
Paper #1094

Abstract—In the ATLAS experiment at the LHC, the ROD

Crate DAQ provides a complete framework to implement data
acquisition functionality at the boundary between the detector
specific electronics and the common part of the data acquisition
system. Based on a plugin mechanism, it allows selecting and
using common services (like data output and data monitoring
channels) and developing libraries to control, monitor, acquire
data and/or emulate detector specific electronics.

Providing also event building functionality, the ROD Crate
DAQ is intended to be the main data acquisition tool for the first
phase of detector commissioning.

This paper presents the design, functionality and performance
of the ROD Crate DAQ and its usage in the ATLAS data
acquisition system and during detector tests.

Index Terms—Data acquisition, software design, VMEbus,
detector commissioning.

I. INTRODUCTION
N the ATLAS Trigger and Data Acquisition system
(TDAQ), the ReadOut Driver (ROD) is a sub-detector

specific front-end element [1]. It is located, in the event data
flow, after the first level of online event selection, between the
front-end electronics and the ReadOut System (ROS), as
illustrated in Fig. 1. The ROD receives data from one or more
front-end links and sends data over the readout links to the
ROS. The ROD Crate DAQ (RCD) was developed due to the
sub-detector’s need of some common Data Acquisition (DAQ)
functionality at the level of the ROD crate, for single or
multiple ROD crates, in laboratory setups, at the assembly of

Manuscript received June 17, 2005.
S. Gameiro, D. Francis, B. Gorini, M. Joos, G.

Lehmann, L. Mapelli, J. Petersen, R. Spiwoks and L. Tremblet are with
CERN, Geneva, Switzerland.

G. Crone is with the Department of Physics & Astronomy, University
College London, Gower Street, London WC1E 6BT, UK.

R. Ferrari and W. Vandelli are with the Università di Pavia and I.N.F.N.,
Via A. Bassi 6, IT-27100 Pavia, Italy.

M. Gruwe was with CERN, Geneva, Switzerland, She is now with
the Gesellschaft für Schwerionenforschung mbH, Planckstraße 1, D-64291
Darmstadt, Germany.

A. Misiejuk is with Royal Holloway, University of London, Department of
Physics, Egham Hill, UK-Egham, Surrey TW20 0EX, UK.

E. Pasqualucci is with the Universitá di Roma I 'La Sapienza' and
I.N.F.N., Piazzale Aldo Moro 2, IT-00185 Roma, Italy.

G. Unel is with the University of California, Irvine, Department of Physics
& Astronomy, Irvine - CA 92697-4575, USA.

Y. Yasu is with the High Energy Accelerator Research Organization,
KEK, 1-1 Oho, Tsukuba-shi, JP-Ibaraki 305-0801, Japan.

detectors, at test beams, and at the ATLAS experiment during
commissioning and production.

The ROD system covers all RODs and other functional
elements at the same hierarchical level in the event data flow
between the front-end electronics and the ROS. Those
elements are grouped in crates. The crates contain ROD crate
modules which can be: RODs, modules other than RODs, e.g.
for controlling the front-end electronics, for driving a Timing,
Trigger and Control partition, and one or more ROD crate
processors.

In the ATLAS implementation, ROD crates are custom 9U
VMEbus crates, each one housing a single board computer
running Linux, acting as the ROD Crate Controller (RCC).

RCD comprises all the software to operate one or more
ROD crates. It provides the functionality for configuration and
control, data readout, ROD emulation, monitoring, and event
building across multiple ROD crates.

RCD is based on existing ROS software originally
developed to meet the requirements of the main dataflow at
the level of the ROS: to buffer fragments which are input via
standard ATLAS readout links and provide fragments on
request from the Level2 trigger and Event Building systems.
An analysis of the ROS framework indicated that this could be
generalised to the detector specific level of the ROD crates
thereby extending the domain of ATLAS DAQ for which
common software support is provided.

Fig. 1. Simplified diagram of the TDAQ chain.

The ROD Crate DAQ of the ATLAS Data
Acquisition System

S. Gameiro, G. Crone, R. Ferrari, D. Francis, B. Gorini, M. Gruwe, M. Joos, G. Lehmann, L. Mapelli,
A. Misiejuk, E. Pasqualucci, J. Petersen, R. Spiwoks, L. Tremblet, G. Unel, W. Vandelli, Y. Yasu

I

A
T

L
-D

A
Q

-C
O

N
F-

20
05

-0
20

20
 Ju

ne
 2

00
5

Paper #1094

II. RCD USE CASES
This chapter describes the RCD use cases [2].

A. Module Control
The RCD is used to control one or more modules in a ROD

crate. Controlling a module consists in communicating with it,
passing relevant information at each of the TDAQ system state
transitions (see section III.C). An example of modules that use
RCD only for controlling are trigger modules. All the other
use cases presented in this chapter include the RCD control
functionality.

B. ROD Emulation
In this case, the RCD is used to read non formatted data

from one or several modules, and to build ROD fragments,
which can be later sent to the TDAQ system. This is typically
used when a detector ROD is not available, and allows testing
a detector with simpler electronics. Fig. 2 illustrates this use
case.

R
C
C

A
D
C

A
D
C

T
D
C

T
D
C

Config & Control

Data readout

To DAQ system or to disk

Emulated ROD fragments
To monitoring system

Sampled data

Commands
R
C
C

A
D
C

A
D
C

T
D
C

T
D
C

Config & Control

Data readout

R
C
C

A
D
C

A
D
C

T
D
C

T
D
C

R
C
C

A
D
C

A
D
C

T
D
C

T
D
C

Config & Control

Data readout

To DAQ system or to disk

Emulated ROD fragments
To monitoring system

Sampled data

Commands

Fig. 2. ROD Emulation use case.

C. ROD Data Readout
This is the main use case for the Phase 1 of detector

commissioning, when the RCD is the DAQ tool available for
detector readout. The RCD reads ROD fragments from one or
several ROD modules via VMEbus, and builds ROS
fragments. These ROS fragments can be either stored locally
or sent out via a TCP connection to a data driven event
builder, as described in section II.E.

D. ROD Monitoring
This is the typical use case for the RCD during ATLAS

runs. The ROD modules are fully controlled by the
application, but the modules themselves manage the primary
data flow, sending events to a ROS through a readout link, as
is show in Fig. 3. In this case, the RCD acquires sampled
fragments from RODs for monitoring purposes, sending them
to the monitoring system or the histograming service. The
RCD should also be able to detect errors signalled by the ROD
modules and perform operational monitoring.

R
C
C

R
O
D

R
O
D

R
O
D

R
O
D

Config & Control

Data sampling

Data from detector

To DAQ systemTo monitoring system
or histogram service

Commands
R
C
C

R
O
D

R
O
D

R
O
D

R
O
D

Config & Control

Data sampling

R
C
C

R
O
D

R
O
D

R
O
D

R
O
D

R
C
C

R
O
D

R
O
D

R
O
D

R
O
D

Config & Control

Data sampling

Data from detector

To DAQ systemTo monitoring system
or histogram service

Commands

Fig. 3. ROD Monitoring use case.

E. Data Driven Event Building
When acting as data driven event builder, the RCD receives

ROS fragments coming from VMEbus crates or ROSs via
TCP connections, and builds full events (Fig. 4). This is
mostly needed during the detector commissioning, when the
full TDAQ system and in particular the high level trigger is
not yet available.

R
E
B

Data from detector

R
C
C

R
O
D

R
O
D

R
O
D

R
O
D

Conf & Control

Data readout

Data from detector

R
C
C

R
O
D

R
O
D

R
O
D

R
O
D

Conf & Control

Data readout

Event fragments

R
O
S

ROS fragments

R
E
B

Data from detector

R
C
C

R
O
D

R
O
D

R
O
D

R
O
D

Conf & Control

Data readout

Data from detector

R
C
C

R
O
D

R
O
D

R
O
D

R
O
D

Conf & Control

Data readout

R
C
C

R
O
D

R
O
D

R
O
D

R
O
D

Conf & Control

Data readout

Event fragments

R
O
S

R
O
S

ROS fragments

Fig. 4. Data driven event builder use case.

III. RCD ARCHITECTURE
The RCD software is based on a C++ common application

framework originally developed for the ROS and referred to as
IOManager (IOM). The framework loads specific plugins to
customize its behaviour for the different RCD deployment
scenarios.

This chapter describes the RCD architecture, focusing on
the thread and plugin structure, and the interface with the
TDAQ run control system.

A. Threads structure
The RCD has the structure of a single, multi-threaded

process based on Linux POSIX threads as illustrated in Fig. 5.
The trigger thread is activated on the occurrence of an event
which may be external or internal to the RCD. It builds a
request which describes actions to be performed by the RCD
in response to the event, e.g. reading out a number of data
sources, and then writes this request to a queue. A request
handler thread processes the requests: reads an element from

Paper #1094

the request queue and executes it. It typically consists in
extracting fragments from the data sources, and assembling
these into a larger fragment, which is written to an output
device. Several request handlers may work in parallel thereby
achieving a better CPU utilisation.

The framework provides a number of optional threads. The
Sequential Input Handler thread supervises the input of data
fragments from several ROD modules, based either on polling
of registers in the RODs or VMEbus interrupts. The data
fragments are read into a set of internal memory buffers, one
per ROD, from where they can be accessed (randomly) via the
request handlers. The User Action Scheduler thread allows
activation of user written handlers when a defined time slice
(per handler) has expired. Similarly, when a VMEbus interrupt
occurs, the Interrupt Handler thread activates a user written
handler identified by a VMEbus interrupt vector.

In addition to the threads related to the data flow, there are
control threads which communicate with external controller
applications for configuration, error handling and statistics.

The strategy for thread scheduling is based on ‘poll and
yield’: a thread polls on a resource, executes until the resource
is exhausted and then yields, i.e. gives the CPU back to the OS
(Linux). This approach minimises the number of thread
context switches and the time for one context switch.

Fig. 5. Thread diagram of the RCD application.

B. Plugins Mechanism
The application framework implements the common core

functionality of the system: interface with the run control
commands, error handling and recovery, activity scheduling,
configuration management, and event selection and sampling,
among others. The application relies on specific plugins for
the implementation of the different I/O protocols.

All the plugins are loaded by the application at run time.
They are loaded dynamically, and do not need to be linked to
the main application. This allows users to add new plugins
without having to modify the application binary.

Fig. 6 shows a diagram with the four different types of
plugins: configuration, trigger, module and output. The
configuration plugin is the first one to be loaded, and it
informs the application about the other plugins. For each of
the four types of plugins, an abstract base class defines an API

that needs to be implemented for every specific instance. A
more detailed description of each plugin is now presented.

Fig. 6. Plugin diagram of the IOM application.

1) Configuration

The standard way of configuring the RCD is via a
configuration database. This database is based on a core
schema which includes the definitions of all the classes of the
system. A modular structure allows creation of new sub-
schemas with user defined classes, which may use other
classes from the core schema, and can be included in the
user’s database. An alternative way of configuring the RCD is
via simple ASCII files, more suitable for
development/debugging phases.

2) Trigger
The trigger plugin implements the functionality of the

trigger thread, see section III.A. The RCD software provides
several trigger plugins characterised by the type of trigger
source which may be external or internal to the application:
arrival of a message on a network; input of data fragments in
the internal buffer via sequential data channels, see Fig. 5
(data driven trigger); internal generation of the trigger
(emulation). In addition the user may develop trigger plugins
driven by detector specific trigger hardware, e.g. VMEbus
modules.

3) Module
A module describes a hardware or software component that

is controlled by the framework. It can perform any appropriate
action associated with a state transition; the base class
associated with a module is called ReadoutModule, and it
includes virtual methods for each of the state transitions.
Typical actions include reading the configuration database,
initializing the hardware modules or publishing statistics.

A module may be associated with the readout of data. In
that case, one or more data channels are defined within the
module, with virtual methods for requesting, retrieving and
deleting fragments. A specialised implementation of a data
channel was provided for RCD deployments, which include
virtual methods for polling on a data source and retrieving

Paper #1094

data (ROD fragments), sequentially.
4) Output

As explained in section III.A, a request handler writes the
event fragments to an output device. This functionality is
implemented via an output plugin. The RCD software
provides several plugins associated with the type of output
device e.g. network (DataFlow System Ouput) or local disk. In
addition the user may develop specific output plugins although
this should be an exception.

C. Supervision System
The TDAQ Supervision system is in charge of performing

the initialization and shutdown of TDAQ firmware and
software, distributing commands to TDAQ elements and
synchronizing operations between them, and performing error
handling [3]. The building block of the Supervision is the
Controller. The Supervision will generally contain a number
of Controllers organized in a hierarchical tree.

In order to regulate the control activity, a State Machine
model was introduced in the Controller’s core: a Controller
always has a state, reflecting the possible states of the TDAQ
system. The states and transitions of all Controllers in the tree
are synchronized. Each state has a defined set of authorized
transitions that bring the system into a new state, as shows Fig.
7.

Fig. 7. Simplified diagram of the Controller’s State Transitions.

IV. RCD DEPLOYMENT
This chapter deals with relevant aspects of recent

deployments of RCD: its usage during the 2004 Combined
Test Beam, enhancements of the functionality and its role in
the detector commissioning phase.

A. 2004 Combined Test Beam
In the 2004 Combined Test Beam, a slice of the ATLAS

detector was assembled with the objective of integrating and
testing all the components of the experiment under real
conditions. Elements from nine different types of detectors,
including the inner detector, calorimeter and external muon
chambers, were installed in a beam line and exposed to
different kinds of particle beams.

 The detector readout electronics was connected to a scaled-
down version of the final ATLAS DAQ system, which was

operated in realistic data taking conditions (24 hours a day 7
days a week) for about six months.

The readout electronics for the various detectors was mostly
available in early prototyping versions, sometimes with
limited functionality; hence the RCD software had to be used
for different tasks:

- All the detectors but one controlled and configured
their modules via the RCD.

- Some detectors used the ROD emulation functionality
to read non-formatted data from different types of
modules, combine it and build formatted fragments, as
the final ROD modules were not available at the time.

- More than half of the detectors had real ROD modules
and some performed data readout with the RCD.

- All the detectors but one used the RCD monitoring
functionality.

RCD was also used to control and configure the three
different VMEbus modules used to interface the readout
electronics with the first-level trigger, to handle incoming
timing and trigger signals and to provide feedback on busy
conditions.

B. RCD enhancements
After the 2004 Combined Test Beam, the usage of the RCD

was analysed in detail, and a number of changes were
performed in order to simplify the API and add some
functionalities [4].

To test the new software, and while the final RODs of the
detectors were not available, a test bed was set up to emulate
the behaviour of a ROD. It consists of a VMEbus memory
module plus a VMEbus interrupt module [5], which reproduce
the three main ROD functionalities: memory, registers and
interrupt capability. The memory is filled with ROD fragments
to emulate the ROD data source. The trigger to read the ROD
fragments is provided by the VMEbus interrupt module, which
can be used in either polled or interrupt driven mode.

When doing polled data read out, a register in the VMEbus
interrupt module is read for the presence of a “data available”
bit. This bit is set via a NIM pulse which runs at a given
frequency. When the bit is set, a fragment is read from the
memory. When using interrupts, every time a fragment is
available (given again by a NIM pulse), the VMEbus interrupt
module issues an interrupt, and a fragment is retrieved from
the memory.

Fig. 8 shows the performance measurements done for such
a test system running with two readout modules, each one of
them with two data channels. The measurements were
performed for both polling and interrupt modes, to compare
the event overhead and in general the ROD fragment transfer
time.

Paper #1094

0

500

1000

1500

2000

2500

0 2000 4000 6000 8000

ROD fragment size (bytes)

Ti
m

e/
Ev

en
t (

µs
)

Polling
Interrupts

Interrupt event overhead = 97 µs
Polling event overhead = 25 µs

Fig. 8. Performance measurements of a ROD crate test system running four
data channels.

The total transfer rate measured in this system, using single

cycles to read from the VMEbus memory, is 3.6 Mbytes/s,
which is close to the maximum rate that can be achieved in
this system.

It can be observed that the event overhead is smaller than
100 µs, corresponding to an event rate of 10 kHz, which fulfils
the RCD requirements.

 One of the enhancements to the RCD framework was the
capability of acting as an event builder (see section II.E and
IV.C). To validate the new event building software, a PC
running a RCD event builder was added to the test system
described in section IV.B. Full events are built out of the ROS
fragments received from the VMEbus crate. The network link
between the ROD crate and the RCD event builder is a Fast
Ethernet connection (100 Mbit/s). The performance
measurements can be viewed in Fig. 9.

0

500

1000

1500

2000

2500

0 2000 4000 6000 8000

ROD fragment size (bytes)

Ti
m

e/
Ev

en
t (

µs
)

Polling
Interrupts

Polling event overhead = 25 µs
Interrupt event overhead = 144 µs

Fig. 9. Performance measurements with a ROD Emulator connected to a RCD
event building system.

The performance is comparable to that shown in Fig. 8,
which shows that adding a RCD event builder has a small
impact on the performance of the system.

C. Detector Commissioning
The commissioning of detectors in ATLAS has already

started and will last until 2007. Within this context, RCD will
be the main tool concerning the data acquisition functionality.

The usage of the RCD will be similar to that of last year’s
test beam, with the ROD emulation modules gradually being
replaced by the final detector RODs.

In addition, whenever a larger part of a detector or several
detectors will have to be readout, requiring more than one
ROD crate, multi-crate event building will be used to acquire
combined data.

V. CONCLUSION
The ROS software framework, originally developed to meet

the dataflow requirements at the level of the common readout
system in the ATLAS DAQ (see Fig. 1) , has been extended to
the detector specific domain, largely based on VMEbus,
between the front-end electronics and the readout system.
Due to the modular design of the ROS software, and in
particular the technique of using plugins, new functionalities
could be added so as to meet the additional requirements of
RCD.

A first version of RCD was tested in the ATLAS Combined
Test Beam of 2004 and the requirements were met both in
terms of functionality and performance. Based on the feedback
from the test beam, RCD was further developed mainly to add
the event building capability and to improve the handling of
VMEbus modules. The RCD software will be an important
data acquisition tool for use in testbeds, for detector
commissioning and as a component of the final ATLAS DAQ.

ACKNOWLEDGMENT
The authors would like to thank the ATLAS TDAQ

community for their contributions in the work presented in this
paper.

REFERENCES
[1] ROD Crate DAQ Task Force. “Data Acquisition for the ATLAS Read-

out Driver Crate (ROD Crate DAQ) - Definition –“ [Online]. Available:
https://edms.cern.ch/document/344713/1

[2] G.Crone, S.Gameiro, B.Gorini, M.Joos, E.Pasqualucci, J.Petersen.
“ROD Crate DAQ User's Guide“ [Online]. Available:
https://edms.cern.ch/document/577958/1

[3] A. Kazarov, G. Lehmann, D. Liko, S. Wheeler, H. Zobernig. “ATLAS
TDAQ: Controller Requirements“. [Online]. Available:
https://edms.cern.ch/document/431663/2.1

[4] G.Crone, B.Gorini, M.Joos, E.Pasqualucci, J.Petersen., W. Vandeli.
“Extensions of the IOManager architecture for ROD Crate DAQ”.
[Online]. Available: https://edms.cern.ch/document/554806/1

[5] Creative Electronic Systems S.A. “RCB 8047 CORBO VME Read-Out
Control Board, User’s Manual”. Switzerland, Aug. 1993.

