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ABSTRACT

The diffraction dissociation contribution
to the inclusive cross-section is studied on the
basis of a non-planar dual two-loop amplitude.
The discussion is restricted +to the resonance
region in missing mass. Pomeron form factors des-
cribing coupling to a scalar particle and a reso-
nance of spin j are defined. In the fixed angle
1imit a universal exponential behaviour dominating

the tree B6 - contribution has been found.
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INTRODUCTION

In the last years considerable interest has been devoted
to the application of the dual resonance model to inclusive reactions, in
particular, for studying their scaling behaviour 1)_4). A disadvantage of
this approach was, however, that the Veneziano six-point amplitude used
involves only ordinary trajectories, corresponding to secondary Regge poles,
and not to the leading Pomeron trajectory. Although the latter one could
be taken into account using modified Veneziano amplitudes 4), it was desirable
to describe the Pomeron in the language of the dual loop approach by a non-
planar one-loop graph. A first attempt in this direction has been made by
Alessandrini, Amati > who showed that a non-planar one loop six-point ampli-
tude leads to results very similar to the non-Pomeron case. In particular,
they found the same exponential fall-off of the single particle distribution
for large values of the transverse momentum. In this note we investigate
a contribution of diffraction dissociation to inclusive reactions which is
directly connected with the Pomeron singularity. Its contribution to the in-
clusive reaction a+b-c+x will be described by a six-point amplitude
with resonances in the missing mass channel and Pomeron or Regge cut sin-
gularities in the a¢ or bC channels, respectively. Factorizing the cor-
responding two-loop amplitude in the missing mass channel we compute, at fixed
missing mass, the Regge asymptotic and the fixed angle behaviour of the
inclusive (or exclusive) reaction. As a result we define the Pomeron form-
factor for the coupling to a scalar particle and a spin J Tresonance.

Purther we can show that the fixed angle limit yields a universal exponential
behaviour of the cross-section which dominates the contribution of the tree

six-point function, the exponent being the square of an expression calculated

for the box amplitude with four scalar particles 6).

The paper is organized as follows. In Section 2 we
define the two-loop amplitude and rewrite it in a form suitable for the fol-
lowing calculations. In Section 3, we compute the Regge asymptotic behaviour

and in Section 4 the fixed angle limit.

DEFINITION OF THE AMPLITUDE

Let us consider the inclusive process

a+b — ¢ +X (2.1)



-2 -

near the resonances in the missing mass channel. The differential cross-

section reads for s large

o2 wncl, 0( excl.

6 - 1 c~

S m"z" s O(ISCH; 33 Z S (Qb*c&) &’1 Ma) (2.2)
Here T denotes the three-to-three forward scattering amplitude of the

33
process a+b+c—oa+b+c and d"’eXCl'(abécj)/dt, is the differential

cross-section of the (exclusive) process of resonance production a+b-c+j.

The Mandelstam variables used are defined by
s =(pa +Ps)"
M= (Pb 'Pc)z
(Pa- [J¢>Z (2.3)
M= (ptpe-p)® = P

2
(_S*t.;..{,( = Mz+m§+mb +mcz_)

In the following we are particularly interested in
resonance production associated with diffraction dissociation which is
usually described by a Pomeron contained, let us say, in the ac channel.
Therefore, we need a model for a six-point amplitude EI!33 containing
resonances in the missing mass variable M2 and Pomeron singularities in the

t wvariables.

In the dual loop theory the Pomeron is connected with the
non-planar self-energy operator ZT(p). To get a two-Pomeron six-point
amplitude we have to join the Reggeons of the Pomeron-like amplitudes

A(a), A(a") of Fig. 1 with a propagator, leaving the expression
T3 = <O[A(O()D -Ala®) [0> (2.4)
D denotes here the untwisted propagator
D(F)z §°()< XR_O{(PZ)M("‘X)%% (2.5)
o

or twisted propagator



1
D‘T‘ (p) = golx X R—«(Pz)‘AQ({D) (1-x) P o)

respectively, where

2

o
—_ +(n) | -
R=2"na™a™ A(s)=oltEs = 22
n=1 ) 2.

and .Q ’ W(p) are the twist and gauge operators defined in Refs. 7), 8).
We shall follow now the conventions and notations of Gross and Schwarz 8).
Attaching a projected twisted propagator as well as a symmetric vertex on both

sides of their non-planar self-energy operator ZT(p) we obtain

1
Ala) = bu'g? § doc & (e St T S
0
;Adw 5?1& o H(m)]"'
A WX LnEw
K exP{ % (1] (W) t-w)E p (1-w) (V)[1)

— é[(ﬂ (o) [rn]) =2 b %(x ))]

w2 [ (400 () E (1) (e)[1)
F(A[(v) (1) B (1-a) (V) 11) (2.7)
— (M) (1-@) Ep(t-0)(v) 1) ]

+ MZ;w.z[ 2 (41 (V)(‘f"“) E (4-—&))(V)[1)
— (1l)(t=w) Eq. (1= )(v) 1)
= UIF (1~w) () 11)]

X exp{ (alh) + (alea)}




with

“ﬂ> = (1-v)M, (v)(1-w) E (1-0) () |1) (_ PC)
+ 2 (4-v)H (v) t-w) E (=) (W)11) (-p)
+@-vY[ M)+ Mp(v)U-w) -'E.t 1) (Pa—R)

(2.8)

H = ¢-v) My (V) (- w0) E (-w)(v) M, (=v)

Here f(w) is the partition fumction, E, E;, F, are elliptic matrices,

T T
'Y%(x) is a function related to the Jacobi's theta function and M+ a

simple number matrix

We now want to calculate the contribution of resonances
2
with 0((Mj) =j to discypT,s. For this we factorize Eq. (2.4) by using the
diagonalizing operator T of Ref. 9)

Ly W

R _
T = ("”) e g P Va—x (2.9)
which satisfies
z Ru-x)" =C"I)R
L " (2.10)
et (4f)°T = X , Xz(qf&’)z

7)

Using the technique of canonical forms and performing a variable trans-

formation

{ Vv
TV (my) +Y (2.11)

<
\

in the integrand of A (a+), the following "gauge invariance" of the Pomeron

amplitude can be proved

}/WA(Q+”0> = A(a+)’0> (2.12)
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With Egs. (2.10), (2.12) we then get

= {0|A(a) 1{e}><{e]At)|0>
¢
Z-': % O(»((O) J€o+£ — O((Mz) (2.15)

where

o for D
a(f, ﬂ (- eo (20(0- )<4 2«,—&) Lfe “ )x‘ 6‘4)( {or D,r,

The operatorial amplitude E(a) has again the repre-

sentation (2.7) with the only change

h) — (k) = Clh) +2)p
H — H = CHC?

where " - ™
4 \m-n [n
C Cow =W (R A “

Using D and DT we could then introduce also a signaturized trajectory in

the missing mass channel. Note that spurious states cannot couple to the

(2.14)

Pomeron graph as follows from Eq. (2.12).

The matrix element of the operatorial part of K(a)

between vacuum and occupatlon number states can be calculated according to

the formula (D ) "= ’a{"')

_ _ 1
(o] e+ @ia)| fo3 5 < AT AT

X .. }ff io(ﬁ")(fizxﬁa/\ (2.15)
<. D [ D"'zD'm ('“Hl{)]

(R (R (a“‘)"" ™
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e . . Iny /= ( n ) I
Remembering Lorentz indices, the symbolical notation (m )(h ) reans an
n

abbreviation for (éﬁ) tensors

T (MY TTUn) T )
h /’"-\ L) 2 * ‘ ¢ L\/Llf”

symmetrized in any pair of indices.

At fixed j:=£o+-£ only a finite number of 4,'s are
different from zero. Thus we see that the matrix elements in Eq. (2.13) are
polynomials in the external momenta which have to be contracted in their

Lorentz indices. We finally obtain for the contribution of the resonances
2
at °<(MJ) = j

.

- 1
disCypryei T8 = S al6E) Ag,y (5E,M?) A (s,¢,M2)

-&*{-"ﬂ‘é )% (2.16)

where we have written

LOlAG) {63 > = Aj, (s.t, M?)

Let us for further applications isolate the contribution of the parent

resonance with spin j 1in Eq. (2.16)0 Using analogous arguments as in the

7)

side the energy level CV(M?) =j 1is connected with the occupation numbers

tree case one sees that the state with maximum angular momentum j in-

£1:=j, £i==0 for i#1 and m1:=0. The spin coupling factor of this

contribution to Eq. (2.16) reads

1
a"f [ {C (-vI My (v) (1-w)E (4“‘))(“)1'1)}1 ("Pc)

+2 {C (4-v) My (v) (=) E (-4"‘0.)(‘/)17)"21.1:'2)}7 (-—P) (2.17)
+{CO-NOLIY + M (- T} (o )]

*“
< [T
(>

&
(p)
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The contribution of the parent resonance with pure spin Jj can now be easily

obtained by inserting the covariant projection operator P%/K) (’,) for spin
b

J

i .
— (3 om*
2 = Z& £ (p) £3) ()

(2.18)

between the tensors of Eq. (2.17) where diga))(7| p) is the corresponding
’
spin j helicity eigentensor. Recall that the projection operator is sym-
metric d traceless in the vector indices = coe . and
ric an 9/4) /A41, ,/LG
(¥Y) =‘V1,..., Vj separately, and dotted into p, gives zero.

REGGE LIMIT

» Now let us proceed to calculate the Regge asymptotic
behaviour as s—-om at t and M2 fixed of the inclusive (or exclusive)
*
cross-section ). To do this it is useful to perform Jacobi's imaginary

transformation for the variables x, w of the self-energy part, defined by

27l ‘ 21 b x
On o = J@no{ ) ———“‘,‘%w = & (3.1)

The asymptotic behaviour of Eq. (2°16) is then determined by the behaviour of
the integrand of Eq. (2.7) [éombined with Eq. (2.17I] near the critical points
of the function (1{(u)(1-w)Eqp (1-@)(v) [1) which multiplies the asymptotic
variable s. A critical point means either a saddle point in all variables
(critical point of the first kind) or a point where the hypersurface
(1‘(u)(1-co)E1.(1-co)(v)l1):=const. becomes tangent to some bounding hyper-
surface (critical point of the second kind or end-point singularity) 6 .

One can see that in our case there exist only end-point singularities given

by a9=0 (all wu, v,@), u=0 or 1, (all q, & , v) and v=0, 1

(all q, u, @) with (1|(u)(1—w)ET (1-w)(v) 1) =0 **). Only the q=0

*
) Strictly speaking this limit has to be performed inside the strip of
convergence of the amplitude parallel to the imaginary s axis. The
result should then be continued analytically in other directions of the

complex s plane.
*%
) This can be most easily seen by representing the above matrix element of

ET as a quotient of functions qf&(x) (see Section 4) and applying

the symmetry arguments of Ref. 6).
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end-point is connected with the Pomeron singularity leading to an asymptotic
behaviour s p(t), the other contributions being connected with renorma-
lization of the corresponding tree-graph. For the following, we shall
consider only the end-point q=0. In order to compute the leading term of
the asymptotic series we have now to expand the integrand in powers of g

and carry out the g integration. For this we recall the definitions 8)

[Er]m | m’;‘:! (._’%)’"(__%)" «éh[zk,.()(%/\)]'hg/‘g/r (3.2)

[E]nm = %_;,G:_:' (_% )“(—%)n[&n [_—QZF_(—%_—)'](X_ ] (3.3)

- m U (2)
[(ﬂﬂ]m: 'J:-X—T (’%) Lo ['l(,,..(x-h)a—z)]h.—.,, (3.4)

Using the Jacobi transformed functions Qf(x), 4ffp(x) 10)

log t(x) = Log [~ jogqj + Log sin T (5.5)

—ér(4q [e, TteT— 2]

[03 Y. (x) = [og[ﬂf £37'7 ]

~ 3 o LT ]

(3.6)




we obtain as q—0 (w—1)

{(4"*’)E7.(4'w)}mn - Cl[e (Zm) "t e (Zm) (3.7)
+0(%)
____ (3.8)
(w)E (-, ~ z{éo( OMELR, + o)
ST e f ~ {allZ @+ 09) o
Taking into account Egs. (3.7)-(3.9) as well as the formula ‘
$m’7’2 _ f— B
f% = é__:o [Oa (41— = ) (3.10)

we get further

U] () t-w) Er (=) (v) 1) ~ §9 SimTt s6nTv co:,(wmmv»u 1)

+ 0(9?)

T AA

() (1-w) E (1-w) (u)[1) ~ [o% ST YU L O(?a) (3.12)

St Tt
(| Fr -w)(<)11) ~ fo(a e +0(q) (3.13)
Similarly, the terms of Eg. (2.17) have the expansion

{CU-v) Me (v) (-0 Er t-w) () 1)} -
1 (3.14)

~ [-2rv-nT] 47 Sin T €O (T+T(usv)+Tv)
24C (=) My (v) () E (-w) (V) (1)}~

A~ MY (1) c‘tg‘n‘\/ - (1-v)



and
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{C (1=v) [ M) + Me (D 0-w) '-E’,’:M)]}4 -arva-vy ] = z’“‘" (3.15)

we now obtain by the use of the above formulas,

Taking into account the well-known relation

—:{;Z—) [

= w% (ii L.F((iz):]—# ~ C[

and restricting us, for

-2
3

illustration, to the contribution of the parent spin J resonance

(a)

£40

AL, Gt )

X

_ ' 77‘332
I

- —1-U(t) -1 o
du w (1) U

TV

_ Zr
dg/ci olp(t)- 1 gdov

0

mn—

‘)

A

(

)

(4]

4 —1—odtt) 14 w"rv"‘ AL
gdv v (1—v)

0

(

J

(6]

(3.16)

Nl

(3.17)

exp { —52—_ 9 & ST SenTrv caa(&ﬁ(mv))}

[-2r v @-v )J?;‘

[_ tq SanTau con (T+T (wrv) +1) (P, )

+Zdamy - (pe pcja‘

(3)
Sy

(p)
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where Cxp(t) =1/3+1%/4. The expansion of the bracket of Eq. (3.17) into

tensor products of the vectors p_ and (p 2P ) yields further

@f}A;“, (st M) = é AR (s¢,M?) [/3 R)" (p-- Pc)“_’]% J(p) (5.18)

The new bracket has again to be understood as a symbolical notation for the
sum of (i) direct products of n factors p_ and (j-n) factors
(pa—pc) symmetrized in any pair of Lorentz indices; Ai(s,t,MZ) are the
invariant amplitudes of the resonance production process a4—b—»c4—(j).

Performing the different integrations and using

&
k. k
gds' [~ oo (T+terv)]  [Sin (sritacs V)]

0 2 (3.19)

= (dc' [-con o=t 177 k [sinei]®
0

1 (4 ™ YA 4ent) B, (Tt k)

we have finally

. 41
3 — o St 243xp )=t +2m?
A (st ) = = g 2
¢ (3.20)
/5 )dp('f)'*h y
oS r/h '—O(o('f)) S VL pee))
35 .
n " ;
< : ol _
< Jpte) Z (E) foay ) 1 60%] B, (0, b
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The Pomeron form-factors for coupling to two scalar particles or to one scalar

and one spin J particle are defined by

(e 1 -m® 2t
'FPGG) — (27{) (4m?) Sd'b( [u(/f“u)] z 1@“’“‘“"! < tolplt) (3.21)
0
-t—
~(t4m h'-,.-f-a(‘:ﬂ')
{P(k) ()= (2m) ™ )de [v-v J SRR AR L.

g(w (v)

with

(am (v) = (sim WV)k (Coo V)

The factors in front of the integrals have been introduced in order to
compare with the Pomeron form-factor for scalar particle coupling of Ref. 6).

If we write f;(k)(t) as a sum of poles

('() = R"‘("’ (3.23)

P(k) m=o O(P('é)— O(R(’f) +k=m
we see that spin coupling leads to a shifted fo dominance of the form-factor.
The asymptotic contribution of the parent resonance of

spin j to the cross-section Eq. (2.2) can then easily be computed by

contracting tensors

L (3'1) (P)" (pam P°>i—hj( )

of Eq. (3.18) with the projection operator for spin j expressed in terms
11)

of g/.y and p/,‘ .
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4, FIXED ANGLE LIMIT

It has been shown 6) that the Pomeron amplitude with
four external scalar particles reproduces in the fixed angle limit s—-®,
t=-(1-cos ©/2)s—>- ® the exponential behaviour exp(- {'sF(cos©)) of the
Veneziano amplitude with the difference, however, that the function F(cos(g)
is multiplied by - og's instead of -@{'s. Taking into account O<£==(1/2)CK'
the Pomeron amplitude will thus give the leading behaviour in the fixed angle
1imit. It is easy to show that this result will remain also valid for a
four-point function with one excited leg so that the same fixed angle
behaviour will likewise appear in the resonance contributions to the single
particle distribution, Eq. (2.2). As expected, the fixed angle exponent
will be found to be independent of the spin of the resonances, its form being

connected only with the duality properties of the underlying graph.

To derive this result we go back to the expression (2.16)
recalling that the matrix element of the operatorial part of A(a) 1leads only
to a polynomial in the asymptotic variables s and t (M2 fixedl). The
exponential behaviour of Eq. (2.16) in the above limit will then be determined

by the saddle points in all variables of the function

Ve =- (lE)(t-©) Eq(4-)(v) 1)
~ K LA Fp (00 () +] 1) =24 ( 2LD)] a)

2.

For the further discussion it will be convenient to use the following repre-

sentation of the matrix elements of ET and FT 8)

A(4-NDNE m @-p)[1) = 4L U (xn ) F(xp) (4.2)
( [( A Eqp {-p 1) OQL Up (X)W (xA0)

() F (=) 1) = eoa[“gm;fg}m] )

Let us put
A=A (4~w)w

/u = A= (1~w) VvV (4.4)
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and introduce the auxiliary variables

(4.5)

Expressing the functions Qf&(x),qy(x) by Jacobi's theta function 6,9,
and using the above formulas we may then rewrite Eq. (4.1) in the form

A [@q(& LelT) Ou(F-5521r)
d Lo, Gioeo) 0, 5= 2rir)

. 1&1[ L (ST) ELlylT) (T)]

O (T+ %2 ) O, (8- 322

(4.6)

(T == fgq)

The expression (4.6) is identical with the expression of the Pomeron amplitude
for external scalar particles found in 6). It has been shown there using the
properties of elliptic functlons that there exists a saddle point in the
integration region, given by CT’ ? jf =T" or, expressed in the old

1

variables, at u=v=(1+ () ) y X-aoi with qo determined by the equation

oo Zn-1 -
Y(q) =T [i_:: o _7‘ - (e.7)

h=1
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Evaluating V at this saddle point gives the result

K

Vie (90)= %[ bog Y@0) -« bog ( Yigy-1)]=-3 g [Ce) ) T (o)
=1+ (c0d)

Thus one obtains, finally (o{’.:: -g;)

M ~ —“S‘Fr(mé)) 2'. 2 2) (4.9)
S ot Clrﬂz'ch(HéZ)=é <’€1 ) F? (25(iclr4 ,) L. 9

where R is a polynomial in s. Factorizing a usual B6 amplitgde into
the product of two 34 amplitudes times a polynomial in s, t, M one can
get the same exponential behaviour as in Eq. (4.9) with 1/4 replaced by 1/2.
The Pomeron countribution considered will thus dominate over the usual tree
graph. The universal exponential behaviour of Eq. (4.9) holds also for each
parent resonance separately, independent of its spin. These results have

2)

also been obtained by a phenomenological description of dual loop graphs ! .

It would be very interesting to compute the Regge and the
fixed angle limit of the two-loop graph considered without the simplifying
restriction of fixed missing mass. For Mz—éan one has to take into
account then the contribution of an indefinitely increasing number of resonances,
and to do this, one has to start with the two-loop amplitude in the non-fac-
torized form of Ref. 13). To sotve this problem the technique of.domain va-
riational methods for handling automorphic functions should be used. This
question will be investigated further in connection with the 3-Pomeron

vertex.
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NOTE ADDED IN PROOF

After completion of this work we found a paper of Morel and Quiros
where the Pomeron amplitude Eq. (3.17) has been studied, too, in connection
with investigations of helicity conservation. These authors started from
the general loop amplitude with external excited particles. It can be
shown in the one-loop case that our expression is equivalent to their
general formula. As can easily be seen from Eq. (3.22) we have also de-
coupling of spin—odd resonances, but, contrarily to them, we find, by fac-
torization, the usual scalar particle Pomeron form-factor. Further, there
are deviations in the spin-dependent form-factors arising from an incorrect

treatment of the Jacobi transformation in Ref. 14).

14)
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3)
4)
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