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ABSTRACT

The harmonic analysis of the n particle
inclusive distributions and the partial diagonal-
ization of the ABFST multiperipheral integral equa-—
tion at vanishing momentum transfer are treafed ri-
gorously on the basis of the harmonic analysis of
distributions defined on the one-sheet hyperboloid
in four dimensions. A complete and consistent
treatment is given of the Radon and Fourier trans-
forms on the hyperboloid and of the diagonalization
of invariant kernels. The final result isa special
form of the 0(3,1) expansion of the inclusive
distributions, which exhibits peculiar dynamical
features, in particular fixed poles at the nonsense
points, which are essential in order to get the

experimentally observed behaviour.
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1. = INTRODUCTION

In the present paper we develop and clarify some mathematical
procedures which are useful for the treatment of multiperipheral models of
the ABFST type 1)-3). These models provide a definite approximate expression
for the N particle production amplitudes. By integrating over all the
final states, one gets the total cross—sections ; if one keeps some of the
final momenta fixed, integrating over all the other momenta and summing over

1)94)'7). It

is just in dealing with this last aspect of the model that the powerful ma-

the multiplicity N, one obtains the inclusive distributions
thematical concepts described in the following are most useful.

In the simplest version of the model, the production amplitudes
are given by the multiperipheral graphs of a 3313 field theory. 1In this
case in computing a two-particle inclusive distribution we find, for instance,
an integral of the kind described by the graph in Fig. 1. It has the general

form

TM(PB,PH) =) 7FB(PB,QW) K(QM,QM,*4)
LK(Q,,Q,) 43P, Qy) Qs d* Qe

where PA stands for PA1’ PA2"" and PB has a similar meaning.

(1.1)

For instance, in the example of Fig. 1, we have

£ (B.Qu)= 279 §(Qu Bt B (@)

K(Q.,,Q)=Gr? g §((Qur Q.J"-me)
0(Qupro™ Qo) (Q7- M),

f (P Q)= (0) g% §((Qy Pt Bu)'- ’m‘)z‘

. 0 (Q4,o" Ptftz,o + Pago ) (( Q,,‘ Paz)z" /W-z)- .

(1.2)
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One can easily realize that also other contributions to the inclu-
sive distribution in the 373 model have the form (1.1) with more complicated
forms for the functions f and f when the observed particles are more

A B
"internal”™ in the multiperipheral chain.

Also more general multiperipheral models give rise to contributions
of the form (1.1). For instance, every term K could describe the production

1)58)39) | fpe only limitation of the present

of a cluster of final particles
treatment is that the wavy lines in Fig. 2 must represent spinless off-shell
particles. A further generalization leads to the Reggeized multiperipheral
10)-13)

models , which require more powerful mathematics. Nevertheless, most
interesting features appear already in the simpler class of models we are con-

sidering.

Our treatment uses only some very general assumptions on the quan-
tities K, fA and fB. From the example (1.2), we see that in general they
are Lorentz invariant positive distributions, i.e., Lorentz invariant measures.
The integral (1.1) is not necessarily meaningful for every choice of these
measures. We shall discuss later how and under which conditions we can give

a meaning to this expression.

An essential use will be made of the support properties of these
14 " Qi is just the total four-momentum of a cluster

of produced particles, the support of K<Qi+1’

distributions. As Q

Qi) is necessarily contained

in the region

z 2
Q) 7™M @y Quo 7 M
(QM"' /») ) At4,0 40 >/ ’ (1.3)
where M is the sum of the masses of the particles produced in the cluster.

In a similar way we see that the support of fA(PA, Q1) is con-

tained in

t 2
P94+Q4 >/P/lﬁ . Q/f,o >/Mﬁ~l>f)‘1,0 (1.4)
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and the support of fB(PB, Qn) is contained in

7 .
(-QM/+ 51) 7/M: ) -QMO>/ MB-PBJ“O 9 (1.5)

where MA is the sum of the masses of the observed and the unobserved pro-
A’ and M]3 is defined in
a similar way. All these inequalities restrict the region of integration in
Eq. (1.1) to a compact set "gﬂ .

duced particles taken into account by the term f

We call mA1 and m.B1 the masses of the incoming particles and

we make the assumption, valid in the most interesting cases,

M97m34 ,MB) /WLB,1 3 %?/’I . (1.6)

Excluding the case in whickh all the three relations are equalities, a simple

reasoning shows that in the set h;k we have

2 .
G‘Aa (O ) 4/-’-'-,1,2.,,..},"/ (1.7)

and we can introduce the variables

2 -1 .
MA; =—Q,{; >O ’ xk: M’L ZAQ’L . (1.8)

The four-vectors X; Span the one sheet hyperboloid r defined by

2
(x,x)=x"=-1 . (1.9)

If we introduce the Lorentz invariant measure on P

d«‘—‘:' zg(xl"'/{) Oqu ,~ (1.10)



Eq. (1.1) takes the form

T’W( PB ! P") ) ()]QB(PB,MM,,IM) k(MM/7xM.)'u'M~411M-1)“'

’K(Mz:xzruwx't) 109 (PH,M4,DC4) ' (1.11)
..'_z’-,{,(,ﬂ 0L,LL4 dD ...%—,{,LM, OLﬂM OI.’—'M/

We remark that perhaps the most important application of multi-
peripheral models is the study of Regge-like limits. In our case this

14)-16)

means to study the dependence of the quantity

Z(S L(a Ps, Z_T ) T(O‘) (1.12)

on the element a of the Lorentz group acting on all the four-momenta PBi’

while the four-momenta PAi are kept fixed. It is Jjust in the limit of

large a that the separation of the observed particles into two sets A and

B becomes natural and unambiguous.

Therefore we are led to consider integrals of the kind

Tula) = [fo (L) za) K (2n L]
K(Iz,11) fa(x"’) O{Pﬂ OLPM, )

where the dependence on the variables U is understood and the corresponding -

(1.13)

integrations are supposed to be performed later. We are assuming that the
kernel K is defined as a Lorentz invariant distribution in Xi+1’ X, for
any positive values of ui+1 and u; - From now on, the variables u, are
considered as fixed and we concentrate our attention on the "angular'" variables
X

From Eq. (1.3), one can see that the support of the kernel

K(x. ,, x.) 1is contained in the set
i+1 i

“(I£+4 1145) >/ 2 ('uu.+1u4.) (le'u"f*'l +'u"‘) >( )
Xi41,0 - X020 Y
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while from Eqs. (1.4) and (1.5) we see that the supports of fA(x1) and

fB(xn) are contained in the sets

-1
Xao 7 My* (Mﬂ- Pﬁf,O) (1.15)

and

%

"IM,O >/ m (MB-PB'!,O) , (1.16)

respectively.

These are the support properties on which we rely in the following.
Though only positive measures appear in the physical problem, from a mathematic-
al point of view it is natural to deal with arbitrary distributions with some

limitation on their rate of increase. This is the point of view we shall adopt.

We shall show in Section 9 that if K, fA and fB have the support
properties mentioned above, the integral (1.13) can be interpreted as a distri-
bution on the Lorentz group. Assuming some limitation on the rate of growth of
these distributions, we shall give an expansion of the quantity (1.13) in terms
of matrix elements of irreducible, not necessarily unitary, representations of
the Lorentz group. This expansion has not exactly the form proposed in Ref. 17)
and it exhibits some peculiarities hitherto unexplored, as the existence of
fixed poles at the "Lorentz nonsense" points. The existence of these poles is
essential for a correct approach to the transverse momentum dependence of the

inclusive distributions 7).

We shall get these results following the classical procedure of
distribution theory 18 . PFirst we perform the harmonic analysis of a function
belonging to the space 6)([‘) of the infinitely differentiable functions of
compact support on the hyperboloid fﬂ . This can be done by means of the ele-
gant method developed by Gel'fand and collaborators 19). Unfortunately in

Ref. 19) only functions with the symmetry property

F(-x) = () '
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are treated and the extension to the general case is not trivial. The general
treatment of the Fourier transform is given in Sections 2 and 3, where we in-
troduce also the usual basis labelled by the angular momentum indices j, m.
Some useful properties of the "hyperbolic harmonics'" in this basis are given
in Section 4. The inverse formula for functions in G)(f1) is given in

Section 5.

In Section 6, we introduce some new spaces of test functions and
of distributions on the hyperboloid f’ and we define the Laplace transform
for a large class of distributions on r’ y 1in perfect analogy with the Laplace
tfansform of a distribution on the real line 18). In Section 7 we consider
invariant distribution kernels, which have the property of mapping into them-
selves some spaces of test functions and of distributions on [‘. We show
also that - when one of these kernels operates on a distribution on f' , 1ts
Laplace transform is changed by a scalar factor ; this is just the diagonal-
ization of the kernel. In Section 8 we study the regularization of a distri-
bution on r' by means of the convolution with a smooth function on the
Lorentz group and the corresponding change in its Laplace transform. All
these results are applied in Section 9 to derive an 0(3,1) representation

for the inclusive distributions.

In our effort towards a systematic treatment, we partially over-
lap with previous work. The "hyperbolic harmonics" in a somewhat different
form are discussed in Ref. 20). The diagonalization of invariant kernels is
treated in Refs. 21), 22) ; an extension to spinning particles is given in
Ref. 23). These treatments are not based on the harmonic analysis of functions
on the hyperboloid, which in our opinion is the most natural and clarifying

starting point.

It is also interesting to compare the diagonalization procedure
for the multiperipheral equation (giving the absorptive part of the amplitude)
with the analogous treatment of the Bethe-Salpeter equation at fixed four-
momentum transfer (which gives the whole amplitude). For spacelike four-
momentum transfer, the 0(2.1) projection of the Bethe-Salpeter equation was
performed in Ref. 24) [see also Refs. 25),26)]. Of course, in this case one
has no support conditions of the kind (1.3)-(1.5). Instead one has a symmetry
with respect to time reversal, which is incompatible with the mentioned support
conditions. In this situation, it is unavoidable to obtain a Laplace transform
which has a symmetry property in the £ plane which prevents this transform

from being analytic in a half plane. This feature complicates somehow the
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discussion of the inverse formula, which is nevertheless perfectly justified,
at least when only poles are present in the 4 plane. If one tries to
extend this formalism to the Bethe-Salpeter equation at vanishing four-

momentum, one runs into difficulties whose origin will be clear in Section 7.

2. - THE RADON TRANSFORM

Our first task is to define the Fourier transform of a function
f(x) Dbelonging to the space ®(r') of the ¢® functions with compact
support on the hyperboloid l" defined by Eq. (1.9). We follow the method
of Ref. 19), where this problem is solved for functions which satisfy the
symmetry condition (1.17). For some details and for geometrical motivations,
Ref. 19) should be consulted.

The first step is to define the Radon transforms

h(g)= 2[40) §((x,5)#1) L T,

where the four vector \g belongs to the half cone

\22:0 )§o>0 ’ . (2.2)

(2.1)

9(6,5)= | £(4+tE)dt o
'€'Z=-1; (652)?'01 22:01 ‘%o}'>o ' (2.4)

The invariant measure d r' is defined by Eg. (1.10).



The function (2.3) has the property

({)('L+4\giﬁ§) = ?‘4 (P(/@ ;?) . (2.5)

The Radon transforms h(g) and ?(b,g) are infinitely differentiable.

h(E) vanishes in a neighbourhood of the origin and h(t ? ) has at infi-

nity an asymptotic expansion in terms of negative integral powers of t 19).

Now we want to reconstruct the function f(x) starting from its

19)

Radon transforms. We consider the integral

G ) = [T BN, S((25)-1) 67 L5

(2.6)
Rem L1,
where the distribution Et:[/u is defined by
/4 _ M . . )‘4 (1’_' -,(: )/4~
[t]+ T £50 (ZLWW/“ ['M”L’{‘ /“)(t 2
) (2.7)

- oxp-Amp) (Eede)" ]

Then from Eg. (2.1) we have *)
S[L -, XX, M) -4 () Ty (- % X2 ', ) ] -
ﬂz(x) oA = f([‘(x',g)-'l}{ - (2.8)

*

) The integral (2.6) and the integral in the right-hand side of Eq. (2.8)
are not absolutely convergent for large E . They have to be regularized
by analytic continuation from the region where b and x' respectively

are timelike 19) .
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The function (2.6) has been computed in Ref. 19), and, if we put

k== (x2), .
L(—x,x-x‘,/)-_;.(/m) T Fxox-xry ped) =
=2 (K1) # 0 (,m0) [ (o) (IF7T o)
—";.'(sz-'t +4i—'1)/m] k>,

J( <, X x,,/,)_,./m L( x,X-X /‘4+'I)
O kT e kiR e
et -k A B ) g (R R

+ 4 (1-k-al e ], LRl<q

T.- x; x/u)-«—/wz) T (%, x-x' /M) O, (e
{ -

Both sides of Eq. (2.8) have a pole at /M_= -3. Using the
18)

ﬂma[tlﬁ ) ji' S”(t) )
Mo o_ ! (2.13)
/u -2 [t ]-l- - g (t) ) |

we see that the residue of the right-hand side is

Hlse5))+ S 0030 ) hE) S E L
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In order to compute the residue of the left-hand side of Eq. (2.8),
we treat separately the regions of integration where Egs. (2.10) and (2.11)
respectively hold. In the first region the singularity comes from a divergence

of the integrand at k = 1. From Eq. (2.10) we have
Jfx,x- x,/u)--;—/uz)L(x XX, 1) =
= =20 () O, ) (W-4)¥/ + Q[ (R4 7] o)

We remark that the second term in the left-hand 31de of thls equation is essen-
tial in order to cancel a term of the order )</u+1 which would also

be divergent in the limit /“ - -3,

We choose a frame of reference in which
,
I= (0101011)’

,& = X3 , (2.16)

2
JEZ -4 = :]:% - 3£: -X,
18)

and using the formula

o [xi-xi-xt [ 60z a1 §()5(x,) S1ta)
JM==3

we can write the contribution of the region k > 1 to the residue in the form

Y (2.17)

o 2 B(x,) [xe-2, -5 jfﬂ;ﬁ(x)dxoo{xmlxz:

(2.18)
= - QWZ % (x')
The contribution to the residue of the region Jkl <1 1is
-1 -1
- (4-x§) ¢ (1-x,) 9(4-1?) 1?(1) o[ . o)

Remark that this integral has to be regularized. We perform the change of

variables



- 11 -

fxo_._.t ,
<14=M8W&+t w d

. . (2.20)
A= —wmbB ook +L nwm 4,
kx;': C»O')@’

(2.21)

Al'= dt ol wib oo,

and the integral (2.19) takes the form

+1 LT teo )
-fotmejo{okjolt (0] (1-8) L (L+ET) =
-1 0 — 00
+1 2T A - (2.22)
.-.-Jotcw)Q KM (i 8) ' (4-28)" P(£,5) .
=1
We have used Eq. (2.3) and we have put
b=(0,0mbrimd , - wmbwnd, »nb),
(2.23)

t=(4, @wa, amd, 0.

In order to write Eq. (2.22) in invariant form, we remark that
the argument b depends only on EE and cos®. If we introduce the dif-

ferential form on the cone

w= 15" (5,d5,d5,-5,d5,d 5, +5,dE dE),
the integral (2.22) can be written in the form

+41 '
_J(WQ)'1(4-m951dm9JW 8((1',';')) (fufig) . (2.25)
-1 ¥
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This can easily be shown if Y is the intersection of the cone with the
plane ~§o = 1. On the other hand, using Eq. (2.5) one can show that the
integral does not change if y is deformed in such a way that it still cuts

all the generators of the cone.

In conclusion, equating the residues at = -3 of the two sides
of Eq. (2.8), which have been computed in Egs. (2.14) (2.18) and (2.25), we
get the result

Proposition 1

If f(x) & &( '), its Radon transforms (2.1) and (2.3) can be

inverted by means of the formula

)= - (809 | [§(008)+1) + (0o, E)+4) [ s £l 8 -

_ (2m)" (We)‘4(4—w>9)'1otcm9 wg((x’,s))jv(e,,g),@.m
- ¥

where the four-vector b is determined up to the addition of an irrele-

vant four-vector proportional to ?; by the conditions

-1, (£,3)=0, (£,X)< -@0 .

(2.27)

A further ambiguity is due to the fact that the condition (2.27) is
quadratic. It has to be eliminated by means of an arbitrary but conti-

nuous choice.

0f course, as these formulae are written in a Lorentz invariant

form, they hold also if x' has not the special form (2.16).
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3. — THE FOQURIER TRANSFORM

We assume that the element a of SL(2C) acts on the function f

*)

in the following way

Joo = [V d]ex) = £ (L@')x) . 51

The matrix L(a) is defined in such a way that the relation

x' = L(a)x (3.2)

is equivalent to

Lot Xy XLy=a Xy Aot Ly  A,~4X, +

-

(3.3)

— P

Ly+AX; Lo-Xj A+ X, Ao~ Xy

It follows that the furctions defined in Egs. (2.1) and (2.3)

transform in the following way

%(5)"[(}(0&)“(5) = A (L(d’)’é’) . (5.4)

¢4 5) = [V 9] (£,5)=F(La@, LG"E) .

*
) For simplicity of notation we indicate by the same symbol U(a) the repre-

sentation operators which act on all the function spaces we shall define.
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where

[}
N

go* g; gﬂ*»(: gz 22 R —_—
= Z
5,145, %.-%3 -2, ( : ) ’

(3.7)

the transformation property (3.4) becomes

[U(a)z](iq ,%z) = ”g\ (2,1 ) 2'2) ) | (3.8)

where
2= 2,4, +2,0y4 |

The function (3.6) has the symmetry property

~s

W, 2%) = h(2a,2) 510

We introduce the new functions
o0

B, 2)- e[ B (e2, t2) €70t

0

(3.11)

which have the homogeneity property

F‘,A(&%q,dzz) = letl”"z F|"(24,z,)

(3.12)

for arbitrary complex J\ . The integral (3.11) converges for Re)\ >0 and,
using the asymptotic expansion of lifg) it can be analytically continued in

the whole complex )\ plane apart from poles at ;\ = 0, =1y, =25¢.. »

In Refs. 19), 27), the irreducible representations T 172 of
SL(2C) are defined as operators acting on a space of homogeneous functions

of =z Zz,.. We shall use the slightly different notation G)]M)\ where

17 72

m,= A-M y Mm, = A+M , (3.13)
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Comparing the formulae given above with the definition of Ref. 19), 27), we
see immediately that if f£(x) undergoes the transformation (3.1), the function

ﬁ'A(z1,z2) transforms according to the representation mo .

It is also useful to consider these representations as operators

acting on a space of functions on the group SU(2). We put

H* ) = HA (Mag s Mhea) , Me Su(2) .

(3.14)
From Eqs. (3.6), (3.7) and (3.11), we get
4 My L12A |
LA ) = en) ! [A(ELWE) £ dt -
0
where
$=(4,0,0,1). | (5.16)

Introducing Eq. (2.1) we obtain

H"m):(z'rr)"j»f(:c)[-(ac,Luz*)%)]:f1 Al .

The transformation property of the function (3.14) is just the one
described in Refs. 27)-29). As in these references, we introduce in the space
of the functions on SU(2) the basis

.+ DY
(24 +4)7 RMM(M) , (3.18)

where R&m(u) are the rotation matrices as defined in Ref. 30). We define

the projections

H2M= (z/3+4)%f 1w HMw) L
su(z)

Remark that only basis functions with M = O appear. Taking into account
Eq. (3.17) we get

A e (B Ao d

‘6/“ﬂ== =m

(3.19)
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- .4 ~ A 2
B 0=t b b B, Rt
Su(2)

Remark that if )\ is pure imaginary, we have

m p=A = A 3.22
("B, () =B, () (3.22)

In order to compute the "hyperbolic harmonics" (3.21), we intro-

duce angular variables putting

‘)L: L(Mi(‘”“%(e))z ) A‘xl’ :(Md\yolor (p'y@nd\) ° (3.23)

30)

Using the invariance of the measure d3u and the definition

-~

Y,0(8,9) = (a1 (2gen® RS, (a4, -0) a2 (-9))

(3.24)

of spherical harmonics, we get

B )= Yo (0,9) A5 (1) s

7
)= ( )"%T[-w’%&mmmx]_MP-(mg)dm
' aT A t 2 » (3.26)

This integral can be performed by means of Eq. (3.7.30) of Ref. 31) (hereafter
called HTF) obtaining

DW= ar 5T (woba]” B lbnd) .
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In order to Fourier analyze the function (2.3), we consider the

function

6 (@) = QL@ T, LE)E ) | aesLlze)

(3.28)
where
_‘;’("'0/"/’” , &=(01,00) . (5.29)
If we put
+* 9 -
&:(0 'f") ) 1"”‘7" 0 (5.30)
using the property (2.5), we see that
A -2 D
(fu{a') ) /,L (f(a) ‘ (3.31)
A
In particular, we see that (? (a) depends only on
2',1: az4 3 22 = azz ’ (3.32)
and if we define
~A AN
(f(z?)%z) = (F(Q) )
(3.33)
we have
s -2 ~
('P(J‘Zﬂ i&%l): & ()D(%'h%") ) w&:o © (3.34)
Clearly the transformation property is
[U(a)?f'] (2, 1'21) = (]0(2'4 ’2'l7-) ) (3-35)

where =z and z) are given by Eq. (3.9).
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If we introduce the functions

5 %" ’v) (Z‘".) ((P(—C i,,, . 1)1’ D{’QV, (3.36)

they satisfy the covariance property

nv

M “1-M —-1+M T
@ (o(i:,,,ol%J = &1 A " é (21,2'1) ' (3.37)

0
and therefore they transform according to the representation G)M .

. Also in this case we introduce the functions defined on SU(2)

@M @ ’uu nU.u) =

PA L

=(Z'T)1{(P(/ie Z(V),(L) <My 0(,(-{/ . (3.38)
Using Egs. (203) and (3.28) W+e obtain
"l £ AUt (EtE))de .,

Also in this case the transformation properties of this function
are just those given in Refs. 27)-29). Projecting it on the basis (3.18)

we get

@:M (2'3'” g @M 3 (3.40)

SU(l)

We remark that we must have E.IM].

It is useful to write

T+t% = (uy ()%, gwd@t )
X = (b 0,0, aha),

(3.41)
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Using Eq. (3.29) we have

@M (ZQM)?.JOWJ f(L(u/u,(? )1)0{}

-~c0  SuU(2)
— (3.42)
- (eira)® (bt | R (kg9 ) (L0675 o
~00 Su(2)

Introducing the polar variatbles (3.23) and using the representation property

of the rotation matrices, we get after some calculation

@/)M/vvn = jq[('x) C:M (x) OLP ; | (3.43)

where
HNwm

Coim ) = Yim(89) ¢ (4), (5268

C,?(ok) - (4m)% 2 bo (Mgl (8) (uz«ﬂ/m\)~1 , (5.45)

M 4 (=M )
C,j (oL)=("7T) ((11-?1)') P (}t%ol) (.V)tl&) (3.46)

In conclusion we have

Proposition 2

If the function f(x) belongs to G}(l‘), we can define its

Fourier transforms

H,;\sz’ﬁ(x) ("1)MB:$_M(7’) ol [ 1 (3.47)
" = Hw) L dl s

Hm
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If the function f£(x) undergoes the Lorentz transformation (3.1), these

quantities transform as follows

X A
.—) a o,
-Z ’3"”'0"“( ) Ho'm ’ (5.49)
[
Z E)qum (a) @/j’/wn’ y (3.50)
where G)ng m'( are the matrix elements of the irreducible repre-—

sentations of SL(2C) in the basis (3.18). Explicit expressions for
these quantities are given for instance in Ref. 29). The equations
(3.47) and (3.49) hold for arbitrary complex )\ with the exception
of the non-positive integers. When Re }\:: 0, Eg. (3.47) can be

written as

)\,w. = f’((x) B;\/wa (x) o & , (3.51)

4. - PROPERTIES OF THE FUNCTIONS 13)L (x) _AND ch(_x_l

In this Section we exhibit some properties of the functions de-
fined by Egs. (3.25), (3.27), (3.44) and (3.46). From Eqs. (3.27) and (3.46),
using the formulae (3.4.14) and (3.4.17) of HTF 51)

17Mea) = P Pl-A+d) )°L ()

, We get

4 P(=A)T (44 A+49) (4.1)
C,;1(‘o’~) = ("1)M+ﬁ Ct‘; [J\) , (4.2)
—M(cl) = (‘4)M C/g'l (d) . (4.3)
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Using the formulae (3.9.8) and (3.9.9) of HTF, we get the asymptotic

behaviours

(4.4)

,(rg (@) 22 - A TE eap L)

M ~ M_-L -1 [() ! T .
Cy (o) oo 1)z (M) ((Q—H)!) mlf“”*”], (4.5)
M=20,4,2, ..

The function b? (K) is analytic in the whole A plane apart
from poles at the integral points }\ =0, 1, 2y, «eey Jj» We call them the

"Lorentz nonsense points". The residues are

A M, g ((A+M)IVE M ‘
iU/)H/{r,’(d) G (""'m-m)!) &)y Arhro.

Besides we have the identity

- _mind om .
,(,-/.’M(OL) S (‘1)H (H-ﬂ! (%)TJZCO (ol), 07/”70 . (4.7)

Comparing these identities with the definitions (3.47) and (3.48),

we see that

If f(x) € 0)(["), the function Hg‘m is .analytic in the whole
complex A  plane apart from simple poles at the points A = 0, =1, -2,

eey —=j with residues given by

A 1[(+MIz - '
Amme )" (H1) (('a M):) Qm y M_-OA’"'"}' (4.8)

Moreover, we have the identities

(4-M1\T oM _ ‘
o= 000 ({5 ) 8 M2 E s
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@TM = (‘”M @,;:m

(4.10)

We shall also use the majorizations

ALy @< (an) T (woha) (424+1) Dep(aRed) , ReALO,  (hin)

LA T (14A44) |
F(A) M (1-2+1)

AL f<lar ¥ feota] (4779

(4.12)
* JDQL1L (OL 022.)k) ) 612 )K.:?'(> [}

A
M
M|

. - 4 A
et ¢ T o) ) Mot .

< o] (£ et)) Lantlfal) , 0< R M.

M|

Equation (4.11) can be obtained from the integral representation (3.26) after
an integration by parts. Equation (4.12) tollows using Eq. (4.1). Equation

(4.13) is a consequence of the definition (3.46) and of Eq. (3.7.30) of HTF 31).

Now we want to study the behaviour of our functions under infini-
tesimal Lorentz transformstions. We introduce the differential operators

(generators)

M ’F(]’) [ ’(( M%(/") )]/M:;[ngi,;x"giz]ﬁe(x)) (4.14)

Li’F(I) = [;?1‘(L(ﬂi(‘§))x)]§: O:I‘I; Sg—x-o-l° ;-353] 'ﬁ(x)’ (4.15)

where az(§') means a boost along the 2z axis with rapidity § . The other
four generators can be obtained by rotation of the indices. In the last expres-
sions in Eqs. (4.14) and (4.15) we have to consider an arbitrary ¢®  extension

of f(x) outside the hyperboloid.
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The action of the infinitesimal rotations can be obtained from

30)

well-known properties of the spherical harmonics and is

‘(Mxtiﬁc,)B -A[(ﬁ-rm)(/)imﬂ)] B
Me B}, (x) = -4m B}, (x),

(x) ,

Yimt4
(4.16)

2 ] 1\ pA - A .
(Mx*’jg*ﬂ%)&jm(l)= =4 (9+1) B'jm (x) . (4.17)
Exactly similar formulae hold for C%m(x).

. The action of Lz can be found by direct calculation using the
formulae (3.8.19) and (3.8.12) of HIF and we get

=(0-A+4)[MM+M)(W-M)] B ) -

(29+4) (29+3) 41, m
. (4.18) -
_ (4+om) (G-m) |7 A
(%A) [(MM) (24-1) ] 4= 1,fwu(x) !
M
1
- (q+4+r1)(ﬁ+4 M)(4+1+m) (441-m) 17 _
=] (24+1) (24+3) ] C«'M,m(x) (4:19)

T (i M) Gem) (G -m) T3 M
[ (29+1) (24-1) ] Cwm(x)-

The generators L = and ;'y can be obtained from the commutation relations

L Mcj'_% L.} L L M MxLz . (4.20)
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By repeated use of these relations one gets

(LatLy oL -Ma-My-13)B) ) = @) B (00, ran

([_‘;— +L; +.l:z%‘t];‘£1;‘m:) CHM(I) = (Ml-'f)(,f;m(x) . (4.22)

[

A Now we consider the equations (3.47) and (3.48) and we apply seve-
ral times to their integrand the equations (4.17), (4.21) and (4.22). As
f(x) is CGD and has compact support we can integrate by parts and using

the bounds (4.11)-(4.13) we get the following result

1f f(x) is ¢® and has compact support, the quantities
defined in Egs. (3.47) and (3.48) satisfy the bounds

)\H , 4+Hm)tl) (1444) T R (1,9, Red) : QeD/O, (4.23)
¢ [PAIL(4-A+4) A
H H"A”’('H'A"'") ’ (4+’%A” 1"(4{.2) ! (4.24)

“R(T 9, ReA), ReA L0,
M . -9 (4.25)
|95 < (460)" &(a)

where p and gq are arbitrary integers and the function k(p, q, Re)\)

is continuous in ReA. Of course the functions k depend on f(x).

Another useful result can be obtained by remarking that a generator
applied to a function Béﬂ(x) [respectively Cl\gm(xﬂ gives rise to a finite
sum of functions of the same kind with different values of j and m multi-
plied by coefficients which can be majorized by a polynomial in j and IAI
(respectively by a polynomial in j). From this remark, from the bounds
(4.11), (4.13) and from Eq. (4.1), we get
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If P 1is a polynomial in the generators, we have

(A P B}, 0| ¢ (@ha) oan(d®er) R4, 10) , ReAgo

[ At -1
AP By o ety | (bl

(ke d) Q(4,IMl) 5 ReA W0y
IPCgm(x)lé (@oha) oap-Fal) Ql4), 0£ALIMI

where Q(J, |A|) and Q(j) are polynomials which depend only on the

) (4.26)

(4.27)

(4.28)

polynomial P and in the last case on M.

5. = THE INVERSE FORMULA

In order to reconstruct the function f(x) starting from its
Fourier transforms (3.47), (3.48), we start from the inverse Radon transform

(2.26). The first term of this formula can be written in the form

~(2m)" f"U f‘? A% [8 (x L(M’)E)fo”)*

sviy o (5.1)

£8((x, LG E )5041) ] %(eou»:’)s)

where g is defined in Eq. (3.16). Inverting the Mellin transform (3.15)

£+4 00 :
B(5.LuE)= 24 |5 H W AR, ev,
g~ oo

(5.2)
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and substituting into Eq. (5.1) we get

[ Ran [ u (L)) T H W) L
-4ioo svlz)

In order to treat the second term of kq. (2.26), we consider the

C(LE, L") E) = é:ﬂm(”‘) , -

which follows from Egs. (3%.28) and (3.38).

If we parametrize the rotation u as

M = Ma(‘y)/{'{‘a(‘%)ui (‘/“J ’ (5.5)

the angles 7L and /M are just polar co-ordinates for the vector EL: The
cngle Y is determined by the condition (2.27) which takes the form

(Ll k, %) = -6 . (5.0

If we put

/

X = Ly (-n) sal-p)) 2 (5-1)

kyuation (5.6) takes the form

N N .

A, HY + X, omy = »nH
1 2 (5.8)

Due Lo the 8 function which appears in the second integral of Lg. (2.26),

we must require

A

(x,%) = (%,%) = %, -% =0
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and therefore

A Na
x,,z + xz = i . (5.

As a consequence, Eqg. (5.8) takes the general form

Y=9+I)\’/ (5

and we can write

10)

-11)

M= /{/Li (‘9) /2"/ s (5-12)
ﬁ = (")\;) M" (-"L) /“wl, (_/M) . ‘ (5.13)
Remark that U depends only on the parameters d , as ; is
determined by the ionditiony - "L - /“
(L), ) = -1 (510
Using Eq. (5.4) and the covariance condition
(P (g -6) i) = 2xp (M) 7 () | (5.15)
which follows from the definition (3.38), we can write the second term in
Eq. (2.26) in the form
dary, [op §(0; LUE)E)) @ (iX)
47) ZXM[ quJ /A w ! (5.16)
=1
where T
[ = 1t |4 (iMe) (1-8) "de .
M o (5.17)
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In order to compute this integral, which is singular, we have
to remember how Eq. (2.19) was derived starting from Eq. (2.11). We see in

this way that it has to be interpreted as the analytic continuation in

/M = -3 of the integral

2 | +
() j [(4 L4e)/4+4 e)ﬂ /4”)(4 L-Le M 3_

o
/4+4){/1 «6 /.4+l] “460{/9

After some calculation we get

(5.18)

XM = “v” . (5.19)

In conclusion, we have

Proposition 6

It f€ (M), the Fourier transforms (3.17) and (3.39) can be

inverted by means of the formula

)= 4 [ R | dPan]-(x, Lu;‘)%’)]:f”.
—400 su(2)

(5.20)

) + 0 M1 o § (e, L E)) B (i

Mz-00 sul2)
where the rotation U 1is defined in terms of the rotation u by means

of Egs. (5.12) and (5.14).

If we introduce the basis {3.18), from Egs. (3.19) and (3.40) we get

LA () = > i e () HD o -

H

§"w = I Vige R () 9,
Am
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Using Eq. (5.21) and the definition (3.21), the first integral
in Eq. (5.20) takes the form
+4 0

MMZ;B x') H,h

-4 00

(5.23)

In order to treat the second term in Eq. (5.20), we introduce the

polar co-ordinates

x'= L (4e(9) 4q(0)) X,

(5.24)

= (owhd’, 0,0, wha'), (5.25)

and the new rotations

V=g (€)do(X ) a(t)= A Ma(¥) iy (67), (5-20

< Ua(0°) Mg (X ) Malt) = AL M2 (Y) Uq(6). (5.27)

Then the second integral in Eg. (5.20) takes the form

Z__IMI Z,(zqn)’fd v § (& - b &’ cm)L)

su(z)

(5.28)

LR R it #)a 1) 6

and the condition (5.14) becomes

oM agm @0 =14 . (5.29)
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We can perform the integral (5.28) using the 8 function. We have, also
from Eq. (5.29),

fohd' =o)X , o9 =1,

and Eq. (5.28) takes the form

ZH"II Z (ooha') (M‘,(x))

vy RMO M &h
y’im(ea(y) é/jm ) ZW;IMI%C’W(XJ@'}m '

Using the symmetry properties (4.3) and (4.10), we can restrict

the sum over M to positive values and we get the final result

(5.30)

(5.31)

1f £& O ("), the Pourier transforms {3.47) and (3.48) can be

inverted by means of the formula

+4,0D
d(x) = u,j;cau\ ZB fm
—400 (5.32)
M) 8"
t 4T ) M Co (x) 0.
M=4 %;;;; ¢ K| ép,2,M4 .

Here and throughout this paper the sums over J and =@ are always extended

to all the integral values of these indices such that J > IM

[ .
and |m < J.

If we multiply Eq. (5.32) by a function fC(x') belonging to
G)([‘) and we use Egs. (3.47) and (3.48), we get the Plancherel formula

+4 00
5’fc I))F(I)O(,P zt_ii\d‘kz CQMH;:M.“
M
AT g:?, z: écqm @,’, (5-33)
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6. - THE LAPLACE TRANSFORM ON THE HYPERBOLOID

In the preceding sections we have studied the Fourier transform-
ation of functions on the hyperboloid belonging to the space 0)(["). We
have seen that only pure imaginary values of )\ y corresponding to unitary
representations, are involved in the inverse and in the Plancherel formulae.
These results can be generalized to arbitrary L2 functions on the hyper-
boloid. However, in order to expand functions of a more general kind, we
have to consider values of )\ which are not purely imaginary. The situation
is very similar to the one we find in the two-sided Laplace transform of a

function defined on the real line.

We start from Eq. (5.33), in which f and £, ‘belong to ().
Using the bounds (4.23) and (4.24), we see that it is possible to shift the
integration path on the line Re}\ = L, where L 1is an arbitrary real non
integral number. In doing this, we cross some poles and, using Egs. (4.8)
and (4.9), we see that their contribution candels exactly some terms of the

series in Eq. (5.33). We get in this way

L+aso
szc () f(x)d [ = 24 f_?\"oti\/jZH)m
: L-400 m

(6.1)

A M M
. HCQIM H,) t : ‘l‘”M 2: QCI)M ¢d,-m ,

” M>ILl

Now we want to extend this formula to the case in which fC is
a distribution with suitable properties. It is convenient to define a space
gr([1) of test functions which are infinitely differentiable and have the
following fast decrease property : for any polynomial P in the generators

Mx’ ey Lz with constant coefficients and for any integer q we have

sl (14121) PR < 00 4 ombias X,

(6.2)

The semi-norms (6.2) define, as usual, the topology of g’(r‘). This is a
natural generalization of the space g%ff” of test functions in Rn. Also
in this case we can introduce a corresponding space 3'([’) of "tempered"

18)

distributions .
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We consider first a distribution fc(x) with support in the

part of the hyperboloid defined by q( >’c( ] and such that

S e $r (6.3

This means that the distribution fc can be applied to the CGD function
f(x) if

egfol-ol,,) I,L"d)/(x) € gf(r) ) (6.4)

where es (t) 1is a regularized step function equal to one for t >0 and

n

to zero for t< -§.

Using the Lemma of Appendix A, and the bounds (4.26)-(4.28), we
see that the functions B}é}(xﬁ satisfy the condition (6.4) for

Ly<®aX , A%0,-4,-2,m0-%, o

while the functions C%m(x) have this property for

L, <[M] - (6.6)

If the conditions (6.5) and (6.6) are satisfied, the integrals
(3.47) and (3.48), in which the distribution fC takes the place of the
function £, have a meaning in the sense of distributions. Moreover, due
to the continuity property of distributions, the integral (3.47) is majorized

by a finite sum of semi-norms of the kind

(6.7)

sup e (1+11)” [P 6, btr) £ B, (4] ]

while the integral (3.48) is majorized by a finite sum of semi-norms of the

kind

s [t (14141)T [P B, (a-a) £ C ]

(6.8)
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Then, using the Lemma of Appendix A and the inequalities
(4.26)-(4.28), we get the bounds

[H2 0 1€k ()T (a4 10an)) T
Rﬂ.lzL)Lq) L‘#O:-‘f)m,-/}.i

l(fcm,ml 'y (')'+4)1°" ML, | | (6.10)

(6.9)

!

where k, p and g depend on L, but not on Jj, m and ImA while k!

and p' do not depend on M, j and m.

Now we can show that Eq. (6.1) can be extended to the case in
which £& D () and f, is a distribution of the kind we are considering.
First of all, we remark that the bounds (6.9), (6.10) and (4.23)-(4.25)
ensure the convergence of the sums and the integrals which appear in the
right-hand side of Eq. (6.1). Then we consider a sequence {fCiS of
functions belonging to (O () such that

£ e ) 32 £ e )

400 : (6.11)

in the topology of 3'( ["). Prom a general property of distribution spaces 18)

we have that the distributions which appear in Eq. (6.11) are equicontinuous
functionals in ?(P) It follows that the Laplace transforms of the functions
f,; satisfy bounds similar to Egs. (6.9) and (6.10) with the right-hand side
independent of i. We write Eq. (6.1) for the functions f£ and f,; and

the result we need is obtained by performing the limit i — ®» . This proce-

dure is Jjustified by the bounds derived above. .

A similar treatment can be given for distributions which have

support in the part of the hyperboloid defined by

A < °(2 : (6.12)

and such that

L) e ) .

Then Eq. (6.1) holds for L < L

(6.13)

2
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In conclusion we see that Eq. (6.1) holds whenever the distribu-—

tion f, satisfies both the conditions (6.3) and (6.13), provided that

L,<L<L, |, L#t1,%22,... . (6.14)

In fact in this case the distribution fC can be decomposed into the sum

of two distributions of the kind considered above.

Now we want to get a further extension of Eq. (6.1) in the case

in which

fox) L e §(p)

(6.15)

A
Jjm
. Moreover, these functions satisfy ine-

It is easy to show that under this condition H is defined for RQA = =L
end l‘gm is defined for M > |L

qualities similar to Eqs. (4.23)-(4.25). These inequalities ensure the

existence of the right-hand side of Eq. (6.1), which can again be extended

by means of the procedure used above.

In coaclusion we have

If the distribution fc(x) satisfies the conditions

£ @) € $ry
[L‘*ﬁ(x) e $(r), L,<L, ,

(6.16)

its Laplace transforms, given by formulae similar to Egs. (3.47) and
(3.48), are defined for

L4<&e}\< Lz y M>M[L4 "LZ], (6.17)

and under these conditions satisfy the bounds (6.9) and (6.10). If the
function f(x) satisfies the condition (6.15), its Laplace transforms

are defined for
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dZJL )\. = “[_ ' rv1 :?' Il— ’ (6.18)

and satisfy the bounds (4.23)-(4.25).

Under these conditions, and if Eq. (6.14) is satisfied, the
formula (6.1) holds.

7. — INVARIANT KERNELS

By invariant kernel we mean a function or a distribution K(x,x')

with the property

K“—(a)st(a)'x'): K(I,'JC') )

(7.1)

where x and x' are points of the hyperboloid and a 1s an element of

SL(2¢).

The action of a kernel on a function f(x) can be written

formally as

(KA ]y = |Koe,x ) iy ol P -

This definition is meaningful only if the kernel and the function satisfy
some conditions. We are interested in studying some class of kernels which

transform some well-defined function space into itself.

We consider first kernels which are continuous functions and we
impose that the integral (7.2) is absolutely convergent. Then, if K

transforms a function space into itself, the iterated kernel

Kz(xyx”) = fK(I,I') K(x,x") o [ (7.3)

must exist.
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It is easy to show that K can depend only on the quantities

2:-(I,)C') ) £+ = nom (D(.o.'.t 'xﬂ , (7.4)

and that it can depend on E _ only when z > 1 and on E+_ only when

z < -1.

One can easily realize that if the kernel K depends only on 2z
but not on f¢, the integral in Eq. (7.3) cannot be absoiutely convergent.
This is the origin of the difficulties one finds in the group-theoretical
treatment of the Bethe-Salpeter equation at vanishing four-momentum. There-

fore, we restrict our investigation to kernels of the form

N

»k(x,x') = Q(IO-I',,) /& (2:) ) (7.5)

where

ﬁ(%) =0 'fﬂ‘b %éi 5 (7.6)

which are just of the kind which appears in the multiperipheral models. Three
other classes of kernels can be obtained just changing the sign of x or x'

and can be treated in a similar way.

We consider the space G)+(r‘) of the infinitely differentiable
functions on f’ which vanish for X, smaller than some constant (which
depends on the function). One can develop a mathematical treatment of this
space in close analogy with the treatment given in Ref. 18) of the space 6)+
of the ¢® functions on the real line which vanish for sufficiently small
values of their argument. In particular, one can introduce a suitable topo-
logy on ®+(P) and show that the dual of [{) ([') is the space )!([")
of the distributions vanishing for sufficiently large X,- In a similar
way we introduce the space 6)_([‘) of the CGD functions vanishing for
sufficiently large X, and the corresponding dual space G)l(f’) of the

distributions vanishing for sufficiently small X, -

Now we assume that

1(%) = (M@)—14&(§) , 2 =077£1ﬁ 3 (7.7)
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where k(@ ) is a distribution with support in the half line @ > PO > 0.
Under this condition, it is easy to show by means of suitable changes of va-
riables, that K(x,x') is a distribution in the two variables x, x'. More-
over, for fixed x' it is a distribution in x Dbelonging to 6)_:_([") and for

fixed x it is a distribution in x' belonging to {§) '([')-

To be more specificb, if £ € &_(r') and we put

q/ I;F fﬂe(x DL,)C') "‘UTleF) B(Io%’o) dr

(7.8)

we have

(KoL) 6e)= [ ke )P = [REY B o B .

It is easy to show that the function E(T £] (x')- defined in Eq. (7.9) belongs
to () (). In a similar way one can show that if f & ®+(P), the function
[K £f](x) defined in Eq. (7.2) belongs to ®+(r’) In this way we have defined
two linear mappings KT and K, respectively in () (') eand in ®+(P),

which can be shown to be continuous.

if £€ D_(P) and f, € ®+(r), we have

[ [ch)mdr = ([l L) d P,

We remark that the right-hand side of this equation is meaningful also when

8 [ ®4'_( ). Therefore Eq. (7.10) can be used to define [x fc:l(x) as a
distribution of ) L([').
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In conclusion, we have

A kernel of the form

Ox,) = 00-x0) £18) (owebp) " wohp=-(,2), .,

where k(P ) is a distribution with support in the open half line
@ > 0, transforms the spaces ) +( P) and &_:_( [) continuously
into themselves. The transposed kernel K transforms the spaces

@ (") eana m‘_(r’) continuously into themselves.
In order to introduce the Laplace transforms, we have to restrict
the space of distributions on the hyperboloid imposing the condition (6.3) and
to impose also some conditions on the kernel in such a way that it maps this

more restricted space into itself.

First we consider Egs. (7.8) and (7.9) assuming that

;F(x) =0 %.V‘L X, é 0 (7.12)

and

LLM%DC) € :f(f’) , LYo Xo = wndr o (1.13)

Then from the majorization (B.11), we see that the function (7.8) has the

)

property

Oc (8-¢.) ¢ () et ey, fo>E>0 .

Therefore the right-hand side of Eq. (7.9) is meaningful if the distribution
k(P ), Dbesides having its support in @2 ?O, satisfies the condition

z-L’FA(e) e $'(R) .

(7.15)
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Moreover from Eq. (B.11) and the continuity property of the distribution

(7.15), we get the inequality

Ko ¢ < (oo £

’ -ﬂ !
(1+1&1) 7, a'yo

(7.16)
where CB is a semi-norm continuous in 3’( P) of the function (7.15).

From the Lorentz invariance of the kernel K we get

[PK) () = [k (e, x) [PA)Ge) o T

(7.17)

where P - is an arbitrary polynomial (with constant coefficients) in the gene-
rators of the Lorentz transformations. It follows that [PKT f](x') satisfies

a bound similar to Eq. (7.16). In conclusion, we have shown that the function

B, (x, +¢) 27 [K™) (x')

(7.18)

belongs to :f (') and depends continuously on the function (7.13).

Introducing this result in Eq. (7.10), we see that if the distri-
bution fC(x') has its support in xé > g and

I:L‘,ou ﬂac (I') € Ef’(r') ) L'l >0 ! (7.19)

we have

L,

e KA Jx) € g(r) .

In conclusion, Proposition 9 can be precised as follows

(7.20)

Proposition 10

Under the conditions of Proposition 9, if k(@) satisfies the
condition (7.15) with L1 > 0, the kernel K transforms into itself
the space of the distributions of 6&;([’) which have the property
(7.19).
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We remember that the fuanctions Bgé(x) and C%m(x) satisfy
the condition (6.4) if the parameters ;\ and M satisfy the conditions
(6.5) and (6.6). Then these functions can be decomposed into the sum of a
function belonging to G)_(f’) and a function satisfying the conditions
(7.12) and (7.13). Therefore, if Eq. (7.15) is satisfied, we can apply to

them the kernel KT.

It is a simple calculation to show that, if we put in Egs. (7.8)
and (7.9) f£(x) = B;é(x), we have

Yix,8) = (B2 (x) §(o6 )+ obp) O(xxe) ol [ =

(7.21)
car X M B () , RAYO,
SK(I,I') B:f(x)o(f“= ”EM') Bo_t:\ (xl)x (7.22)
~ 4 ( -Ap
K< AR £ AR, AL, 0.

0

Using Egs. (4.16), (4,18) and (7.17), we see that this equation is also valid
for a general function of the kind Bgm(x). From Eq. (4.7) we get

IK(x,X')C;‘M (x)d [ = Z(M) CZ‘M(I"J ) (7.24)
MOL,Y0.

Introducing these results into Eq. (7.10), we get

Proposition 11
If f, 1is a distribution of (DL(P) which satisfies the condition

(7.19) and the kernel K is given by Eq. (7.11) where k(F) is a distri-
bution with support in the open half line g > 0 which satisfies the con-
dition (7.15) with L,

Laplace transforms of fC and of K fC

> 0, we have the following connection between the
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J [Kﬁec](x ULF '& ( QA (x) ’F (I)OLP (7.25)

(CF oo [k Jmdr = &M )[Ch ) f(x)d ' (r.26)

where X(A) is defined in Eq. (7.23).

8. = REGULARIZATION OF A DISTRIBUTION ON r1

Now we consider a function g(a) defined on the group SL(2C),
infinitely differentiable and with compact support, that is an element of

the test function space O (SL(2c)). Its Laplace transform is given by

MM ( MA £ - |
. = S a a .
Amy'm' ®9M9'm'( ) %(a) A ’ (8.1)
SL(2¢)

where d-a is the invariant measure. One can show that it satisfies inequal-
ities of the kind

-1\, .'_ . =’
lGQM/.)m PQQ'(QCM (/leM) ('H?)qufg')q’ (8.2)

where p, q, Q' are arbitrary non-negative integers.

If f(x) belongs to ® (P), we can consider the new function

£ 00 = [qa) £ (L) ot a, (0.3

st(2c)
which also belongs to D M.
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If £, € @;(P), € B '(P) eand the kernel K has the form (7.11),

from Propositions 9 and 12 we see that the right-hand side of this equation

is meaningful. If moreover we assume

“h 1 () € $Lr)
& L) e §(r)
BB opG) e 9R), Lo,

the Laplace transforms A ’\

AJm BJm and k()ﬁ) are defined for Re) > L
while the Laplace transforms & and @
Ajm B

(9.2)

1’
are defined for M > L1.
Using the Propositions 8,

11 and 12, we can write the expression
(9.1) in the form

L+4 00
¢ 2 0~A - FO0AW
fq(a) Tm@)d a = MLB\M"”\ %,GQMMIMW

(9.3)
Mo no
4T MZ C. . .
MZ;_L rjm'jwtc—omo’m' I’JM\'}'M' 5 L>Li;

where

IOA% ) -4)M ;)S,_,w, [’K(Af)] " H‘./\ 'y (9.4)

1m 9’ m'’ By m
Mom M ~ 4T M
II}/M/}’M': ( 1) H'), [{{ )] @B/}'M' . (9:5)

We remember that in the right-hand sides of Egs. (9.4) and (9.5) one should

take into account the variables and the corresponding integrations, which

u,
i
were understood in Eq. (1.13). In particular, the expression (’l\f()\))n-1

has
to be interpreted as a kernel iterated n-1

times.

In order to sum over n to get the inclusive distribution (1.12),

we assume that, as 1t happens in the physically interesting cases, the series
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0o 00
OA _ oA m Z nom
Ig’m;}'/w.' Z‘ I’)”‘"’J'M' Il)mgm m:"]‘d“‘“d’m" (9.6)

converge for Re A > L > L1 and M > 1 in such a way that the sum under the

integration sign can be performed in Eg. (9.3). We obtain in this way
L+A 0O

oA
f%ca) T(a) da = 24; [f}o A ;L_;_w:'):'m G'amm Iwm'*

LN DI SO N I

MIL Gamgrp VAo’

If g(a) is a sufficiently regular function, Eq. (9.7) is equivalent to the

(9.7)

simpler formula L+4 00 A
0
. 1 .
T(a)« 24 (RN TZ O @I ¢
) Liw  Amiw B '
Mo A (9.8)
+4aT)_ M : (a)I").M.,M, CLSL
MY G (
If the function IO./\., can be continued analytically for

A jmj'm!
Re A\ < L, one can get in the usual way the asymptotic behaviour of K(a)

from the singularities of this function. The standard way to obtain this

analytic continuation is to write

[ = 0 [H2 ) J(a, a0

i a4,-m

HB{;M\

where h is the solution of the multiperipheral integral equation

JZ (X )= 240§ (u-u) +W&Ul,ﬂ,u") Z()c,u",u') Ludu’.

(9.10)

(9.9)
(u) zm'du’ £ smodm
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If the kernel X is Predholm, the kernel 7 is meromorphic in the half

plane Re‘A.> L and its poles are just the Lorentz poles.

1
We remark that Egs. (9.7) or (9.8) can be interpreted as an
harmonic analysis of the distribution :f(a) on SL(2C). From a general

point of view, if :S (a) is an arbitrary distribution one can only write 17)

(J.(a) %(a)d‘a' = F(G') 3 | (9.11)

where F is a linear functional on the space of the analytic functions

MA

G. 0, 4
Jog'm .

functional F, which is valid for functions of the form (1.13) and there-

Equation (9.7) gives a particular explicit expression for the

fore contains some dynamical information that follows from the model we are
considering. Remark that this functional is not written in the same form as

the one assumed in Ref. 17).

At this point, we analyze briefly the dynamical information
contained in Egs. (9.7) and (9.8). We remember that the square of the

centre-of-mass energy is given by

3= ( Pos + L(a) PM)L (9.12)

and therefore the limit of large a 1is equivalent to the limit of large s.
In this 1limit the series in the right-hand side of Eq. (9.8) is of the order
s—1 and therefore can be lumped in the "background integral®. The contribu-
tion of a Lorentz pole at }\ = }( > 0 behaves asymptotically as s x'_1.
Remark that in this class of models only Lorentz poles with M = 0 can

appear.

From Proposition 3, we see that Hgg\m, can have poles for
,A = 0,1,2,...,])'y which in general appear also in the expression (9.9).
These are fixed poles at the nonsense points in the Lorentz plane. The
matrix elements mgég),‘m,(a) have simple zeros for A= j+1, j+2y.00,3"
(if j' > j). Therefore the integrand in Eq. (9.8) has poles at the
"nonsense nonsense" points ) = 1,2,...,min(j,j'). The contributions of
these poles have the same nature as the terms of the series in Eq. (9.8),

due to the identity
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0~M (q,.n)l(/j n) ] Mo _ .
6)/}”"9"”"' la)- [[’3 -M)H(y'+m) 0)’3""94" (01)’ ,Hkﬁ ;m,\<9,(9°13)
and therefore can be asymptotically included in the background integral.

A more interesting situation occurs when a Lorentz pole is present
for integral A Then the function I 0A has a double pole if j' > )\ .
Jmj'm! - =

We remember that the coefficient of the leading term of G\ (a) has a simple

jmj'm!
zero for ;\— 0y142y+.+.5J'y so that, for any fixed j, j', the integrand
in Eq. (9.8) has, in general, a simple pole, as far as the leading term is
concerned. In conclusion, we see that the fixed poles have the effect of

compensating the nonsense zeros.

_ This mechanism is physically very important if one assumes that
the Pomeron is a Lorentz pole at ;\ = 2. In fact, if we consider the one-
particle inclusive distribution for the process A + B = A + anything, and
we call q and 9 the momentum and the production angle of the observed
particle in the rest system of the particle B, the inclusive distribution

is given by 7),32)

-1
Fls.9,0)= £ Bo-ssfl] " Slaals) y00) 9

-1 ~ 0,~A
~ Flo(-4nt)] earm) A* 2 B (a) B (aals)aylo) 0

where ji is the position of the leading pole. Using the asymptotic pro-

perties of the representation matrix elements, we get 29)

Fl»,q,8) 2 2w 51 (P(X+1) 22 [(R-1)3] -

(9.15)

T Ra) 7 () PR By ()
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If ‘X = 2, ‘the sum over j' has only the first two terms giving

rise to a linear behaviour in cos®, which is incompatible with the observed

damping in the transverse momentum

o= qW@ . (9.16)

It is easy to realize that the presence of the fixed pole at ;\ = 2 permits

to avoid this unwanted conclusion.
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APPENDIX A

We prove the following result :

If f(x) is a CqD function on r‘, the two sets of semi-norms

oup|wh d (1+141) |PLL°{;F(x)l ]

and

W[(Md“i-ldl)q‘e}&‘?f(x)l] , 9=0,12-,

(a.1)

(a.2)

where P indicates an arbitrary polynomial in the generators (with
constant coefficients), are equivalent in the sense that each semi-norm
of the kind (A.1) is majorized by a finite sum of semi-norms of the kind

(A.Z) and vice versa.

First we show that, if P 1is a polynomial in the generators

lPeL&| < CLL&

. (A.3)

This inequality follows from the fact that if P 1is of'degree n, Wwe can

write
La Lk & -1 '
Pe =270 (xi+) zf"Z: 942, 2.y XL, X Xy,
=0 4y 4:; ves 4/1\, (A.4)

This formula holds clearly for n = 0 and can be proved by induction starting
from the definitions (4.14) and (4.15) of the generators.

It follows that

P ool = |1 744) (o)

N
¢ 12'.:1 ci P gy . (1-5)
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By means of the substitutions exp(Lg ) f(x) — £(x), L - -L, we get also

Hlptl € TGPt p)|

(a.6),

and the Lemmg follows immediately.
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APPENDIX B
In this Appendix we study some properties of the function

q/tx',P ) defined by Eq. (7.8). By means of a rotation, we can choose a

system of co-ordinates in which

= (o &', 0,0, b d’)

(B.

and Eq. (7.8) takes the form

(o', B) 551“75) R™ dx,dx, , (

where

Lo

C.O’)'el{; /\A;‘«Loll + RM&';

Xy

R = [(omhe)r+r x2+x:]? .

If we keep X1, X5 and Okf fixed, from Eq. (B.3) we get

?é-,,@(x) = - R”M[& _l:z JFUC) 3 (5

where Lz is the generator of the boosts along the x axis. From a

3

repeated use of this equation, we obtain

T = (R fe0)= R ZHM("MF Thoekp) (La) 102,

@whp hd + Ramba', (5.

1)

.2)

3)

4)

.5)

6)

where Ani is a polynomial of maximum degree n in each of its two variables

and therefore satisfies an inequality of the kind

,Ami l < QA m (/t")x"ﬁ)-w

(B.

7)
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Therefore from Egs. (B.2) and (B.6) we have the inequality

2% YGepl < anlop) ™) (L) H| K bx, dx,

(B.8)

Now we assume that f has the properties (7.12) and (7.13).
Then, from the Lemma of Appendix A, we have

‘[_'_ |(L x)l -qu\(cv)&d)q (4+|al)-q,

q=: 9,1,1 ... ,

where qu is a semi-norm continuous in ?(r') of the function (7.13).

Introducing this inequality into Eq. (B.8), we get the majorization

‘gpmq’(xﬂP), AmC gt B) ™21 (Lywrbid)™".

'I:Lﬂ( +p) (4 & P) ) ok"i'P)O, L,,)O,

and therefore

g?,, Wx\B) ¢ anC, oo (thg) 2T -
- "L'l[ + _ - (B.11)
(L, o)t £ ”um ™ gyt

JN')/O, 1",q:ol4,l“" ) L4>0 I

(B.9)

(B.10)
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FIGURE CAPTIONS

Figure 1

Figure 2

A multiperipheral contribution to the two-particle inclusive
distribution. Wavy lines represent off-shell spinless particles
and solid lines represent on-shell particles. On-shell integra-
tion is understood for internal solid lines. The upper part of

the graph represents just the complex conjugate of the production
amplitude represented by the lower part.

A multiperipheral contribution to the r + s - 2 particle

inclusive distribution.
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