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MULTIP LICITY CORRELATIONS IN PP- COLLISIONS AT 540 GeV

UAS5 Collaboration: Bonn - Brussels - Cambridge - CERN - Stockholm
Presented by G. Ekspong, Stockholm University

SUMMARY

Multiplicity correlations of long range in pseudorapidity are found to be stronger
than at ISR energies. The analysis gives no evidence for intrinsic long range corre-
lations. The data are consistent with a physical picture involving random emission
of small clusters along the rapidity plateau. The average cluster size is about 2

charged particles, the same as at ISR energies.

INTRODUCTION

The experiment has been carried out by the UAS5 collaboration using its streamer
chamber system as described in the literature and by the previous speaker, D. Ward
f1] At the CERN SPS Collider one has available a rapidity plateau which is long
compared with the correlation range of about * 1 unit of rapidity typical for the
decay of small mass resonances. We observe two-particle short range correlations
of the mentioned type but concentrate here on our observation and analysis of the
longer range correlations between the number of charged particles, ne and L
falling into two selected rather large regions, one forward (F) and one backward
(B), chosen symmetric around 90° in the center - of - mass system (n=0). The

pseudorapidity, m= -In tan6/2, where the angle 6 is the polar angle with the re-

spect to the beam axis, is the variable used to label the charged particles.
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Our sample consists of about 4000 minimum bias events. The trigger requires at
least one particle into each hemisphere, which leads to an almost complete elimi-
nation of single diffraction events. The triggering efficiency for non single dif-

fractive inelastic events is about 95%. The streamer chambers cover the rapidity
range -5=1n=5. The data presented refer to the range |An|S4 where the geo-

metrical acceptance is greater than 85Y%.

Long range correlations were first reported by S. Uhlig et al [2] at ISR. Our
results in preliminary versions have been given last year and are now submitted

for publication | 371.

OBSERVATIONS

The problem concerns the fluctuations of the number of particles in the F- and
B-regions. If these variables were independent of each other the correlation
strength would be zero. At ISR energies a positive correlation was found '2] which
increases with energy within the ISR energy range. The following two ways to
measure the correlation strength are equivalent: (1) one computes the average of
n_ at fixed n_ and finds the slope b in a straight line fit, <nB(nF)> =a-+b-N

B F
(2) one computes the correlation coefficient of nn and nB, involving mainly the

)

F!

mean value of the product of the two factors (nF(i) - <nF> and (nB(i) - <{n

B
where nF(i), nB(i) are the observed number of charged tracks in event (i)
falling into the selected F and B regions. A straight line fit with unit weight to
all events gives b = cov(nF, n )/varnr which illustrates above mentioned equiva-
lence. We present here the results for three definitions of the regions F and B.
(A) F=(0=m=4) and B=(-4=7=0)

which means that the two regions are in contact but non-overlapping.

(B) F=(1=n=<4) and B=(-4=n1=-1)
which means that a gap of size 4n = 2 has been introduced between the two

non-overlapping regions
(C) F=(0=m=<1) and B=(-1=71=0)

which corresponds to the size of the observed range of the two-particle

correlation function.
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In all three cases the I and B regions are symmetric. We consider also the initial
state to be symmetric since we do not identify particles, only count the number of

charged particles.

The scatterplot Fig. 1a, shows the two-dimensional distribution, F(nF, nB), of
events in case A above (no gap), while Fig. 1b shows how remarkably well the
data fit to a straight line. The least squaresfit gives a slope of b =0.54 £0.01.
The value drops to b =0.41 20.01 when a gap of size 4n = 2 is introduced
(case B above). We interprete this drop as mainly due to a decoupling of the F
and the B regions from effects due to clusters (such as oo - TT+TT‘) produced near

N =0 and emitting one (or more) particles into each region simultaneously.

Fig. 2 shows the UAS5 values for the correlation strength parameter b together
with published results from the R701 experiment at ISR _2 . The increase with
energy is seen to continue. To be noted is that b 7 0 even in the case when a gap

is inserted, fig. 2c, and increases with energy. This observation constitutes the
main reason for introducing the term long-range correlation in rapidity space. The
almost zero value at the lowest ISR energy seems to be accidental. Our analysis
offers a rather simple explanation for the existence of the effect and the increase

of its strength with energy.

ANALYSIS
The presence of correlations means that the two-dimensional distribution of events

(Fig. 1a) does not factorize, F(n ) # f(nF) . f(nB). In other words nF and

,
F' B
nB are not independent. We find it advantageous to transform the problem into the
variables ng = (ZF | nB) and z = (nF
of Fig. 1a by 45 . The marginal distribution of the combined multiplicity g ob-

- nB), i.e. rotating the coordinate system

tained by projecting all events in the scatterplot onto the new nS-axis, does not

seem by itself to contain information relevant to our problem. However, we will

find the first two moments to be of dexisive interest. These are the mean (nS,\ =
9
= 16.0 £ 0.2 and the variance DS =78.0 = 1.8 for the case with a gap between the
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F- and B-regions (case B). The two-dimensional distribution describing the den-
sities of events in the scatterplot, such as Fig. 1a, is studied by us at each fixed

n_ and is formally denoted fS(nF) [at fixed n_ the use of the variables nr or

S S
z= (2 ne- nS) is equivalent]. This set of functions describes the distribution of
events with any ne at fixed ng. The distributions fS(nF) must trivially be sym-
1
metric with a mean {n_) =—n All odd moments must vanish. It turns out that

F 28
2
the correlation strength parameter b is related to the second moments, dS(nF),

by the following identity

- < s(np)?

,M—-pM—n
U][\DU) [\]

/d (n ))

!

where > denotes an average value over the marginal ns—distribution.

The proof of this relation rests on the following steps: (1) the least squares fit

gives

cov (np, ng)  E(ny(i) -2 (ng(i) - npd)

varn

. 2
F ZiT(nF(l) -<nF>)

I

(2) the sums over all events (i =1 --- M, in our case M ~ 4000) are carried out in
two steps: (i) over all events with a given fixed value of n g’ (ii) over the mar-
ginal ns—dlstrlbutlon

The variances, d: (nF), depend on the shape of the fS(nF) distributions which in
turn are sensitive to the kind of physical process (or processes) which dominate.
The discussion is summarized in Table 1. We cannot exclude that a suitable mixture
of processes with intrinsic long range correlations can describe the data but we do
not find evidence for a dominance of any single such process. The data can be de-
scribed as due to a random emission of clusters of an average size (k) close to 2
The random process is described by a binomial distribution in the number of clus-

1
ters (C) fallmg 1nto I with probability Pp=3%- The variance is expected to be

d (n ) == k C = Z k- ns, if all clusters have the same size k. The more realistic
case of a mlxtule of sizes is treated in the Appendix. As an example we take ng= 12

which means 6 clusters in case the sizes are all k = 2. The probability to find all
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-6 1
6 clusters (i.e. all 12 particles) in the F-region is 2 6 =— whereas if, instead

64
of clusters, particles were randomly emitted the probability for all 12 particles to
be in F is only 2-12 =024 " Our observed number of events with all 12 particles

in one region is 4 events out of 185 events as expected for the model with random

cluster emission.

A closer study of the expectations for this physical picture has been made by a
Monte Carlo simulation. The simple assumptions made are summarized in Fig. 3.
In an event with C clusters these are positioned at random along the pseudorapi-
dity axis. Their sizes are ki(i =1 .... C) so that the number of charged par-

ticles is given by

The experimental distribution of n . was used to generate a distribution in C

once the k-distribution was selectec::(;l. Average values of k near k=2 are of interesf
and the k-distri\bution was chosen to follow 'a Poisson distribution in the range

k=1, --- 5. The ki cluster products were assigned positions on the pseuciorapidity
axis in the neighbourhood of the cluster itself using the two-particle correlation
function. In this way some leakage of cluster products will occur. A cluster in the

F (or B) region will sometimes appear smaller than generated. Also clusters out-

side the considered region will at times leak particles into the region. This com-

pensation will generally not occur in the same event so that fluctuations (variances)

will be influenced whereas mean values will remain the same (if the net leakage is
zero). The observed variances are given in Fig. 4 together with curves .obtained
by the M.C. simulations. The agreement is excellent provided the average clus-
ter size is about 2 charged particles. When the sizes of the F- and B-regions are
reduced from An=3 to &n=2 and 4On =1, respectively, the increased leakages
lead to reductions of the ratio dg(nF)/ <ns> in the data and in the M.C. in the
same way. One notices also that the plotted ratio is rather independent of the

total multiplicity ng (up to n_ ~30). We interpret this to support the assumption

S
in M.C. that large and small multiplicities are produced by the same cluster
sizes. This determination of the average (or effective) cluster size is also in-

dependent of the gap size once it is larger that about two units as seen in Fig. 5-
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The M. C. events were used to compute the correlation strength b and the results
for the long range correlation, given in Fig. 2,are in good agreement with data.
The M.C. simulation was repeated at ISR energies with again good agreement pro-

vided the average cluster size was set equal to about 2 charged particles.

Energy dependence of the correlation strength (b)

The physical picture as presented reproduces the energy dependence well. The
reason for this is seen from the identity formula. Assuming random cluster emis-

sion the formula reads

where the effective cluster size ke is related to the average cluster size by

ff
keff =<k + di/ (k) (see Appendix) in the limit of no leakages. It is a fairly good

approximation to consider ke to be an energy independent constant. The energy

ff
2
dependence of b is then totally due to the D”/{n} ratio which increases approxima-
tely linearly with {n) . Since the particle density in the plateau region increases
approximately linearly with In s (\/s =c.m. energy) [1] one finds that it is possible

to represent the correlation strength parameter by

lns—B1

b= Ins + B,

where the constants B1 and B, , however, depend on the size in rapidity of the F-

and B- regions, and on the size of the rapidity gap between them.

CONCLUSIONS

We observe both short range (4n~ 1) and longer range correlations in charged
particle multiplicities. The strength of the long range (forward-backward) cor-
relation increases with energy and b~ 0.5 is observed at the SPS collider energy.
The data are consistent with a physical picture involving random emission of

clusters along the rapidity axis in the plateau region. The average cluster size is



- 118 -

about 2 charged particles, the same as at ISR energies. It seems natural to as-

sume that the clusters are small mass particles and resonances (7, 7, p, «,

K, K" ..... ) or small groups of them. These are then copiously produced and

constitute the dominant part of minimum bias events. This hypothesis is support-

ed by our published observation that the average number of Y-rays increases

strongly with the number of charged particles in the events [4].

Table 1.

b
observed

=0.41 (éase 1= lAnl =4)

Summary of discussion of various hypothetical physical processes

Shape of dz(n )
Physical picture t‘s(nF) S' F b Comments
I. INTRINSIC
CORRELATION
(a) 2 fireballs with peaked at small large Not observed
strongly correlated 1
. —-n
sizes 2 S
(b) 1large + 1 small double large small Not observed
fireball peaked (or neg.)
II. UNCORRELATED broad 0 Not observed
sizes of 2 fireballs
III. Mixture of above Not excluded
IV. NO INTRINSIC
CORRELATION
(a) Random emission Binomial1 1 n 0.66 Too high b
of particles with p = 2 4 S
(b) Random emission (Binomial | 1 k-n 0.42 0.K. but
of clusters of in clusters)| 4 S (k=2) unrealistic
fixed size k
(c) Random emission Binomial ()= 0.42 Agrees well
of clusters of in clusters | 1 Kk <ad if
mixed sizes 4 eff 'S k ..=2.0

eff
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APPENDIX

The effective cluster size, k off

Consider C clusters in an event with sizes k, (i=1 ---C) charged particles. Both
C and k are stochastic variables. The resuIltmg number of charged particles,

nS, is g1ven by

n.=C-k (1)

varog = k“varC + Cvark (2)
This problem is a case of branching processes where cluster i branches into k
particles. Next, we introduce a binomial branching into forward and backward'
regions with probabilities p_ and p_ for each cluster. We assume no leakage
so that all k particles from cluster i remains in the same region as the cluster
itself. In this case the first two moments of the nF -distribution are given by:

n =0¢C. .k 3
o C P (3)
- - -2 -
VQ'V"V\F=ka varC + C - k pF(1-pF)+C-vaark 4)
the variance
of the bino-
mial distr.

If one in (4) eliminates the moments C and varC using (1) and (2) one obtains
the desired result:

1.2 1-
varn, =7 DS 20 (k + vark/k) (5)
1 _ 2 .
where pF =3 and varns = DS have been substituted.

As a special case the simple formula for the case of fixed size clusters (k) is re-
covered if vark =0 is assumed namely

varnr—ZDS 4k S

Formula (5) is of the same form with the replacement k - K ee = k + vark/k . The
distribution of cluster sizes is not known. Were it Poisson the result is k

(k +1). We have truncated the Poisson distribution by setting the probaglflty to
zero outside the interval 1 <k <5, when k is near 2. In this case
vark/k~0.5- 0.6 and we beheve the truncation to be somewhat more reahstlc

The cov(n_, n_) is finally obtained from the relation n_=n : through
varn_ = var nF + varnB + 2 cov(nF, nB) and the symmetry requirement var nF =
=varn_. This
B 1 2 1.2 1 -
= - -— = - - - k
covinp, np) =5 Dg-varng =7 Dg =7 Kepr Mg X
- _ k . -
- . . . , s fert"s
Thus the identity relation for the correlation slope b is 5 -
D l :
s fert s
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FIGURE CAPTIONS

Fig. 1a) The two-dimensional distribution of events (scatterplot) with the two
coordinate systems used. The area of a ring is proportional to the v
number of events. These data correspond to the case with no gap be-
tween the F- and B-regions.

1b) The linear relation between the average of n_(at fixed n ) and g
The slope b is a measure of the correlation strength.

Fig. 2 The energy dependence of the correlation slope b.

Fig. 3 Illustration of the Monte Carlo simulation. The C clusters in an event
with random sizes (ki) are assigned random positions in pseudorapidity.

Fig. 4 The observed dispersions d_(n_.) and the Monte Carlo results (lines)
for two assumed average sizes (k) of the clusters. The F- and B-
intervals are 3, 2, and 1 units of pseudorapidity, respectively. In all
three cases the gap is two units.

Fig. 5 The effective cluster size, ke , is shown to be independent of the gap
size once it is larger than 2 units of pseudorapidity.
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MONTE CARLO SIMULATION
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