitude by an infinite sum over narrow

*
resonances ) in the s channel (see Fig. 1)

2 (CIZ' Oz; 50) = % M Gk(q") m Gk(Qz) ds- Mkz) . (3)

2
Here, Gk(q ) is the electromagnetic excitation form factor of the ktB
resonance with mass Mk’ The resonance masses lie on a linear Regge tra-

jectory with slope &k 'y i.e.,

*
) The restriction to narrow resonances is not essential.



In order to ensure the correct threshold behaviour at @ =1
of the scaling function FZ(GJ) for the process (1) the asymptotic decrease
of the form factors Gk(qz) has to be that of dipoles 7, Since, in
addition, we have to avoid unphysical poles in the annihilation region the
resonance poles dominating the form factors have to appear as conjugate
pairs in the second sheet of Gk(qz). These iwo requirements lead us to

the following ansatz for the imaginary parts

. o -
7m6k(72)= Qé?‘ﬂsk)N m: 2 i y ()

2 ;,__22 2 2
q mk) +om 7;

. . . . 2
N" is a normalization constant of dimension (mass) . Also the resonances
of mass m dominating the form factors are assumed to lie on a linear

trajectory

2 -
m, = & 4/( +m°2. (6)

The squares of the total widths ’1k are supposed to follow a linear increase

7;(2 = ]‘7( + ]:2 ) (7)

whereas the "partial widths" ]hk should exhibit the zero of the imaginary

**) 2 (M+Mk)2

part at the physical threshold Agy =

*) The discontinuity across the unphysical cut below qik has been neglected
since this cut carries over into the unphysical region -m<W<O0
of the scaling function F2(GJ).
**)

In order to keep the calculation as simple as possible we have put a
first order zero in Bq. (8). Possible modifications of ansatz (8) taking
into account the effect of an interaction radius have been tried and

were found to give no essential improvement.
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With these assumptions the triple discontinuity 859 Eq. (3),

scales like

by s gltie0 - (1),

(9)
%7-, ..a...z fixed

where the double spectral function ?p(x,y) is given by

P, y) = N “0x-1) Oy - 1) éjl(x) —Q(y) s

(10)

N'= N" o' 22

with

( = X = 4 2 = [ I
¢X> x[(x-4)*+ 2*] »x 7

In the derivation of the above result we have replaced the infinite sum in

(11)

Eq. (3) by an integral over k extending from one to infinity.

For the scaling function F(&)) defined by

W, (g%,

)( -9%) ->oo (qz) ?F(w)

@ fixed (12)

with W = —2\)/q2, we derived in Ref. 1) the following representation

(x,y) -
Flw) = d 14 .
w-4 3 fx/*y (X+w4 (y+a> 4)
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Thus, we obtain for the deep inelastic scaling function Fz(u)), defined by
W ) F (w

w flxed

the result (1<@W< @)

(x,)
T (w) = @ dxel d il . (15)
2 w-4 21t3 /X/] (X*w 4 (_Y w—a)

With Egs. (13) and (11) for the double spectral function 3P we get

2 3 1< @
N ) f(z,.Q), 05_(2:0; (16)

where

2
2 N' w-1
N = ) -(2 = w (17)

213(1+ 22)?

d Q-4-bn Q
£(x,0) ={ eyl 5

+(—W[(4 22 2- 22Q )(4*&"350 ""‘(’BQ'—)(""'ZQ agﬂ]}

For deep annihilation (2) we define the scaling function Fz(co)
2
in the limit ¢ — ® analogously to Eq. (14) with barred quantities. From

the generalized crossing relation, Eq. (14), Ref.1), one reads off for §2

% ( w) F E(/h-w 1/, 1+w 1+a>) (1«050)



Using Eq. (16), we obtain for the scaling function 52(-0)) in the deep

annihilation region /

ofw<A

i;:('ﬁu) = ’\/2.,.1:11155 1?;kbf, -(2-) ) (loo<;(2=s() )
22Q*- 0+ 2 72
(Q-1)*(4+ 2202 ) -

Here h(2e,Q) is obtained from r(%¢,L)) by replacing ‘nfd by I,nl.fi|
in Eq. (18).

(20)

f(x,.Q) = Az, )+ t¥fher) -0

Now, we come to the discussion of the results.

1) In this model scaling also occurs in the annihilation region.

2) Obviously, the scaling functions Fz((,)) and Fz(-w), Egqs. (16) and

(20), are positive in their physical domains.

3) Fz(w) has a logarithmic cut in the interval O<@= 1. There is no
cut in the interval - ®<@<O0 Dbecause we neglected the unphysical

cut below qik in the ansatz (5) for the form factors. The poles
in f(z’ﬂ), qu (18)’ at ~

. z R
L . €t
x 1+ 22

show up only in the second sheet. They reflect the conjugate pair of

dipoles built into the unphysical sheet of the excitation form factors

Gk'

4) The scaling variable &) enters into the expressions (16) and (20)
for the scaling functions only in the combination .Q. = (w-1)/¢.>.

5) The scaling functions have the following threshold behaviour at @ =1

Fl)= Nitnw-Z2)" QF+ 0(2* 4120) (22

Tew=Nlhe- L)' | Qf+ O(Q & 101), e



6)

7)

8)

*-x-)
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i.e., the leading terms at @ =1 are of the same type with identical
coefficients. Apparently the Drell-Yan-West 7) relation is satisfied.

The cut occurs in the non-leading terms.

For W —-w (..Q.-—>1) the deep inelastic scaling function Fz(w)
becomes constant thus simulating a possible Pomeron contribution which

is compatible with present data.

Our model contains two free dimensionless parameters N and 2 since
the slope parameters & ! and b‘- ' of thi trajectories of masses and
widths occur only in the combination 2@ . In the following we
adjust N for every value of 8 such that Fz(o.)), Eq. (16), fits
the experimental data at the point w=2.

It is of some interest to look at the result for 2@ =0, corresponding to

vanishing slope f' of the trajectory of the widths. With N fnae —>1\TO
* %

in the limit 90 —0 we obtain

Noz(—ww——/’->3 ) (,fg W < OO) ) (24)

T, (w)

N:I%ir )‘ (Oéwé'f). (25)

2)

satisfied since this scaling function Fz((‘)) does not possess a cut.
In Fig. 2 F2(w), Eq. (24), is shown for two choices of NO. The
upper curve (z =0, N§=0.981) has been adjusted to the experimental

f, Cw)

Obviously, in this 1limit the Drell-Levy-Yan crossing relation is

value at @ =2, the lower one (2 =0, Ni:O.BS) to the value 0.35
at infinity.
With the common value of about 1 GeV_2 for the Regge slope & '
the parameter 2@ 2 directly measures the slope Z‘o '. of the trajectory
of the widths in units of GeV2.
Since we fit N for every value of 28 at a fixed value of ¢ the
product N fnge remains finite for 2 —0. This is also necessary for

finiteness of the form factors in this limit.
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In Fig. 2 we compare the scaling function Fz(a)), Eq. (16), for
different values of o€ with the experimental data. Values of 2@ in
the neighbourhood of 0.5 are favoured. In fact, the curve for 9 =0.5

fits the data reasonably well.

With the values of N determined from the above fits of the deep inel-
astic scaling function FZ(QQ) we obtain the predictions for the scaling
function F2(-a)) in the deep annihilation region displayed in Fig. 3.
It is obvious that the dependence on 2€ 1is appreciable, the values of
Fa
range of %8 considered. In Fig. 4, we have redrawn the same curves

at fixed W are different up to two orders of magnitude in the

over the abscissa znlﬁ)-1/u) . This plot shows clearly that over a
wide range in @ adjacent to @ =1 the leading term of all curves
is proportional to |60—1/§,|3. The curves for finite @2 reach a
maiimum, the location of which is, except for the absolute value, the
most distinctive feature. These maxima are caused by the complex poles

of the form factors, as discussed under 3), Eq. (21).
For finite values of 2 #0 +the scaling function FZ(-G)) vanishes

for @ -0 1like

?;(-w) ~ © o : (26)

whereas for o8 =0 the scaling function diverges like 0)—3 for

wW-0, Eq. (25).
Recently Callan and Gross 8) have emphasized that the behaviour at ) =0
of the scaling function §2 decides the type of growth of the average

multiplicity n(qg) of hadrons produced in deep inelastic annihilation.
*
One has for the scaling contribution for large q )

n(q*) ~ /c/w o Elw) . (27)

K3

It is assumed that the longitudinal scaling function vanishes and that
the total annihilation cross-section behaves like q'2.
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Thus, according to Eq. (26) we predict for 38 >0 a finite multiplicity,
whereas for ®@ =0 +the multiplicity will grow logarithmically in q2

in this model.

12) As a last point we come to the decisive questions in a comparison with

future colliding beam experiments.

a) Does scaling hold in the deep annihilation region, as predicted by
this model?

b) Is the leading term in 52(-00) which is proportional to ‘a)-1l3/093,

?

¢) Do the experimental data show a maximum (instead of a G)_B or

a fit to the experimental data in the region 0.6 1
worse divergence at 6)¥AO) leading to a finite multiplicity?

Obviously, the experiments will never rgach the point W =0.
Thereforé, conclusioné about the multiplicity have to be drawn with care,
since the model discussed in Ehis paper shows that the deviation of FZ
from its leading term |a)-1]9/003 at @) close to unity might occur at
rather small values of @) . This would imply that the deviation from a

logarithmically growing multiplicity may not be easily detectable.

It is interesting to note that the measurement of the location of
the maximum of FZ can directly be translated into a value of ® , which
for a given Regge slope & ' 1is a measurement of the slope 3” of the

trajectory of the widths.

The above conclusions are independent of any assumption on

light cone behaviour.

We thank P. Minkowski for an interesting discussion and

C. Llewellyn Smith for reading the manuscript.
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FIGURE CAPTIONS

Kinematics of the resonance exchange.

Plots of the scaling function F2 in the deep inelastic
region for different choices of 22 . The dashed lines

indicate the asymptotic limit of the various curves.

Plots of the scaling functions ﬁz in the deep annihilation

region for different choices of 2e.

Scaling functions FZ plotted against 4n lw-1/w]-
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