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Abstract 

IceCube is a cubic kilometre scale neutrino telescope 
under construction at the South Pole.  The minimalistic  
nature of the instrument poses several challenges for the 
software framework.  The IceCube collaboration has 
developed the IceTray framework, which meets these 
needs by blending aspects of push- and pull-based 
architectures to produce a highly modular system which 
nevertheless allows each software component a 
significant degree of control over the execution flow. 

THE ICECUBE DETECTOR 
IceCube is designed to detect high energy (TeV – EeV) 

neutrinos from astrophysical sources.  The deep detector 
will consist of 4800 digital optical modules deployed in a 
three-dimensional array of 80 strings buried at depths of 
1450-2450 meters in the South Polar ice cap.  Neutrinos 
that undergo charged-current interactions in the ice are 
detected via the Cherenkov light emitted by the resultant 
ultrarelativistic leptons.  To maximize neutrino event 
rates, the optical modules are spaced over a cubic 
kilometre, instrumenting a gigaton of the ice.  An array of 
80 pairs of ice Cherenkov tanks on the surface, with one  
pair near the top of each string, will operate in 
coincidence with the deep detector for calibration, 
identification of backgrounds and related cosmic -ray 
physics.  The primary backgrounds are penetrating muons 
produced in cosmic ray air showers above the South Pole, 
and ‘atmospheric’ neutrinos produced by meson decay in 
air showers anywhere in the atmosphere.  These latter 
events also form a useful low-energy calibration beam.  
Further details regarding the IceCube detector are 
available in [1]. 

Requirements for the IceCube Framework 
The nature of the IceCube experiment is rather different 

from those in traditional high-energy physics, leading to 
some differences in the requirements for and constraints 
upon the experiment software.  Nevertheless, many of the 
requirements are the same, and we believe that some 
aspects of the IceCube software may be of interest to the 
wider HEP community. 

Firstly, the sparse IceCube detector produces much less 
information in an event than does a collider or fixed-
target detector.  A full IceCube event is expected to 
average between 1 and 2 kB, and the detector will trigger 
at about 1.7 kHz when fully operational.  The size and 
performance constraints that have led many HEP 

experiments to develop data-on-demand systems and 
hierarchical levels of event representations are therefore 
absent in IceCube. 

The sparse event data, however, also means that event 
reconstruction is quite difficult.  With only minimal 
information from the detector, relatively sophisticated 
(and therefore time -consuming) methods must be used to 
reconstruct each event [2].  Moreover, events must be 
reconstructed many times with different hypotheses or 
methods, and the results compared.  One wishes to have 
the capability to configure the reconstruction application 
so that different methods are applied or not, based on the 
results of previous reconstructions.  The appropriate 
series of software components required to process an 
event varies considerably, and can be determined only at 
run time.   

Furthermore, reconstruction algorithms are an area of 
very active development.  The collaboration numbers 
about 150 scientists, and it is expected that many 
collaborators will take an active role in software 
development.  However, the South Pole Station is 
inaccessible for most of the year, with only two winter-
over IceCube scientists , who may not be software experts, 
remaining on-site.  Satellite coverage (and thus network 
connectivity) is also quite limited, so installation of new 
online software may be conveniently performed only in a 
short window once a year.  Together, these constraints 
make it imperative that a single software framework be 
used both online and offline, to minimize if not eliminate 
problems with installation of new online software.  
Moreover, that framework must be simple enough to learn 
and easy to use that it is the platform of choice even for 
non-experts for ‘private’ analysis code (which may be 
next year’s online software). 

A second fundamental difference is that there is no 
experimental ‘heartbeat’ similar to the beam-crossing 
time in a collider.  Events occur at random times, and 
frequently overlap.  This poses a problem for simulation 
in particular, since the time window that is to be 
simulated is not known in advance: the window may need 
to be extended repeatedly until ‘quiet intervals’ are found 
on either side of the window.  Furthermore, the types of 
events which are to be overlaid may be different – for 
example, neutrino events and cosmic ray showers – and 
so the simulation must be able to synthesize the outputs of 
several long simulation chains in a ‘Y’ topology, as 
shown in Figure 1. 

Another simulation requirement comes from the fact 
that it would be extremely time -consuming to track every 
photon produced by an ultrarelativistic lepton through a 
cubic kilometre active volume. Instead, a photon 
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propagation code is run in advance and the results 
tabulated for quick use during simulation production.  
These photon tables, however, are very large compared to 
the memory available on a typical processing node, so the 
simulation design calls for events to be held in a buffer 
and sorted for more efficient table access.  A similar 
approach may be employed in some reconstruction 
programs, as well.  This buffering further breaks down the 
traditional event-based processing paradigm. 

Figure 1: An example simulation application. 

We wish to accommodate all of these requirements in 
the context of a modern software framework, with its 
advantages of flexibility, modularity, reusability, 
reliability, and commonality of software.  However, 
simplicity is also of critical importance. 

THE ICETRAY FRAMEWORK 
The variability of the event processing foreseen for 

IceCube implies that the traditional declarative ordering, 
where a series of processing steps are set up in advance 
and an event ‘pushed’ through them, is not well suited to 
the problem.  The desired event processing will depend on 
the results of steps within the chain, and therefore cannot 
be declared in advance.  Moreover, these results may not 
be available until after the steps would normally have 
been taken: in simulation, for example, whether an event 
from the cosmic ray simulation branch will be needed by 
the software module responsible for overlaying events 
cannot be determined until that module has received the 
event from the neutrino branch.   

It would, of course, be possible to develop a workable 
declarative system to meet these requirements, relying on 
some type of mechanism for passing signals between 
modules or between modules and framework and possibly 
on preprocessing of some sort.  However, this would 

impose additional complexity on both the software 
modules and on the framework, and possibly on the user 
or batch production system as well.  It would also lead to 
some level of indirect coupling between otherwise 
independent modules, which would need to understand 
each other’s signalling mechanisms or conventions. 

The other paradigm which has become popular in 
recent years is “processing on demand” or discovery 
ordering, in which a module requests a particular type of 
data and relies on the framework to find a module which 
can provide it , so that data is ‘pulled’ through the chain by 
the final client.  This requires both some system for 
modules to register the type of data they produce, and that 
client modules understand their place in the overall 
application.  While this may be unavoidable or even 
desirable in the context of an accelerator-based 
experiment, with very large events consisting of many 
subtypes of data and with relatively well-established 
methods for processing that data, it is not necessarily 
appropriate to a neutrino telescope.  In that case, the event 
size is small, so that a complete event record is always 
being supplied; but the processing methods are evolving 
rapidly, so it is quite likely that the developer of a given 
module may not know, when the module is being written, 
what steps should be taken before the module is executed.  

Again, it is certainly possible to develop a pull-type 
system which would meet the needs of IceCube.  
However, such a system would, again, add complexity to 
the framework.  It would also require some implicit 
coupling of modules, which would be required to know 
the context in which they were processing events in order 
to properly declare the “meaning” of the data they 
produced. 

IceTray Execution Ordering 
 The solution developed for the IceTray framework 

blends aspects of both declarative and discovery ordering.  
We rely primarily on a data-driven order of execution, 
similar to a push system.  However, instead of a linear 
processing chain, we allow modules to send their output 
to one of several output queues, called Outboxes.  
Extremely complex chains of logic for how events should 
be processed can then be set up topologically, by 
connecting one module’s outboxe s to another’s input 
queue (or Inbox).  A simple example of such a chain is 
shown in Figure 2.   

This topological system is completely transparent to 
each of the modules involved: rather than relying on 
signalling between modules or markers added to events, 
each module is assured that it should process any event 
presented to it.  In fact, a module can play one role in one 
application, and a quite different role in another; the 
‘identity’ of the outboxes suggested by the labels in 
Figure 2 is entirely implicit in the configuration of the 
chain.  From the perspective of the individual module, the 
various queues may be much more generic; a muon 
reconstruction module may have an outbox for events in 
which the reconstruction failed to converge, which is 
connected by the user to some other reconstruction chain 
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(e.g. the ‘Misidentified Showers’ of Figure 2).  This 
allows the application user to choose at configuration 
time what classes of input a module will receive, rather 
than requiring the module developer to specify the desired 
input at compile time, and therefore increases the 
flexibility and reusability of the module. 

 
Figure 2: An example IceTray reconstruction application.  
The arrows show possible routes events can take through 
the chain of modules, shown as blue squares.   

This topological execution ordering is also quite 
straightforward from the framework’s perspective; events 
need only be transported from outbox to inbox in a 
perfectly predictable fashion.  The responsibility for 
ensuring correct data flow is on the user, who is 
essentially giving the framework a flowchart at 
configuration time.  (Presently configuration is handled 
via a Root macro; other user interfaces, including a GUI, 
are envisioned.)  Besides reducing the load on both 
framework and module developers and ensuring 
maximum flexibility for module reuse, this corresponds to 
the expressed preferences of IceCube collaborators in 
regard to the proper division of responsibilities between 
framework developers, module developers, and end users. 

Within this topological paradigm, it is relatively easy to 
accommodate the other requirements for the IceCube 
framework.  As mentioned above, the inboxes and 
outboxes of a module are queues; there is no requirement 
that an event be immediately processed once it appears in 
an inbox.  The module is free to defer processing, 
buffering events for more efficient access to resources 
such as the photon simulation tables.  The in- and 
outboxes are not actually connected, but instead the 
framework transports events between the appropriate 
pairs.  This allows the framework to maintain the correct 
event ordering, as well as allowing applications to run in a 
distributed fashion on multiple nodes transparently to the 
module. 

Finally, the merging of event streams is handled in a 
pull-type fashion.  In addition to multiple outboxes 
(which are filled at the module’s discretion), modules are 
allowed to have multiple inboxes.  Of these, one is the 

primary or active inbox, and module execution is 
triggered by the appearance of an event in that queue.  
The other inboxes are passive, meaning that events 
accumulate there until needed by the module in the course 
of processing.  The module can then pull events out of the 
passive inbox at will. 

Execution Environment 
It is foreseen that IceTray applications will run in a 

variety of environments, from the user’s desktop to a 
production farm to the online environment at the South 
Pole.  It is essential that application modules can be 
moved transparently between these environments and run 
identically without modification.  For this reason, all 
module interactions with the outside environment are 
mediated by the framework via a Context object which is 
passed to the module at instantiation. 

The IceTray module thus exists within an analysis 
container, isolated from its surroundings except for the 
framework.  Within this container, the application appears 
to have its own flow-of-control, which simplifies the 
development process.  Interactions with the framework 
are relatively simple, including requests for events or 
services such as random number generators , 
configuration, logging, and error conditions.  It is up to 
the framework to handle these requests, and different 
implementations of these services may be provided via 
the context object in different environments.  The module 
does not know, for example, whether an event in its inbox 
has come from another module within the same IceTray 
process or over the network from a remote node, nor does 
it know where the event will go once it is placed in the 
outbox. 

Figure 3: IceTray module state machine diagram. 

In order to accommodate these various environments, 
an IceTray module is developed as a relatively simple yet 
flexible state machine, as shown in Figure 3.  Default 
implementations of all of these transitions are provided 
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through a base Module class, which is inherited by all 
application modules.  Module developers implement only 
those state machine transitions which are necessary; most 
simple event processing modules implement only the 
Configure and Process transitions.  A module which 
interacts with external resources such as databases may 
also require Suspend and Resume in order to avoid 
resource blocking, while modules responsible for data 
monitoring may wish to use the Finish transition to 
package or record their accumulated data.  Finally, 
Reconfigure is available for interactive processes. 

SUMMARY 
The IceCube collaboration has developed the IceTray 

framework to meet its requirements for online and offline 
data processing.  IceTray incorporates  aspects  of both 
declarative and discovery processing frameworks in a 
topological structure that is both intuitive and highly 
flexible, while remaining almost completely transparent 
to the individual software modules.  Within this paradigm, 
IceTray provides for features not usually found in HEP 
frameworks, such as event buffering at the discretion of 
the individual module. 

By wrapping individual modules in analysis containers, 
the framework will provide for modules to be redeployed 
without modification in a variety of environments, from 
the single-node user analysis to production or online 
processing.  However, the framework-provided module 
base classes relieve most module developers of the 
burden of understanding the details of the module life -
cycle, so that the typical collaboration member can 
contribute to production software. 

 Overall, IceTray reflects the division of responsibilities 
requested by members of the IceCube collaboration.  The 
end user is easily able to reconfigure and rearrange 
modules to create new applications or add new processing 
steps to existing applications, and is responsible for 
providing a reasonable configuration.  The module 
developer has a straightforward environment in which to 
write his or her code, with a minimal burden in terms of 
receiving events, getting configuration information, 
accessing services, and writing logging information.  This 
allows the developer to focus on the task at hand, and will 
enable all collaborators to contribute to the experiment 
software.  Finally, the framework is responsible for the 
underlying tasks of managing execution flow and data 
flow, providing services, and the like, which will allow 
modifications for adaptation to distributed and online 
environments to be handled entirely at the frame work 
level.  
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