
ICETRAY: A SOFTWARE FRAMEWORK FOR ICECUBE

T. DeYoung*, University of Maryland, College Park, MD 20742, USA

For the IceCube Collaboration

Abstract

IceCube is a cubic kilometre scale neutrino telescope
under construction at the South Pole. The minimalistic
nature of the instrument poses several challenges for the
software framework. The IceCube collaboration has
developed the IceTray framework, which meets these
needs by blending aspects of push- and pull-based
architectures to produce a highly modular system which
nevertheless allows each software component a
significant degree of control over the execution flow.

THE ICECUBE DETECTOR
IceCube is designed to detect high energy (TeV – EeV)

neutrinos from astrophysical sources. The deep detector
will consist of 4800 digital optical modules deployed in a
three-dimensional array of 80 strings buried at depths of
1450-2450 meters in the South Polar ice cap. Neutrinos
that undergo charged-current interactions in the ice are
detected via the Cherenkov light emitted by the resultant
ultrarelativistic leptons. To maximize neutrino event
rates, the optical modules are spaced over a cubic
kilometre, instrumenting a gigaton of the ice. An array of
80 pairs of ice Cherenkov tanks on the surface, with one
pair near the top of each string, will operate in
coincidence with the deep detector for calibration,
identification of backgrounds and related cosmic -ray
physics. The primary backgrounds are penetrating muons
produced in cosmic ray air showers above the South Pole,
and ‘atmospheric’ neutrinos produced by meson decay in
air showers anywhere in the atmosphere. These latter
events also form a useful low-energy calibration beam.
Further details regarding the IceCube detector are
available in [1].

Requirements for the IceCube Framework
The nature of the IceCube experiment is rather different

from those in traditional high-energy physics, leading to
some differences in the requirements for and constraints
upon the experiment software. Nevertheless, many of the
requirements are the same, and we believe that some
aspects of the IceCube software may be of interest to the
wider HEP community.

Firstly, the sparse IceCube detector produces much less
information in an event than does a collider or fixed-
target detector. A full IceCube event is expected to
average between 1 and 2 kB, and the detector will trigger
at about 1.7 kHz when fully operational. The size and
performance constraints that have led many HEP

experiments to develop data-on-demand systems and
hierarchical levels of event representations are therefore
absent in IceCube.

The sparse event data, however, also means that event
reconstruction is quite difficult. With only minimal
information from the detector, relatively sophisticated
(and therefore time -consuming) methods must be used to
reconstruct each event [2]. Moreover, events must be
reconstructed many times with different hypotheses or
methods, and the results compared. One wishes to have
the capability to configure the reconstruction application
so that different methods are applied or not, based on the
results of previous reconstructions. The appropriate
series of software components required to process an
event varies considerably, and can be determined only at
run time.

Furthermore, reconstruction algorithms are an area of
very active development. The collaboration numbers
about 150 scientists, and it is expected that many
collaborators will take an active role in software
development. However, the South Pole Station is
inaccessible for most of the year, with only two winter-
over IceCube scientists , who may not be software experts,
remaining on-site. Satellite coverage (and thus network
connectivity) is also quite limited, so installation of new
online software may be conveniently performed only in a
short window once a year. Together, these constraints
make it imperative that a single software framework be
used both online and offline, to minimize if not eliminate
problems with installation of new online software.
Moreover, that framework must be simple enough to learn
and easy to use that it is the platform of choice even for
non-experts for ‘private’ analysis code (which may be
next year’s online software).

A second fundamental difference is that there is no
experimental ‘heartbeat’ similar to the beam-crossing
time in a collider. Events occur at random times, and
frequently overlap. This poses a problem for simulation
in particular, since the time window that is to be
simulated is not known in advance: the window may need
to be extended repeatedly until ‘quiet intervals’ are found
on either side of the window. Furthermore, the types of
events which are to be overlaid may be different – for
example, neutrino events and cosmic ray showers – and
so the simulation must be able to synthesize the outputs of
several long simulation chains in a ‘Y’ topology, as
shown in Figure 1.

Another simulation requirement comes from the fact
that it would be extremely time -consuming to track every
photon produced by an ultrarelativistic lepton through a
cubic kilometre active volume. Instead, a photon

*deyoung@icecube.umd.edu

463

propagation code is run in advance and the results
tabulated for quick use during simulation production.
These photon tables, however, are very large compared to
the memory available on a typical processing node, so the
simulation design calls for events to be held in a buffer
and sorted for more efficient table access. A similar
approach may be employed in some reconstruction
programs, as well. This buffering further breaks down the
traditional event-based processing paradigm.

Figure 1: An example simulation application.

We wish to accommodate all of these requirements in
the context of a modern software framework, with its
advantages of flexibility, modularity, reusability,
reliability, and commonality of software. However,
simplicity is also of critical importance.

THE ICETRAY FRAMEWORK
The variability of the event processing foreseen for

IceCube implies that the traditional declarative ordering,
where a series of processing steps are set up in advance
and an event ‘pushed’ through them, is not well suited to
the problem. The desired event processing will depend on
the results of steps within the chain, and therefore cannot
be declared in advance. Moreover, these results may not
be available until after the steps would normally have
been taken: in simulation, for example, whether an event
from the cosmic ray simulation branch will be needed by
the software module responsible for overlaying events
cannot be determined until that module has received the
event from the neutrino branch.

It would, of course, be possible to develop a workable
declarative system to meet these requirements, relying on
some type of mechanism for passing signals between
modules or between modules and framework and possibly
on preprocessing of some sort. However, this would

impose additional complexity on both the software
modules and on the framework, and possibly on the user
or batch production system as well. It would also lead to
some level of indirect coupling between otherwise
independent modules, which would need to understand
each other’s signalling mechanisms or conventions.

The other paradigm which has become popular in
recent years is “processing on demand” or discovery
ordering, in which a module requests a particular type of
data and relies on the framework to find a module which
can provide it , so that data is ‘pulled’ through the chain by
the final client. This requires both some system for
modules to register the type of data they produce, and that
client modules understand their place in the overall
application. While this may be unavoidable or even
desirable in the context of an accelerator-based
experiment, with very large events consisting of many
subtypes of data and with relatively well-established
methods for processing that data, it is not necessarily
appropriate to a neutrino telescope. In that case, the event
size is small, so that a complete event record is always
being supplied; but the processing methods are evolving
rapidly, so it is quite likely that the developer of a given
module may not know, when the module is being written,
what steps should be taken before the module is executed.

Again, it is certainly possible to develop a pull-type
system which would meet the needs of IceCube.
However, such a system would, again, add complexity to
the framework. It would also require some implicit
coupling of modules, which would be required to know
the context in which they were processing events in order
to properly declare the “meaning” of the data they
produced.

IceTray Execution Ordering
 The solution developed for the IceTray framework

blends aspects of both declarative and discovery ordering.
We rely primarily on a data-driven order of execution,
similar to a push system. However, instead of a linear
processing chain, we allow modules to send their output
to one of several output queues, called Outboxes.
Extremely complex chains of logic for how events should
be processed can then be set up topologically, by
connecting one module’s outboxe s to another’s input
queue (or Inbox). A simple example of such a chain is
shown in Figure 2.

This topological system is completely transparent to
each of the modules involved: rather than relying on
signalling between modules or markers added to events,
each module is assured that it should process any event
presented to it. In fact, a module can play one role in one
application, and a quite different role in another; the
‘identity’ of the outboxes suggested by the labels in
Figure 2 is entirely implicit in the configuration of the
chain. From the perspective of the individual module, the
various queues may be much more generic; a muon
reconstruction module may have an outbox for events in
which the reconstruction failed to converge, which is
connected by the user to some other reconstruction chain

464

(e.g. the ‘Misidentified Showers’ of Figure 2). This
allows the application user to choose at configuration
time what classes of input a module will receive, rather
than requiring the module developer to specify the desired
input at compile time, and therefore increases the
flexibility and reusability of the module.

Figure 2: An example IceTray reconstruction application.
The arrows show possible routes events can take through
the chain of modules, shown as blue squares.

This topological execution ordering is also quite
straightforward from the framework’s perspective; events
need only be transported from outbox to inbox in a
perfectly predictable fashion. The responsibility for
ensuring correct data flow is on the user, who is
essentially giving the framework a flowchart at
configuration time. (Presently configuration is handled
via a Root macro; other user interfaces, including a GUI,
are envisioned.) Besides reducing the load on both
framework and module developers and ensuring
maximum flexibility for module reuse, this corresponds to
the expressed preferences of IceCube collaborators in
regard to the proper division of responsibilities between
framework developers, module developers, and end users.

Within this topological paradigm, it is relatively easy to
accommodate the other requirements for the IceCube
framework. As mentioned above, the inboxes and
outboxes of a module are queues; there is no requirement
that an event be immediately processed once it appears in
an inbox. The module is free to defer processing,
buffering events for more efficient access to resources
such as the photon simulation tables. The in- and
outboxes are not actually connected, but instead the
framework transports events between the appropriate
pairs. This allows the framework to maintain the correct
event ordering, as well as allowing applications to run in a
distributed fashion on multiple nodes transparently to the
module.

Finally, the merging of event streams is handled in a
pull-type fashion. In addition to multiple outboxes
(which are filled at the module’s discretion), modules are
allowed to have multiple inboxes. Of these, one is the

primary or active inbox, and module execution is
triggered by the appearance of an event in that queue.
The other inboxes are passive, meaning that events
accumulate there until needed by the module in the course
of processing. The module can then pull events out of the
passive inbox at will.

Execution Environment
It is foreseen that IceTray applications will run in a

variety of environments, from the user’s desktop to a
production farm to the online environment at the South
Pole. It is essential that application modules can be
moved transparently between these environments and run
identically without modification. For this reason, all
module interactions with the outside environment are
mediated by the framework via a Context object which is
passed to the module at instantiation.

The IceTray module thus exists within an analysis
container, isolated from its surroundings except for the
framework. Within this container, the application appears
to have its own flow-of-control, which simplifies the
development process. Interactions with the framework
are relatively simple, including requests for events or
services such as random number generators ,
configuration, logging, and error conditions. It is up to
the framework to handle these requests, and different
implementations of these services may be provided via
the context object in different environments. The module
does not know, for example, whether an event in its inbox
has come from another module within the same IceTray
process or over the network from a remote node, nor does
it know where the event will go once it is placed in the
outbox.

Figure 3: IceTray module state machine diagram.

In order to accommodate these various environments,
an IceTray module is developed as a relatively simple yet
flexible state machine, as shown in Figure 3. Default
implementations of all of these transitions are provided

465

through a base Module class, which is inherited by all
application modules. Module developers implement only
those state machine transitions which are necessary; most
simple event processing modules implement only the
Configure and Process transitions. A module which
interacts with external resources such as databases may
also require Suspend and Resume in order to avoid
resource blocking, while modules responsible for data
monitoring may wish to use the Finish transition to
package or record their accumulated data. Finally,
Reconfigure is available for interactive processes.

SUMMARY
The IceCube collaboration has developed the IceTray

framework to meet its requirements for online and offline
data processing. IceTray incorporates aspects of both
declarative and discovery processing frameworks in a
topological structure that is both intuitive and highly
flexible, while remaining almost completely transparent
to the individual software modules. Within this paradigm,
IceTray provides for features not usually found in HEP
frameworks, such as event buffering at the discretion of
the individual module.

By wrapping individual modules in analysis containers,
the framework will provide for modules to be redeployed
without modification in a variety of environments, from
the single-node user analysis to production or online
processing. However, the framework-provided module
base classes relieve most module developers of the
burden of understanding the details of the module life -
cycle, so that the typical collaboration member can
contribute to production software.

 Overall, IceTray reflects the division of responsibilities
requested by members of the IceCube collaboration. The
end user is easily able to reconfigure and rearrange
modules to create new applications or add new processing
steps to existing applications, and is responsible for
providing a reasonable configuration. The module
developer has a straightforward environment in which to
write his or her code, with a minimal burden in terms of
receiving events, getting configuration information,
accessing services, and writing logging information. This
allows the developer to focus on the task at hand, and will
enable all collaborators to contribute to the experiment
software. Finally, the framework is responsible for the
underlying tasks of managing execution flow and data
flow, providing services, and the like, which will allow
modifications for adaptation to distributed and online
environments to be handled entirely at the frame work
level.

ACKNOWLEDGEMENTS
This research was supported by the following agencies:

National Science Foundation – Office of Polar Programs,
National Science Foundation – Physics Division,
University of Wisconsin Alumni Research Foundation,
Department of Energy, and National Energy Research
Scientific Computing Center (supported by the Office of

Energy Research of the Department of Energy), UC-
Irvine AENEAS Supercomputer Facility, USA; Swedish
Research Council, Swedish Polar Research Secretariat,
and Knut and Alice Wallenberg Foundation, Sweden;
German Ministry for Education and Research, Deutsche
Forschungsgemeinschaft (DFG), Germany; Fund for
Scientific Research (FNRS-FWO), Flanders Institute to
encourage scientific and technological research in
industry (IWT), and Belgian Federal Office for Scientific,
Technical and Cultural affairs (OSTC), Belgium; FPVI,
Venezuela.

REFERENCES
[1] J. Ahrens et al. (the IceCube Collaboration),

Astroparticle Physics 20/5 (2004) 507.
[2] J. Ahrens et al. (the AMANDA Collaboration),

Nuclear Instrumentation & Methods A524 (2004)
169.

466

