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ABSTRACT

A simple prescription, incorporating T
and A‘9 exchange contributions, is proposed for
the 17:2 GeV/ec N p- 9011 production amplitudes.
Further evidence for this interpretation comes from
the observed 9"w interference effects and from

the energy dependence of go production data.
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The reaction 1\—p-+~9on is well-known historically as a process
in which TC exchange can be studied. However, it has also been noted that
simple one-pion exchange does not provide a complete description of the pro-

1)’2) Here we investigate the non LA exchange contri-

duction mechanisms
butions and present a simple phenomenological model which describes the
helicity structure and + dependence of the 17.2 GeV/c J?O production
data 3). Examination of the energy dependence and of 9-4) interference

effects provides support for our description.

The ? production *) amplitude combinations PO, P+ and P_
can be extracted 455) from TCp—- M N'n cross-section and density matrix
data. PO describes helicity zero dipion production and P+ (P_) describe
helicity 1 production by natural (unnatural) parity exchange to leading
order in energy. Neglect of A1 quantum number exchange ensures > that
PO and P_ are single amplitudes and their relative phase, ?’ , can also
be determined. P+ is an incoherent sum of amplitudes with and without heli-

city flip at the nucleon vertex (of which the former is expected to dominate).

*%
The P wave amplitudes ) obtained from the high statistics
17.2 GeV/c data 3)

frame. For our.present purposes, the s channel decomposition could equally

are shown in Fig. 1 for the t <channel (Gottfried—Jackson)

well be used, but the t channel allows a somewhat clearer separation of the

modifications to TU exchange.

Elementary one-pion exchange only couples to PO in the %
channel frame. The non-zero values of Pi’ which moreover do not vanish in

the forward direction, thus imply an additional contribution which is not

7),2)

(evasive) pole exchange. Such a cut effect is expected to be most

important in the s channel net helicity non-flip amplitude Hl_. The cut,
C, then contributes equally to P+ and P_ in the s channel, and on

crossing to the t channel contributes to P+, P, PO in the ratio

1:cos¥ :sink , where K is the s-t crossing angle (sink > 0).

* -
) That is the P wave i production amplitudes in the o mass

region.
*%
) We consider only the solution with PO and P_ essentially phase

coherent which was shown 6) to be the physical solution for -t<0.2 GeV2.
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The inclusion of C allows an adequate description of P, but the
observed ratio of ‘P+| to IP_I as a function of t necessitates the
introduction of a natural parity exchange contribution (A2 exchange)
which interferes destructively with C in P+. This leads us to the

parametrization

P, = T + C aimik
P. = C e’
L A, + C

(1)

where the + dependence is parametrized as
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with Og-= 0¢;+ OQj determining the phase of the ith contribution.

The phase difference between TU and C is controlled by the
relative phase, @ , of P, a:gd P, which is consistent with @ =180°
for all. -t 1less than 0.5 GeV . Po and P_ deterﬁ%ne the TC and C
contributions, and then, given the phase difference a&- G%, |P+| de-
termines the A exchange contribution. We take 0<:= 0(“ and, at t=0,

2
c{A—OQ:=O.5. Allowing a linear dependence on t of the A, -C phase dif-

2
**
ference, we obtain the overall fit ) in the t region -0.005 to -0.5 GeV2
shown in Fig. 1.
The data impose bounds on this phase difference. At -t~0.05
| &, - o(cl <0.6, decreasing to | oi- ucl <0.2 at -t~0.5 GevZ,
2

As [P |

+

This is found to be unphysical, having an A2 contribution whose phase,

-has a quadratic dependence on A2, a second solution exists.

relative to C, varies extremely rapidly with +t, and whose magni-

tude shows an anomalously rapid +t dependence.
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The simple parametrization of Eqs. (1) and (2) is an excellent
description of the 17.2 GeV/c data out to -t=0.5 GeV2. The description
of P+v is also reasonable in the region beyond -0.5 GeVz, where this
amplitude dominates. Two possible contributions which have been neglected
could easily be incorporated without changing the essential features. First,
from processes such as KN-KN, 7TN¥+41N, and from the non-zero polarization
in. 813ﬁ 1(+n, there is some evidence for-a small A2 helicity non-flip
coupling at the nucleon vertex. Such.a coupling will be important for pola-
rization predictions in T!N—»JPN, but enters the unpolarized observables
only as a small correction to the + dependence of A2 and a small reduction
of coherence between C and A2 in P+. Secondly, a Reggeized TC exchange
can have a >\t=i1 coupling (vanishing at t=/1t.2 of course) to P . This
coupling is present in dual Born models & and is such as to fill in the
crossing matrix zero (cos%:O at -t~0.6 GeVz) in P_ in the t channel
frame (or equivalently in PO in the s channel frame). Figure 1 indeed

indicates the need for such a contribution to P_ at large t.

Having established a parametrization for the phases and
dependence of the TC, C and A, contributions for -t<0.5 GeV2, we
look at the energy dependence that would arise from the phase-energy relation-
ship. Figure 2 shows the effective trajectories, Oéﬁf(t), for PO, P+
and P_ (in the s channel) obtained *) by analyzing M p- N MN'n data,
Refs. 3),10)-13), in the energy range 4 to 17 GeV/c. In the model of Eq. (1),
the s channel P is pure TC exchange and c<w==0.5(t—/t2) is a
reasonable compromise trajectory. Qualitatively, the structure of o(eff
for P+ can be easily understood with our description. C is the dominant
contribution at small t ( o ~ Xy ) and A, dominates at t~-0.5, while
there is a cancellation at intermediate t values (t~-0.25) which leads.
to an o above the A

eff 2
is correct, the phase-energy prediction is approximately 0.2 lower than

trajectory. However, although the t behaviour

& ¢p oObtained from the data.

At 17.2 GeV/c, qu-a> interference effects have been shown 14)
to be largest in P+ in the interval 0.1<-1<0.4 GeV2 and we shall con-
centrate on this amplitude. Figure 3 shows a breakdown of P+ into its
C and A2 components, as determined above, for three relevant t intervals.
- ;) __________________________________________

The method used is described in Ref. 9), except that here we use the s
. 2 .
channel observable (900~+ QSS/B)dS‘/dt in the place of ]POI . This

is an update of that calculation to include recent data.
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The phase-of P, relative to P_ can thus be obtained. For W p-wn,

9 quantum number exchange contributes to P+. Since B quantum number
exchange in M N—-eN is smaller than TU exchange in T N- @N, the

B cut should be small compared to ’_9 exchange *) Unfortunately, there
are no data on |P+l for T N-ewN at or near 17 GeV/c. Thus, the modulus,
as well as the phase, must be estimated before a ©-w interference pattern
can be predicted. The simplest model is to take exchange degenerate X

and A, contributions: @ =iA, tan%Tl'o(A(t). This then ensures, via SUs,
a real KN—>K*N amplitude in agreement with duality for an exotic direct
channel process. Constructing P+ for ¢y production in this way then
yields the 3 -w modulating factors shown in Fig. 3. Conversely, the
relative moduli and phases of the K3 and W produc‘bion amplitudes P+
derived from fitting the.experimental data at 17.2 GeV/c 4), yield the P+
amplitudes for  production that are shown by crosses in Fig. 3. These
estimates are in reasonable accord with the 8-A2 exchange degeneracy
prescription. In particular the change of phase of P+ with t, zrequired
by the observed f—w effects, is well reproduced by the admixture of

C and A, contributions to P _ for N gon.

Further confirmation comes from the obsérved ratio 15) of |P+l
in K p-®*°n and X'n-x*°p. P, for Ktn—x*%p (C+A2+3 exchange)
is suppressed since the resultant of A2 + 0 which is predominantly real,
cancels with the real C contribution. On the other hand, for K_p—>K*On
(C+A2 -9 exchange), the resultant of Az-g is approximately imaginary

and adds incoherently to C.

-The exchange degeneracy of 3 and A2 leads to a zero of the
9 contribution at 0(3 =0 which is not observed in P obtained from

_|_
16)’17) Thus, some modification

the available T Tn-— wp data at 6-7 GeV/c
at larger t or at lower energy to P+ in @ production will be necessary.
Insight into this effect should come from a study of the © -w effects in
the 4-6 GeV/c Argonne 13) N p->TN  Nn (and Mn- T~ N p) data. In

Fig. 3, we predict the @ -w modulating factor for P, at 4 GeV/c, using
the 17 GeV/c amplitude components, 3—A2 exchange degeneracy and the phase-
energy relation. The observed effect in P , for 0.08<-t<0.2, in the
preliminary data 13) at 4 GeV/c indicates a+somewhat larger relative Q-

production phase (24Oi200) than that predicted by the model (~ 2100)

*
) This is consistent with the small 3 - interference effects observed

in P [ef., Ref. 14)].
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- In summary, we have presented a simple picture of the dominant
contributions.-to natural parity vector meson production, in terms of which
the main features of the t and s dependence of ﬂ—pagon data and the

g-w interference patterns are readily understood.
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Figure 1

Figure 2

Figure 3

FIGURE CAPTIONS

The K7 production amplitudes in the +t channel frame at
17.2 GeV/c. The points are the results of an amplitude anal-
ysis of the CERN-Munich T p-T N'n data for

700 <Myq <850 MeV. The curves are the results of the fit
to the amplitudes in the interval 0.005<-t<0.5 GeV2 that
is described in the text. The values of the parameters are
gc/g“ =-1.21, corresponding to a cut strength of 0.93 of that

in the William's model '), g,/Eq =82, by =0.6 Gev™2,

-2 -2 -2
bc=O.8 GeV -, bA=2'5 GeV and OIA- o(é=0.43 GeV

(¥2=O.7 per degree of freedom).
The effective trajectories, calculated using s channel ampli-
tude components obtained by analysing T p-T “"K'n data in

the energy range 4-17 GeV/c.

The (complex) C and A, contributions to P for @ pro-
duction at 17.2 GeV/c are shown for three t Dbins, with C chosen
to be real and negative. The dashed line indicates the 3
exchange contribution to T p—wn obtained assuming 9-A2
exchange degeneracy. The P amplitudes for T p- j’on

(C+A2) and T p- wn (9) then yield the @ -4 modulating
factors shown at 17 GeV/c which can then be compared with the
observed effects in Ref. 14) Ea 7 MeV resolution is folded in as
described in Ref. 14):[. Conversely the crosses are the predic-
tions for Pr’ obtained from the values of IP:’/Pf | ana g
tabulated in Ref. 14). The 4 GeV/c predictions for the modulating
factor (with a 3 MeV mass resolution folded in) come from

scaling C relative to A2 and 3 by an energy dependence

o(A- o(c=0.5+0.4t. The @ -w modulating factors are calculated
using ™M w- RTMU7)/P(w-2a11)=0.0175 and [y =10 MeV.
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