CERN LIBRARIES, GENEVA CM-P00049204 Ref.TH.1732-CERN # EXCHANGE MECHANISMS FOR $\pi^-p \to g^0n$ AND $g-\omega$ INTERFERENCE P. Estabrooks +),*), A.D. Martin ++),*) and C. Michael CERV - Geneva ## ABSTRACT A simple prescription, incorporating π and A_2 exchange contributions, is proposed for the 17.2 GeV/c π -p \rightarrow gon production amplitudes. Further evidence for this interpretation comes from the observed $g-\omega$ interference effects and from the energy dependence of g° production data. ⁺⁾ Supported by the National Research Council of Canada. On leave of absence from the University of Durham, Durham. ^{*)} Present address: University of Durham, Durham. The reaction $\pi^- p \rightarrow g^0 n$ is well-known historically as a process in which π exchange can be studied. However, it has also been noted that simple one-pion exchange does not provide a complete description of the production mechanisms $^{(1),2)}$. Here we investigate the non π exchange contributions and present a simple phenomenological model which describes the helicity structure and t dependence of the 17.2 GeV/c g^0 production data $^{(3)}$. Examination of the energy dependence and of $g-\omega$ interference effects provides support for our description. The production *) amplitude combinations P_0 , P_+ and P_- can be extracted 4),5) from $\pi^-p \to \pi^-\pi^+n$ cross-section and density matrix data. P_0 describes helicity zero dipion production and P_+ (P_-) describe helicity 1 production by natural (unnatural) parity exchange to leading order in energy. Neglect of A_1 quantum number exchange ensures 5) that P_0 and P_- are single amplitudes and their relative phase, \P , can also be determined. P_+ is an incoherent sum of amplitudes with and without helicity flip at the nucleon vertex (of which the former is expected to dominate). The P wave amplitudes ***) obtained from the high statistics 17.2 GeV/c data $^{3)}$ are shown in Fig. 1 for the t channel (Gottfried-Jackson) frame. For our present purposes, the s channel decomposition could equally well be used, but the t channel allows a somewhat clearer separation of the modifications to π exchange. Elementary one-pion exchange only couples to P_0 in the t channel frame. The non-zero values of P_\pm , which moreover do not vanish in the forward direction, thus imply an additional contribution which is not (evasive) pole exchange. Such a cut effect is expected $^{7}, ^{2}$ to be most important in the s channel net helicity non-flip amplitude H_\pm^1 . The cut, C, then contributes equally to P_\pm and P_\pm in the s channel, and on crossing to the t channel contributes to P_\pm , P_\pm , P_0 in the ratio $1:\cos\chi:\sin\chi$, where χ is the s-t crossing angle $(\sin\chi>0)$. ^{*)} That is the P wave $\pi^-\pi^+$ production amplitudes in the g mass region. We consider only the solution with P_o and P_- essentially phase coherent which was shown $^{6)}$ to be the physical solution for $-t < 0.2 \text{ GeV}^2$. The inclusion of C allows an adequate description of P_, but the observed ratio of $|P_+|$ to $|P_-|$ as a function of t necessitates the introduction of a natural parity exchange contribution (A₂ exchange) which interferes destructively with C in P₊. This leads us to the parametrization $$P_{0} = \pi + C \sin \chi$$ $$P_{-} = C \cos \chi$$ $$P_{+} = A_{2} + C$$ (1) where the t dependence is parametrized as **) $$\pi = g_{\pi} \frac{\sqrt{-t}}{m^{2}-t} e^{b_{\pi}t} e^{-i\pi \alpha_{\pi}/2}$$ $$C = g_{c} e^{b_{c}t} e^{-i\pi \alpha_{c}/2}$$ $$A_{2} = -t g_{A} e^{b_{A}t} e^{-i\pi \alpha_{A}/2}$$ (2) with $\mathbf{X}_{i} = \mathbf{X}_{0}^{i} + \mathbf{X}_{i}^{!}t$ determining the phase of the i^{th} contribution. The phase difference between π and C is controlled by the relative phase, φ , of P_o and P₋, which is consistent with φ = 180° for all -t less than 0.5 GeV². P_o and P₋ determine the π and C contributions, and then, given the phase difference *) $\alpha_A - \alpha_C$, $|P_+|$ determines the A₂ exchange contribution. We take $\alpha_C = \alpha_{\pi}$ and, at t=0, $\alpha_A - \alpha_C = 0.5$. Allowing a linear dependence on t of the A₂-C phase difference, we obtain the overall fit in the t region -0.005 to -0.5 GeV² shown in Fig. 1. As $|P_+|^2$ has a quadratic dependence on A_2 , a second solution exists. This is found to be unphysical, having an A_2 contribution whose phase, relative to C, varies extremely rapidly with t, and whose magnitude shows an anomalously rapid t dependence. ^{*)} The data impose bounds on this phase difference. At $-t \sim 0.05$ $| \bowtie_A - \bowtie_C | \lesssim 0.6$, decreasing to $| \bowtie_A - \bowtie_C | \lesssim 0.2$ at $-t \sim 0.5$ GeV². The simple parametrization of Eqs. (1) and (2) is an excellent description of the 17.2 GeV/c data out to -t = 0.5 GeV². The description of P_{\perp} is also reasonable in the region beyond -0.5 GeV², where this amplitude dominates. Two possible contributions which have been neglected could easily be incorporated without changing the essential features. First, from processes such as KN \rightarrow KN, π N \rightarrow γ N, and from the non-zero polarization in $\delta_p \rightarrow \pi^+$ n, there is some evidence for a small A_p helicity non-flip coupling at the nucleon vertex. Such a coupling will be important for polarization predictions in $\pi N \rightarrow \phi N$, but enters the unpolarized observables only as a small correction to the $\,$ t dependence of $\,$ A $_2$ $\,$ and a small reduction of coherence between C and A, in P,. Secondly, a Reggeized π exchange can have a $\lambda_t = \pm 1$ coupling (vanishing at $t = \sqrt{\frac{2}{x^2}}$ of course) to P_. This coupling is present in dual Born models 8) and is such as to fill in the crossing matrix zero ($\cos \mathbf{z} = 0$ at $-t \sim 0.6 \text{ GeV}^2$) in P_ in the t channel frame (or equivalently in P_0 in the s channel frame). Figure 1 indeed indicates the need for such a contribution to P at large t. Having established a parametrization for the phases and t dependence of the π , C and \mathbf{A}_2 contributions for -t < 0.5 GeV², we look at the energy dependence that would arise from the phase-energy relationship. Figure 2 shows the effective trajectories, $\boldsymbol{\alpha}_{\mathrm{eff}}(t)$, for \mathbf{P}_0 , \mathbf{P}_+ and \mathbf{P}_- (in the s channel) obtained *) by analyzing $\pi^-\mathbf{p} \rightarrow \pi^-\pi^+\mathbf{n}$ data, Refs. 3),10)-13), in the energy range 4 to 17 GeV/c. In the model of Eq. (1), the s channel \mathbf{P}_0 is pure π exchange and $\boldsymbol{\alpha}_{\pi} = 0.5(t-\boldsymbol{\mu}^2)$ is a reasonable compromise trajectory. Qualitatively, the structure of $\boldsymbol{\alpha}_{\mathrm{eff}}$ for \mathbf{P}_+ can be easily understood with our description. C is the dominant contribution at small t ($\boldsymbol{\alpha}_{\mathrm{c}} \approx \boldsymbol{\alpha}_{\pi}$) and \mathbf{A}_2 dominates at t~-0.5, while there is a cancellation at intermediate t values (t~-0.25) which leads to an $\boldsymbol{\alpha}_{\mathrm{eff}}$ above the \mathbf{A}_2 trajectory. However, although the t behaviour is correct, the phase-energy prediction is approximately 0.2 lower than $\boldsymbol{\alpha}_{\mathrm{eff}}$ obtained from the data. At 17.2 GeV/c, $S-\omega$ interference effects have been shown ¹⁴⁾ to be largest in P₊ in the interval 0.1 < -t < 0.4 GeV² and we shall concentrate on this amplitude. Figure 3 shows a breakdown of P₊ into its C and A₂ components, as determined above, for three relevant t intervals. The method used is described in Ref. 9), except that here we use the s channel observable $(\mathbf{g}_{oo} + \mathbf{g}_{ss}/3) d\mathbf{s}/dt$ in the place of $|\mathbf{P}_o|^2$. This is an update of that calculation to include recent data. The phase of P relative to P can thus be obtained. For $\pi^- p \to \omega$ n, $oldsymbol{9}$ quantum number exchange contributes to $oldsymbol{P_+}.$ Since $oldsymbol{B}$ quantum number exchange in $\pi \, \text{N} \to \omega \, \text{N}$ is smaller than π exchange in $\pi \, \text{N} \to s \, \text{N}$, the B cut should be small compared to $\boldsymbol{\mathcal{S}}$ exchange $^*)$. Unfortunately, there are no data on $|P_+|$ for $\pi N \rightarrow \omega N$ at or near 17 GeV/c. Thus, the modulus, as well as the phase, must be estimated before a $\,$ can be predicted. The simplest model is to take exchange degenerate $\boldsymbol{\mathcal{S}}$ and A_2 contributions: $g = iA_2 \tan \frac{1}{2} \pi \alpha_A(t)$. This then ensures, via SU_3 , a real $KN \to K*N$ amplitude in agreement with duality for an exotic direct channel process. Constructing $P_{_{+}}$ for ω production in this way then yields the $ho-\omega$ modulating factors shown in Fig. 3. Conversely, the relative moduli and phases of the ${f y}$ and ${f \omega}$ production amplitudes ${f P}_+$ derived from fitting the experimental data at 17.2 GeV/c ¹⁴⁾, yield the ${f P}_+$ amplitudes for ω production that are shown by crosses in Fig. 3. These estimates are in reasonable accord with the g-A2 exchange degeneracy prescription. In particular the change of phase of P_{+} with t, required by the observed $g-\omega$ effects, is well reproduced by the admixture of C and A_2 contributions to P_+ for $\pi^- p \rightarrow g^0 n$. Further confirmation comes from the observed ratio $^{15)}$ of $|P_{+}|$ in $K^-p\to \overline{K}^{*0}n$ and $K^+n\to K^{*0}p$. P_{+} for $K^+n\to K^{*0}p$ ($C+A_2+g$ exchange) is suppressed since the resultant of A_2+g , which is predominantly real, cancels with the real C contribution. On the other hand, for $K^-p\to \overline{K}^{*0}n$ ($C+A_2-g$ exchange), the resultant of A_2-g is approximately imaginary and adds incoherently to C. The exchange degeneracy of $\mbox{\mbox{\boldmath g}}$ and $\mbox{\mbox{\boldmath A}}_2$ leads to a zero of the $\mbox{\mbox{\boldmath g}}$ contribution at $\mbox{\mbox{\boldmath G}}_3=0$ which is not observed in $\mbox{\mbox{\boldmath P}}_+$ obtained from the available $\mbox{\mbox{\boldmath π}}^+n\to\omega p$ data at 6-7 GeV/c 16 ,17). Thus, some modification at larger t or at lower energy to $\mbox{\mbox{\boldmath P}}_+$ in $\mbox{\mbox{\boldmath ω}}$ production will be necessary. Insight into this effect should come from a study of the $\mbox{\mbox{\boldmath g}}-\omega$ effects in the 4-6 GeV/c Argonne 13) $\mbox{\mbox{\boldmath π}}^-p\to \mbox{\mbox{\boldmath π}}^-\pi^+n$ (and $\mbox{\mbox{\boldmath π}}^+n\to \mbox{\mbox{\boldmath π}}^-\pi^+p$) data. In Fig. 3, we predict the $\mbox{\mbox{\boldmath g}}-\omega$ modulating factor for $\mbox{\mbox{\boldmath P}}_+$ at 4 GeV/c, using the 17 GeV/c amplitude components, $\mbox{\mbox{\boldmath g}}-\mbox{\mbox{\boldmath A}}_2$ exchange degeneracy and the phase-energy relation. The observed effect in $\mbox{\mbox{\boldmath P}}_+$, for 0.08<-t<0.2, in the preliminary data 13) at 4 GeV/c indicates a somewhat larger relative $\mbox{\mbox{\boldmath g}}-\omega$ production phase $(240^{\pm}20^{\circ})$ than that predicted by the model $(\approx 210^{\circ})$. ^{*)} This is consistent with the small $g-\omega$ interference effects observed in P_ [cf., Ref. 14]]. In summary, we have presented a simple picture of the dominant contributions to natural parity vector meson production, in terms of which the main features of the t and s dependence of $\boldsymbol{\pi}^- p \to \boldsymbol{\mathcal{S}}^0$ n data and the $\boldsymbol{\mathcal{S}} - \boldsymbol{\omega}$ interference patterns are readily understood. ## ACKNOWLEDGEMENTS It is a pleasure to thank the members of the CERN-Munich collaboration and the Argonne spectrometer group for providing us with data. In particular we thank G. Grayer, W. Männer, R. Diebold, S. Kramer and A. Wicklund for their interest in this work. #### REFERENCES - G.L. Kane and M. Ross, Phys.Rev. <u>177</u>, 2353 (1969); C.D. Froggatt and D. Morgan, Phys.Rev. <u>187</u>, 2044 (1969). - 2) G.C. Fox, Proceedings of Cal.Tech.Conf. "Phenomenology in Particle Physics", p. 703 (1971). - 3) G. Grayer et al., Proceedings of IVth Conf. on High Energy Collisions, Oxford (1972), Vol. 2, p. 26. - 4) C.D. Froggatt and D. Morgan, Phys.Letters 40B, 655 (1972). - 5) P. Estabrooks and A.D. Martin, Phys.Letters 41B, 350 (1972). - 6) P. Estabrooks et al., CERN preprint TH.1661, to be published in Proceedings of the Tallahassee Conf. on π π scattering (1973). - 7) M. Ross, F.S. Henyey and G.L. Kane, Nuclear Phys. <u>B23</u>, 269 (1970); P.K. Williams, Phys.Rev. D1, 1312 (1970). - 8) C. Michael, CERN preprint TH.1684 (1973). - 9) P. Estabrooks and A.D. Martin, Phys.Letters 42B, 229 (1972). - 10) F. Bulos et al., Phys.Rev.Letters 26, 1453 (1971). - 11) J.A.J. Matthews et al., Nuclear Phys. B32, 366 (1971). - 12) S. Barish and W. Selove, to be published (1973). - 13) D.S. Ayres et al., ANL/HEP 7318 and 7320, to be published in Proceedings of the Tallahassee Conf. on $\pi\pi$ scattering (1973). - 14) P. Estabrooks, A.D. Martin, G. Grayer, B. Hyams, C. Jones, P. Weilhammer, W. Blum, H. Dietl, W. Koch, E. Lorenz, G. Lutjens, W. Männer, J. Meissburger and U. Stierlin, to be published. - 15) C. Michael, Nuclear Physics <u>B57</u>, 292 (1973). - 16) J.A.J. Matthews et al., Phys.Rev.Letters <u>26</u>, 400 (1971). - 17) J.C. Anderson et al., Phys.Letters <u>45B</u>, 165 (1973). ## FIGURE CAPTIONS - Figure 1: The \$\mathbf{g}\$ production amplitudes in the t channel frame at 17.2 GeV/c. The points are the results of an amplitude analysis of the CERN-Munich $\pi^- p \to \pi^- \pi^+ n$ data for $700 < M_{\pi\pi} < 850$ MeV. The curves are the results of the fit to the amplitudes in the interval 0.005 < -t < 0.5 GeV² that is described in the text. The values of the parameters are $g_c/g_{\pi} = -1.21$, corresponding to a cut strength of 0.93 of that in the William's model 7, $g_A/g_{\pi} = 8.2$, $b_{\pi} = 0.6$ GeV⁻², $b_c = 0.8$ GeV⁻², $b_A = 2.5$ GeV⁻² and $\alpha'_A \alpha'_c = 0.43$ GeV⁻² ($\chi^2 = 0.7$ per degree of freedom). - Figure 2 : The effective trajectories, calculated using s channel amplitude components obtained by analysing $\pi^- p \rightarrow \pi^- \pi^+ n$ data in the energy range 4-17 GeV/c. - Figure 3: The (complex) C and A_2 contributions to P_+ for S production at 17.2 GeV/c are shown for three t bins, with C chosen to be real and negative. The dashed line indicates the S exchange contribution to $\pi^-p \rightarrow \omega n$ obtained assuming S^-A_2 exchange degeneracy. The P_+ amplitudes for $\pi^-p \rightarrow S^0 n$ (C+ A_2) and $\pi^-p \rightarrow \omega n$ (S) then yield the $S^-\omega$ modulating factors shown at 17 GeV/c which can then be compared with the observed effects in Ref. 14) a 7 MeV resolution is folded in as described in Ref. 14]. Conversely the crosses are the predictions for P_+^ω obtained from the values of $|P_+^\omega/P_+^S|$ and S tabulated in Ref. 14). The 4 GeV/c predictions for the modulating factor (with a 3 MeV mass resolution folded in) come from scaling C relative to S_2 and S_3 by an energy dependence $S_4 S_2 = 0.5 + 0.4t$. The $S_2 \omega$ modulating factors are calculated using $S_3 \omega$ modulating factors are calculated using $S_3 \omega$ modulating factors are calculated using $S_3 \omega$ modulating factors are calculated using $S_4 calcu ## ρ PRODUCTION AMPLITUDES AT 17 GeV/c Fig 1