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Abstract—In the ATLAS experiment at the LHC, the ROD 

Crate DAQ provides a complete framework to implement data 
acquisition functionality at the boundary between the detector 
specific electronics and the common part of the data acquisition 
system. Based on a plugin mechanism, it allows selecting and 
using common services (like data output and data monitoring 
channels) and developing libraries to control, monitor, acquire 
data and/or emulate detector specific electronics. 

Providing also event building functionality, the ROD Crate 
DAQ is intended to be the main data acquisition tool for the first 
phase of detector commissioning. 

This paper presents the design, functionality and performance 
of the ROD Crate DAQ and its usage in the ATLAS data 
acquisition system and during detector tests. 
 

Index Terms—Data acquisition, software design, VMEbus, 
detector commissioning. 
 

I. INTRODUCTION 
N the ATLAS Trigger and Data Acquisition system 
(TDAQ), the ReadOut Driver (ROD) is a sub-detector 

specific front-end element [1]. It is located, in the event data 
flow, after the first level of online event selection, between the 
front-end electronics and the ReadOut System (ROS), as 
illustrated in Fig. 1. The ROD receives data from one or more 
front-end links and sends data over the readout links to the 
ROS. The ROD Crate DAQ (RCD) was developed due to the 
sub-detector’s need of some common Data Acquisition (DAQ) 
functionality at the level of the ROD crate, for single or 
multiple ROD crates, in laboratory setups, at the assembly of 
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detectors, at test beams, and at the ATLAS experiment during 
commissioning and production. 

The ROD system covers all RODs and other functional 
elements at the same hierarchical level in the event data flow 
between the front-end electronics and the ROS. Those 
elements are grouped in crates. The crates contain ROD crate 
modules which can be: RODs, modules other than RODs, e.g. 
for controlling the front-end electronics, for driving a Timing, 
Trigger and Control partition, and one or more ROD crate 
processors. 

In the ATLAS implementation, ROD crates are custom 9U 
VMEbus crates, each one housing a single board computer 
running Linux, acting as the ROD Crate Controller (RCC).  

RCD comprises all the software to operate one or more 
ROD crates. It provides the functionality for configuration and 
control, data readout, ROD emulation, monitoring, and event 
building across multiple ROD crates. 

RCD is based on existing ROS software originally 
developed to meet the requirements of the main dataflow at 
the level of the ROS: to buffer fragments which are input via 
standard ATLAS readout links and provide fragments on 
request from the Level2 trigger and Event Building systems. 
An analysis of the ROS framework indicated that this could be 
generalised to the detector specific level of the ROD crates 
thereby extending the domain of ATLAS DAQ for which 
common software support is provided. 

 
Fig. 1. Simplified diagram of the TDAQ chain. 
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II. RCD USE CASES 
This chapter describes the RCD use cases [2]. 

A. Module Control 
The RCD is used to control one or more modules in a ROD 

crate. Controlling a module consists in communicating with it, 
passing relevant information at each of the TDAQ system state 
transitions (see section III.C). An example of modules that use 
RCD only for controlling are trigger modules. All the other 
use cases presented in this chapter include the RCD control 
functionality. 

B. ROD Emulation 
In this case, the RCD is used to read non formatted data 

from one or several modules, and to build ROD fragments, 
which can be later sent to the TDAQ system. This is typically 
used when a detector ROD is not available, and allows testing 
a detector with simpler electronics. Fig. 2 illustrates this use 
case. 
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Fig. 2. ROD Emulation use case. 

C. ROD Data Readout 
This is the main use case for the Phase 1 of detector 

commissioning, when the RCD is the DAQ tool available for 
detector readout. The RCD reads ROD fragments from one or 
several ROD modules via VMEbus, and builds ROS 
fragments. These ROS fragments can be either stored locally 
or sent out via a TCP connection to a data driven event 
builder, as described in section II.E. 

D. ROD Monitoring 
This is the typical use case for the RCD during ATLAS 

runs. The ROD modules are fully controlled by the 
application, but the modules themselves manage the primary 
data flow, sending events to a ROS through a readout link, as 
is show in Fig. 3. In this case, the RCD acquires sampled 
fragments from RODs for monitoring purposes, sending them 
to the monitoring system or the histograming service. The 
RCD should also be able to detect errors signalled by the ROD 
modules and perform operational monitoring. 
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Fig. 3. ROD Monitoring use case. 

E. Data Driven Event Building 
When acting as data driven event builder, the RCD receives 

ROS fragments coming from VMEbus crates or ROSs via 
TCP connections, and builds full events (Fig. 4). This is 
mostly needed during the detector commissioning, when the 
full TDAQ system and in particular the high level trigger is 
not yet available. 
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Fig. 4. Data driven event builder use case. 

III. RCD ARCHITECTURE 
The RCD software is based on a C++ common application 

framework originally developed for the ROS and referred to as 
IOManager (IOM). The framework loads specific plugins to 
customize its behaviour for the different RCD deployment 
scenarios. 

This chapter describes the RCD architecture, focusing on 
the thread and plugin structure, and the interface with the 
TDAQ run control system.  

A. Threads structure 
The RCD has the structure of a single, multi-threaded 

process based on Linux POSIX threads as illustrated in Fig. 5. 
The trigger thread is activated on the occurrence of an event 
which may be external or internal to the RCD. It builds a 
request which describes actions to be performed by the RCD 
in response to the event, e.g. reading out a number of data 
sources, and then writes this request to a queue. A request 
handler thread processes the requests: reads an element from 
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the request queue and executes it. It typically consists in 
extracting fragments from the data sources, and assembling 
these into a larger fragment, which is written to an output 
device. Several request handlers may work in parallel thereby 
achieving a better CPU utilisation. 

The framework provides a number of optional threads. The 
Sequential Input Handler thread supervises the input of data 
fragments from several ROD modules, based either on polling 
of registers in the RODs or VMEbus interrupts. The data 
fragments are read into a set of internal memory buffers, one 
per ROD, from where they can be accessed (randomly) via the 
request handlers. The User Action Scheduler thread allows 
activation of user written handlers when a defined time slice 
(per handler) has expired. Similarly, when a VMEbus interrupt 
occurs, the Interrupt Handler thread activates a user written 
handler identified by a VMEbus interrupt vector. 

In addition to the threads related to the data flow, there are 
control threads which communicate with external controller 
applications for configuration, error handling and statistics. 

The strategy for thread scheduling is based on ‘poll and 
yield’: a thread polls on a resource, executes until the resource 
is exhausted and then yields, i.e. gives the CPU back to the OS 
(Linux). This approach minimises the number of thread 
context switches and the time for one context switch. 
 

 
 
Fig. 5. Thread diagram of the RCD application. 
 

B. Plugins Mechanism 
The application framework implements the common core 

functionality of the system: interface with the run control 
commands, error handling and recovery, activity scheduling, 
configuration management, and event selection and sampling, 
among others. The application relies on specific plugins for 
the implementation of the different I/O protocols. 

All the plugins are loaded by the application at run time. 
They are loaded dynamically, and do not need to be linked to 
the main application. This allows users to add new plugins 
without having to modify the application binary.  

Fig. 6 shows a diagram with the four different types of 
plugins: configuration, trigger, module and output. The 
configuration plugin is the first one to be loaded, and it 
informs the application about the other plugins. For each of 
the four types of plugins, an abstract base class defines an API 

that needs to be implemented for every specific instance. A 
more detailed description of each plugin is now presented. 
 

 
 

Fig. 6. Plugin diagram of the IOM application. 
 
1) Configuration 

The standard way of configuring the RCD is via a 
configuration database. This database is based on a core 
schema which includes the definitions of all the classes of the 
system. A modular structure allows creation of new sub-
schemas with user defined classes, which may use other 
classes from the core schema, and can be included in the 
user’s database. An alternative way of configuring the RCD is 
via simple ASCII files, more suitable for 
development/debugging phases. 

2) Trigger 
The trigger plugin implements the functionality of the 

trigger thread, see section III.A. The RCD software provides 
several trigger plugins characterised by the type of trigger 
source which may be external or internal to the application: 
arrival of a message on a network; input of data fragments in 
the internal buffer via sequential data channels, see Fig. 5 
(data driven trigger); internal generation of the trigger 
(emulation). In addition the user may develop trigger plugins 
driven by detector specific trigger hardware, e.g. VMEbus 
modules. 

3) Module 
A module describes a hardware or software component that 

is controlled by the framework. It can perform any appropriate 
action associated with a state transition; the base class 
associated with a module is called ReadoutModule, and it 
includes virtual methods for each of the state transitions. 
Typical actions include reading the configuration database, 
initializing the hardware modules or publishing statistics.  

A module may be associated with the readout of data. In 
that case, one or more data channels are defined within the 
module, with virtual methods for requesting, retrieving and 
deleting fragments. A specialised implementation of a data 
channel was provided for RCD deployments, which include 
virtual methods for polling on a data source and retrieving 
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data (ROD fragments), sequentially.  
4) Output 

As explained in section III.A, a request handler writes the 
event fragments to an output device. This functionality is 
implemented via an output plugin. The RCD software 
provides several plugins associated with the type of output 
device e.g. network (DataFlow System Ouput) or local disk. In 
addition the user may develop specific output plugins although 
this should be an exception. 

C. Supervision System 
The TDAQ Supervision system is in charge of performing 

the initialization and shutdown of TDAQ firmware and 
software, distributing commands to TDAQ elements and 
synchronizing operations between them, and performing error 
handling [3]. The building block of the Supervision is the 
Controller. The Supervision will generally contain a number 
of Controllers organized in a hierarchical tree.  

In order to regulate the control activity, a State Machine 
model was introduced in the Controller’s core: a Controller 
always has a state, reflecting the possible states of the TDAQ 
system. The states and transitions of all Controllers in the tree 
are synchronized. Each state has a defined set of authorized 
transitions that bring the system into a new state, as shows Fig. 
7. 

 

 
 
Fig. 7. Simplified diagram of the Controller’s State Transitions. 

IV. RCD DEPLOYMENT 
This chapter deals with relevant aspects of recent 

deployments of RCD: its usage during the 2004 Combined 
Test Beam, enhancements of the functionality and its role in 
the detector commissioning phase.  

A. 2004 Combined Test Beam 
In the 2004 Combined Test Beam, a slice of the ATLAS 

detector was assembled with the objective of integrating and 
testing all the components of the experiment under real 
conditions.  Elements from nine different types of detectors, 
including the inner detector, calorimeter and external muon 
chambers, were installed in a beam line and exposed to 
different kinds of particle beams. 

 The detector readout electronics was connected to a scaled-
down version of the final ATLAS DAQ system, which was 

operated in realistic data taking conditions (24 hours a day 7 
days a week) for about six months. 

The readout electronics for the various detectors was mostly 
available in early prototyping versions, sometimes with 
limited functionality; hence the RCD software had to be used 
for different tasks: 

- All the detectors but one controlled and configured 
their modules via the RCD. 

- Some detectors used the ROD emulation functionality 
to read non-formatted data from different types of 
modules, combine it and build formatted fragments, as 
the final ROD modules were not available at the time. 

- More than half of the detectors had real ROD modules 
and some performed data readout with the RCD. 

- All the detectors but one used the RCD monitoring 
functionality. 

RCD was also used to control and configure the three 
different VMEbus modules used to interface the readout 
electronics with the first-level trigger, to handle incoming 
timing and trigger signals and to provide feedback on busy 
conditions. 

B. RCD enhancements 
After the 2004 Combined Test Beam, the usage of the RCD 

was analysed in detail, and a number of changes were 
performed in order to simplify the API and add some 
functionalities [4]. 

To test the new software, and while the final RODs of the 
detectors were not available, a test bed was set up to emulate 
the behaviour of a ROD. It consists of a VMEbus memory 
module plus a VMEbus interrupt module [5], which reproduce 
the three main ROD functionalities: memory, registers and 
interrupt capability. The memory is filled with ROD fragments 
to emulate the ROD data source. The trigger to read the ROD 
fragments is provided by the VMEbus interrupt module, which 
can be used in either polled or interrupt driven mode. 

When doing polled data read out, a register in the VMEbus 
interrupt module is read for the presence of a “data available” 
bit. This bit is set via a NIM pulse which runs at a given 
frequency. When the bit is set, a fragment is read from the 
memory. When using interrupts, every time a fragment is 
available (given again by a NIM pulse), the VMEbus interrupt 
module issues an interrupt, and a fragment is retrieved from 
the memory. 

Fig. 8 shows the performance measurements done for such 
a test system running with two readout modules, each one of 
them with two data channels. The measurements were 
performed for both polling and interrupt modes, to compare 
the event overhead and in general the ROD fragment transfer 
time. 
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Fig. 8. Performance measurements of a ROD crate test system running four 
data channels. 

 
The total transfer rate measured in this system, using single 

cycles to read from the VMEbus memory, is 3.6 Mbytes/s, 
which is close to the maximum rate that can be achieved in 
this system. 

It can be observed that the event overhead is smaller than 
100 µs, corresponding to an event rate of 10 kHz, which fulfils 
the RCD requirements. 

 One of the enhancements to the RCD framework was the 
capability of acting as an event builder (see section II.E and 
IV.C). To validate the new event building software, a PC 
running a RCD event builder was added to the test system 
described in section IV.B. Full events are built out of the ROS 
fragments received from the VMEbus crate. The network link 
between the ROD crate and the RCD event builder is a Fast 
Ethernet connection (100 Mbit/s). The performance 
measurements can be viewed in Fig. 9. 
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Fig. 9. Performance measurements with a ROD Emulator connected to a RCD 
event building system.  
 

The performance is comparable to that shown in Fig. 8, 
which shows that adding a RCD event builder has a small 
impact on the performance of the system. 

C. Detector Commissioning 
The commissioning of detectors in ATLAS has already 

started and will last until 2007. Within this context, RCD will 
be the main tool concerning the data acquisition functionality. 

The usage of the RCD will be similar to that of last year’s 
test beam, with the ROD emulation modules gradually being 
replaced by the final detector RODs. 

In addition, whenever a larger part of a detector or several 
detectors will have to be readout, requiring more than one 
ROD crate, multi-crate event building will be used to acquire 
combined data.  

V. CONCLUSION 
The ROS software framework, originally developed to meet 

the dataflow requirements at the level of the common readout 
system in the ATLAS DAQ (see Fig. 1) , has been extended to  
the detector specific domain, largely based on VMEbus, 
between the front-end electronics  and the readout system. 
Due to the modular design of the ROS software, and in 
particular the technique of using plugins, new functionalities 
could be added so as to meet the additional requirements of 
RCD. 

A first version of RCD was tested in the ATLAS Combined 
Test Beam of 2004 and the requirements were met both in 
terms of functionality and performance. Based on the feedback 
from the test beam, RCD was further developed mainly to add 
the event building capability and to improve the handling of 
VMEbus modules. The RCD software will be an important 
data acquisition tool for use in testbeds, for detector 
commissioning and as a component of the final ATLAS DAQ. 
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