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ABSTRACT

Saturating the multiparticle states in
the unitarity relation for virtual Compton scat-
tering by two-particle states consisting of an
infinite set of high mass vector mesons and a
nucleon leads to a non-linear integral equation
the solution of which determines the behaviour
in the scaling limit and the non-forward scaling

functions for deep inelastic scattering.
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The observed scaling behaviour of deep inelastic scattering
obviously constitutes a constraint on the behaviour of the multiparticle
final states in electroproduction. It is the aim of this work to suggest
that unitarity together with a condition on the spectrum is at the origin
of this constraint. Of course, what is needed 1is & multiparticle saturation
of the unitarity relation for the virtual Compton amplitude.

In view of precocious scaling and Bloom-Gilman duality 1), it
seems reasonable to assume that the final hadron states in deep inelastic
scattering at not too large &I can be approximated by an infinite set of
resonances. Unitarity constraints can be built in if one saturates the sum
of intermediate states by those two-body channels in which the resonances
occur. At least to a large extent at low ) they will be of the form :
nucleon plus one of the vector mesSons. 0f course, there are additional
contributions from other intermediate states. However, because of their
complexity and the problem of double counting, these states will not ke

taken into account.

In a simplifying generalization of this picture, we assume that
the final hadron states in deep inelastic scattering can be approximated by
an infinite set of two-particle states consisting of a nucleon and a vector

meson of increasing mass.

In order to make the approach as transparent as possible, we study
the scattering of scalar photons on scalar nucleons of mass M. The absorptive

*
part of the retarded Compton amplitude Tret is given by )

I T s, 6) = 4 Vit eV p I [ 76, T3] Pz
J

Here the kinematical variables are defined by Q = (a+p'-p), s = (q+p')2,
t o= (p'—p)2, u = (q—p)2 = q2+-Q2i-2M2-S— t. The only saturation scheme
which converts Eq. (1) into a feasible inelastic unitarity relation for

Tret consists in approximating the completeness sum by (see Figure)

1 => lN)@‘h><N'6h ) (2)

x
) The subscript "C" in Eq. (1) refers to the connected part.



where N denotes the scalar nucleon and Gn an infinite set of scalar
mesons. With a continuous distribution in the mass m of the scalar mesons

6’n, characterized by

n = OL('“"") ) (3)

o ¥
Eq. (2) can be replaced by the continuum version ( &' = dol/dm”) )

4 § «cmz>gi£ Ol4s M)S(& M*) O (ko-m) & (£ wd)

(4)
[N, 5(m 2 XN B, 8 D)

The lower limit mo of the mass spectrum of the scalar mesons remains an
undetermined parameter, which drops out completely in the deep inelastic

limit.

2)

In analogy to vector meson dominance , We assume

<o | J (o> ‘ 6<M)Z)> = K(mz) + O ) (5)

so that J(x) can serve as an interpolating field for the mesons &
Eiescribed by a scalar field Q’(X,mzﬂ

oo

J6o= Xotw"' oc'(m2) Y (M) Cb (x,m*) (6)

mg
and

goom) = ( 1+ m") Cb (x;m?) (7)

as the source of the mesons.

*) We use the covariant normalization <6(|"' £ ) |€(M AQ)>

=@y’ 2 §7(2-2) Slm-m).

-



_3_

Insertion of Eq. (4) into Eq. (1) then yields
[eg~]

jfm/T (q s, t) = Ei(— e gd.m"O( (m*)

O

‘ gd‘*ﬂ Oltemm) S (€-wHO(gepi-25-1) 8 ((4+p-2)-M*)
(8)

9* P"b&dweéhe exqp-2ljems,T6) | p>

gdvyré: ‘ x&Q ("y o)<P" [T (0)13‘(‘61 ,mz)]

Generalized scalar meson dominance as expressed by Eq. (6) leads to the

following relatlon

ohsc T ((1 QZS '!:) =
oltscq { gd,mzo( (mdY(mD KO\

g 9(0(?'[&(’0’") T“JJPB-}

(9)
—inemt) ey Uk e T or<p [0gd, T P>

After substitution of Eq. (9) into Eq. (8) one arrives at the unitarity

relation

d,iscs T ntG‘z)Q?;S ,'t> =
2 [ %\‘m Ot NSt~ Slrp L)

(@r)* Jo'tmz) ¥ o)
mg

(10)

rel

ret 5 . "
ohsr, T (q 2 m?, S+ii,t’) ouscm:r (wu’)Q) s-tg, £ )
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where we have denoted 1' = (q—,@)2 and t" = (J&-Q)Q. Carrying out the (d4£)

integration in the usual manner, Eq. (10) reduces to

—ret
disc,s l n(qanz)S»t> =

oQ
2
golmz g_(_m';’fé. 9(5'(M+M)2>
e t et (11)
e 3 ) '
. g\o\jza, discm:r r(q’,m‘,sﬂﬁ,-b') oliscm:r (W\‘,Qz)s—ti,t'
£

with ?(m2,s) given by

2 oy o ] 1 1 2 M2
?(‘m <) (2m)* o' (m2) Xz(mz) S 3‘(5'""' ) (12)

and
_ Yo
'A(y,%,%)_—-[xhaz—r-%"—?,xg—2x2~—25 2] . (13)
An alternative version of Eq. (11) is
ret
discg 1 (q5Q%s,t) =

2s%
(s, m2,M?) A (S,qz, M2) A (5,Q3 M2>

gdm‘ ¢ (m3s) O(s-( m+M)"> >
m> A

(14)

'an ret . ret .
.gdtl d't" e(K(?.)E)% )) dl@m:[ (q‘,lm'ﬁs+is,t’)dt$CmJ_ (mz) Q}S‘li,‘t")’

g VK (z)2'2")



where K(z,z',z") is the kernel

2
K(22)2") = 1-2=2"-2"" + 2222 o

and where the relations to the cosines of the angles =z = cos(p,p'),

z!' = cos(B',I), z" = cos(?,?) are given by

£=r(s93& M2 2)
e (g 2)

Y =r(sm ML)
r (5,45 Q3 M, 2)= 2M"— 'zﬂ_‘s‘(s"Mz”qz)(S*Ml"&% ()

L ANGEIENI AR M =

integrations in Eq. (14) are reached in the

The limits ti of the t
through the values z = #1, respectively.

expressions (16) for t' and t"

We study the final unitarity relation, Eq. (14) in the Bjorken

sceling limit, defined in non-forward direction by

B—Qim=£im ((12—>M)Q?:9°O)S—>w)%3=x;e.(xed.) (18)
%1_-_-.% fixed, t ;@x‘ud) )

and call the leading term of T7°%(q%,0%,s,t) in this limit Tget(qz,Qg,s,t).

The leading term KB of the kernel X in this limit turns out to be

K(z,z',z_“) _ ’l"-s";'_ KB(C)'C','D“ (19)

B—2w



with

) i PR 12 N2
KB(‘C,TZ','C")=Z('C‘C'+T;'C'+'L"E" —T=tt-T

where we have defined (z = mz/s)

[t +M* (4-§§Ei;;]

T —-(4 x)(4-3)

-

__ 1 T 2 (x=3) (21)
C (1 (U-2) _.t + M (4- x)(/t—-a—)]

0 4 B 2 (2'3—)2.
T=eplt "N aseEn

The asymptotic form of the unitarity relation Egq
*
reads now

ct

L

. (14) in the B 1limit

vret

disc, T, (q3Q35%) = sz 0, (%5) O (s-w2)

ret (22)
S‘ES‘“" o( B)d T (q, s+uet('c))dm m’-&swt@")),
-s =S B

where ?B(m ,S) 1is the leading term of ?(mz,s) in the B 1limit :

1 S-m?
2 — . (23)
Sa (") (zx)‘* o' (m2) X *(m=) S

We should like to note that for the derivation of Eq. (22) we have assumed

that the interchange of the B 1limit with the +t integrations is allowed.

A consequence of this interchange could be that possible anomalous singular-

ities in the B 1limit are lost. For a discussion of the occurrence of such

singularities in the scaling limit, see Ref. 3).
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ret
2 2 = 2 B2
mass variables q and Q by GB(q 3 Q ,s,t) :

Denoting the double discontinuity of T (q2,Q2,s,t) with respect to the

_ et
G, (3Q2s,t) = dise, disc, T (q335,€) (o)

we have with the additional notation

GB (ﬁz) QZ) S)-C> = G—B (quQi S, 't(t)) (25)

the simpler relation

dise, G (3@ 5,T) = (&2 9, (w2 ©(s-m2)
w:

o o (26)
(ofuer @ (<ateTyT") G, G m3sHe,T) Gy @3s-is,T),
-s -8 \[ KB (t)t')t“)

This equation is our final deep inelastic unitarity relation. We recall that

essentially two assumptions were needed for its derivation :

(i) the final hadron states are sufficiently well exhausted by a continuous

set of two-particle states, consisting of - in this simplified model -

a scalar nucleon and a scalar meson of conrntinuous mass spectrum
[Bq. (4) 5

(ii) a generalized scalar dominance hypothesis [Eq. (6)] which supposes
that the scalar "electromagnetic" current of this model is dominated
by the continuous set of scalar mesons in analogy to the generalized

vector dominance hypothesis for the real electromagnetic current.

These dynamical assumptions bring about the non-linear integral

equation character of the unitarity relation (26).

4)

solution to the non-linear integral equation (26). It shows that under

In a second paper published elsewhere , we shall construct the

certain conditions on the spectrum of the scalar mesons scaling behaviour

prevails in the deep inelastic region, as well for scattering as for anni-

hilation. Since the solution is explicitly given, the details of the scaling

function can be studied.
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FIGURE CAPTION

Saturation of the unitarity relation.
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