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Abstract

The fundamental linear expansion formalism proposed for the offline alignment of
the ATLAS silicon tracking system is presented.
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1 Introduction

Alignment of the ever growing tracking systems of the modern HEP experiments becomes
more and more challenging. Not only do numbers of degrees of freedom rapidly grow but
the requirements for the final alignment accuracy get more ambitous due to the desire for
greater measurement precision.

The silicon tracking system of the ATLAS detector consists of two subsystems: the
PIXel detector and the SCT silicon strip detector. The subsystems are composed of 1744
and 4088 individual modules respectively. The entire system involves nearly 35,000 DoF’s!
Additional difficulty arrises from the fact that the magnetic field in the corresponding
tracking volume will be highly nonuniform making all tracking-related calculations (e.g.
track extrapolations) nonanalytic and therefore complicated. The basic assessment of the
alignment challenge together with physics motivated requirements were formulated in [1]
and [2].

In this paper we present the fundamental algebraic formalism at the heart of the cur-
rent base-line alignment algorithms proposed for the ATLAS silicon. Its main advantage
is simplicity and elegance while the major drawback might turn out to be the natural
limitation of the linear approximation adopted here and the difficulty of the numerical
calculations.

2 The Least Squares Linear Expansion

The alignment algorithm is based on the minimization of a “giant χ2” defined as:

χ2 =
∑

tracks

rT V −1r where ri ≡ (~mi − ~ei(π, a)).k̂ (1)

Here ~ei denotes the i’th intersection point of the extrapolated track with a sensor plane
and ~mi is the position of the associated detector hit. k̂ is the unit vector defining the
measurement direction for the sensor plane1. The intersection point depends on both
track parameters (π) as well as on the subset of alignment parameters related to the
intersected module (a). r is the vector of residuals for a given track. V is the covariance
matrix of r. Generally V is not diagonal due to contribution from the Multiple Coulomb
Scattering (V = Vmeas + VMCS). The notation is, however, equally valid for the case when
a track is defined not only by its five perigee parameters but also by the set of MCS
deflection angles on the measurement planes. See Appendix B for the details.

We are looking for the solution of the minimisation problem with respect to the align-
ment parameters. Therefore, we require that the minimum satisfies:

dχ2

da
= 0 =⇒

∑

tracks

drT

da
V −1r = 0 (2)

As a first step, we need to find the solution for track parameters for any arbitrary
alignment. This is nothing else but an ordinary track fit:

∂χ2

∂π
= 0 =⇒

∂r

∂π

T

V −1r = 0 (3)

1Recall that for a PIXel detector, each physical hit corresponds to two distinct measurements (2D)
and therefore gives rise to two residuals along two measurement directions.
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To find the solution we must expand the residuals around their initial values r0. We use
the first linear term only under the assumption: ∂2r

∂πi∂πj
→ 0, i.e the extrapolated points

are a linear function of track parameters, for small changes (see Appendix C for more
detailed discussion of the validity of the above assumption). Having expanded around the
initial value π0, we have:

∂r

∂π0

T

V −1(r(π0, a) +
∂r

∂π0

δπ) = 0 (4)

where ∂r
∂π0

≡ ∂r
∂π
|π=π0

. We then get the solution for the track parameters:

π = π0 + δπ = π0 −

(
∂rT

∂π0
V −1 ∂r

∂π0

)−1
∂rT

∂π0
V −1r(π0, a) (5)

Effectively, this provides a solution for π as a function of a, which can be reinserted
implicitly into the global χ2 definition. Now let us get back to Equation 2. In exact
analogy to the solution for track parameters, we can write down the set of linear equations
defining the solution for the alignment:

(
∑

tracks

drT

da0
V −1 dr

da0

)

δa +
∑

tracks

drT

da0
V −1r(π0, a0) = 0 (6)

Because r is a function of π and a the full derivative from Eq. 6 can be written as:

dr

da0
=

∂r

∂a0
+

∂r

∂π0

dπ

da0
(7)

dπ
da0

is obtained by differentiating Equation 5.
From Eq. 5 and Eq. 7 we get the final expression for the full derivative:

dr

da0
=
(
1 − E(ET V −1E)−1ET V −1

) ∂r

∂a0
where E ≡

∂r

∂π0
, (8)

which together with Equation 6 gives us the corrections to the alignment parameters
which satisfy Eq. 2:

δa = −

(
∑

tracks

∂rT

∂a0
W

∂r

∂a0

)

︸ ︷︷ ︸

M

−1
∑

tracks

∂rT

∂a0
Wr(π0, a0)

︸ ︷︷ ︸

V

(9)

where we substituted:

W ≡ V −1Ŵ ≡ V −1 − V −1E(ET V −1E)−1ET V −1 (10)

and use the relation:

ŴV −1Ŵ = W. (11)

∂r
∂a0

≡ ∂r
∂a
|π=π0, a=a0

. M ≡
(
∑

tracks
∂rT

∂a0

W ∂r
∂a0

)

is a symmetric n × n matrix where n is

the number of alignment DoF’s. At this point, one expects that many elements of matrix
M will be null since there is no connection between modules which are well separated in
η and φ.
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3 Fitting a Common Event Vertex

In the previous section we presented the basic calculation leading to the Least Squares
solution for alignment parameters with an implicit refit of all considered tracks. A natural
and very powerful extension to this formalism comes from the requirement of a common
origin (vertex) for certain subsamples of tracks. For simplicity hereafter, they will be
denoted as belonging to a common “event”. As before we start from the expression
for the global χ2 (equation 1) but now the we have double summation over the events
and tracks within an event. Tracks are no more described by their usual five perigee
parameters. Only three independent parameters per track remain (π = (φ, cotθ, Q/pT)).
Impact parameters are replaced by the common vertex for the event (b = (x0, y0, z0)).
The residuals take the form:

r ≡ (~m − ~e(π, b, a)).k̂ (12)

and depend explicitely on three different sets of parameters:

1. π – individual track parameters,

2. b – vertex position common for an event,

3. a – alignment parameters common to all events in the dataset.

Let us first find the position of the vertex itself given an arbitrary but fixed alignment.
In exact analogy to the solution for a in section 2 we obtain:

b = b0 + δb = b0 −

(
ev∑

tk

FT WF

)

︸ ︷︷ ︸

Mb

−1

ev∑

tk

FT Wr(π0, b0, a) with F ≡
∂r

∂b
(13)

It should be noted that in order for this formalism to work, all tracks used within an
event must originate from the same b0.

The generic form of the solution for alignment parameters resulting from Eq. 12 is:

δa = −

(
∑

ev

ev∑

tk

dr

da0

T

V −1 dr

da0

)−1(
∑

ev

ev∑

tk

dr

da0

T

V −1r(π0, b0, a0)

)

(14)

but now dr
da

has more complicated structure.

dr
da

= ∂r
∂a

+ Edπ
da

+ F db
da

dπ
da

= −(ET V −1E)−1ET V −1( ∂r
∂a

+ F db
da

)
db
da

= −M−1
b

(∑ev
tk FTW ∂r

∂a

)
(15)

where E, F and W are defined as before. From Eq. 15 we further find:

dr

da
= Ŵαr

a where αr
a ≡

∂r

∂a
− FM−1

b

(
ev∑

tk

FT W
∂r

∂a

)

(16)

Equation 14 and Eq. 16 combined yeld the solution for the alignment:

δa = −

(
∑

ev

ev∑

tk

αr
a
T Wαr

a

)

︸ ︷︷ ︸

M

−1
∑

ev

ev∑

tk

αr
a
T Wr(π0, b0, a0)

︸ ︷︷ ︸

V

(17)
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where we used again the identity 11. Note that with the imposed common vertex, the
solution again includes the n×n symmetric error matrix M−1. However, this time, none
of the matrix elements are identically zero. Given a large number of tracks, the matrix
will be fully populated.
Correlations have three sources:

1. DoF’s of a single module,

2. correlations through a common track,

3. tracks emerging from a common vertex!

4 Adding External Constraints

The solutions presented so far do not allow for any external constraints imposed on the
solution. In the most general case we could have constraints on:

1. track parameters (π),

2. beam constraint (b),

3. alignment parameters (a).

The above should be thought of as additional bi-linear terms in the χ2 expression. The
contraints in general may not be linear but these have to be linerarised before they can
enter the proposed formalism. In the following we sketch an example of a constraint on
track parameters within the formalism without the vertex fit. To start with, let us recall
the implication of the constraints on the individual track fit.

χ2 = r(π)T V −1r(π) + (π − x)T S−1(π − x), (18)

where vector x and covariance matrix S define the constraint of π. The linear expansion
of the χ2 expression 18 leads to the solution:

δπ = −
(
ET V −1E+S−1

)−1 (
ET V −1r(π0, a)+S−1(π0 − x)

)
(19)

Propagation of the constraint to the global alignment fit does not present any major
complication. Let us start from the modified χ2 definition:

χ2 =
∑

tracks

(
r(π, a)T V −1r(π, a) + (π − x)T S−1(π − x)

)
, (20)

The following lines show briefly how the final solution is obtained using the first order
linear expansion of the χ2 expression around the minimum. For brevity we adopt the
simplified notation: J ≡ ET V −1E + S−1, r0 ≡ r(π0, a0) & ∂r

∂a
≡ ∂r

∂a0

in all cases.

dχ2

da
= 0

⇓
∑

tracks

(
dr
da

T
V −1(r0 + dr

da
δa) + dπ

da

T
S−1(π0 + dπ

da
δa − x)

)

= 0
dr
da

= ∂r
∂a

+ Edπ
da

and dπ
da

= −J−1ET V −1 ∂r
∂a

(21)
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∑

tracks
∂r
∂a

T
(

Ŵ T V −1Ŵ + V −1EJ−1S−1J−1ET V −1
)

∂r
∂a

δa

+
∑

tracks

(
∂r
∂a

T
Ŵ T V −1r0

)

−
∑

tracks

(
∂r
∂a

T
V −1EJ−1S−1(π0 − x)

)

= 0

(22)

where we use the redefined expression for W :

Ŵ = 1 − EJ−1ET V −1 and W ≡ V −1Ŵ (23)

Since
Ŵ T V −1Ŵ + V −1EJ−1S−1J−1ET V −1 = W (24)

we finally get:

δa = −

M−1

︷ ︸︸ ︷
(
∑

tracks

∂r

∂a

T

W
∂r

∂a

)−1

(
∑

tracks
∂r
∂a

T
Wr0

−
∑

tracks
∂r
∂a

T
V −1EJ−1S−1(π0 − x)

)

(25)

The above formalism may be useful for implementing a beam spot constraint, constraining
track parameters from external tracking systems, for example calorimetry (e.g. E/p) or
eventually building the constraints based on reconstructed physics events (mass constraint
from narrow resonances, etc.). We do not have space here to derive the formulae for the
most general case. The main results and generalised solution are given in the form of a
“reference card” in Appendix A.
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5 Derivatives of the residuals

In the global χ2 minimisation detailed in the previous sections, one can see that the main
ingredients to derive the alignment parameters are error matrices and the derivatives of
residuals with regard to track and alignment parameters, vertex coordinates, and scatter-
ing angles. The error matrices are inputs from measurements or fits performed earlier in
the reconstruction chain (e.g scattering angles RMS). The aim of this section is to explain
how the different derivatives of the residuals are obtained.

5.1 General formalism

Consider X̂, Ŷ , Ẑ-the unit vectors defining the module local frame. X̂ is in the direction
crossing the strips and Ŷ is along the strips. Ẑ is the normal to the plane.

The two residuals, in the detector plane, are then defined by:

resX = (~m − ~e).X̂ (26)

resY = (~m − ~e).Ŷ

The derivatives of these quantities wrt a given parameter p are:

∂resX

∂p
= −

d~e

dp
.X̂ (27)

∂resY

∂p
= −

d~e

dp
.Ŷ

The position of a point on the trajectory is characterised by l, the path length.
The intersection point is defined by (~e − ~m).Ẑ = 0. Usually, this equation is solved by
iteration, as it cannot be solved analytically.
From this equation, we extract lint, i.e the path length at the intersection point. Note
that this quantity is an implicit function of p.

Now we can compute d~e
dp

:

d~e

dp
=

∂~e

∂p
+

∂~e

∂lint

.
dlint

dp
(28)

where ∂~e
∂lint

≡ ∂~e
∂l
|l=lint

and dlint

dp
is derived by differentiating the intersection equation,

(~e − ~m).Ẑ = 0, with respect to p and taking into account the fact that lint is an implicit
function of p:

d((~e−~m).Ẑ)
dp

= d(~e.Ẑ)
dp

= ∂(~e.Ẑ)
∂p

+ ∂(~e.Ẑ)
∂lint

dlint

dp
= 0

And then:

dlint

dp
= −

∂(~e.Ẑ)
∂p

∂(~e.Ẑ)
∂lint

(29)

Then, the final formulae for the residual derivatives are:
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∂resX

∂p
= −(

∂~e

∂p
−

∂~e

∂lint

∂(~e.Ẑ)
∂p

∂(~e.Ẑ)
∂lint

).X̂ (30)

∂resY

∂p
= −(

∂~e

∂p
−

∂~e

∂lint

∂(~e.Ẑ)
∂p

∂(~e.Ẑ)
∂lint

).Ŷ

which can be rewritten:

∂resα

∂p
= −

∂~e

∂p
.(α̂ −

∂~e
∂lint

.α̂

∂~e
∂lint

.Ẑ
Ẑ) (31)

where α = X, Y .
∂~e

∂lint
is the tangent to the track at the intersection point: in other words, it gives the

direction of the straight line representing the local approximation of the track.
In the local module frame, we define the direction of the track as (Φ, Θ). Then, the above
equation becomes:

∂resX

∂p
= −

∂~e

∂p
.(X̂ − cos(Φ)tan(Θ)Ẑ) (32)

∂resY

∂p
= −

∂~e

∂p
.(Ŷ − sin(Φ)tan(Θ)Ẑ)

The vectors
−−→
projX ≡ X̂ − cos(Φ)tan(Θ)Ẑ and

−−→
projY ≡ Ŷ − sin(Φ)tan(Θ)Ẑ are the

projection directions along which the change of the extrapolation is computed.

5.2 Derivatives with respect to the track parameters

The track parameters are denoted by π = {a0, z0, φ0, cotan(θ), q/pT}. From the results
found before, the derivatives of the residuals can be written as:

∂resα

∂π
= −

∂~e

∂π
.
−−→
projα (33)

where α = X, Y .

5.3 Derivatives with respect to the alignment parameters

The vision we adopt here is that the hit is “stuck” to the module and we study the effect
of the translations and rotations of the module on the intersection with the extrapolated
track, and therefore on the residuals. Note that here, we are defining partial derivatives
that only involve residuals of hits belonging to the module being displaced. Generally, the
motion of a given module can have an influence on residuals calculated in other modules
and this is taken into account in the total derivative of the residuals, dr

da
, defined in the

equations 7 and 15.
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Let’s call TX , TY , TZ the translation parameters and RX , RY , RZ the rotation parame-
ters.
Following the same methodology developped in the previous subsection, we find:

∂resβ

∂Tα

= α̂.
−−→
projβ (34)

∂resβ

∂Rα

= (α̂ ×
−−−→
lever).

−−→
projβ

where α = X, Y, Z; β = X, Y ,
−−−→
lever =

−−→
OM , O being the centre of the module and M

is the intersection point of the track.

5.4 Derivatives with respect to the common vertex coordinates

Let (vx, vy, vz) be the primary vertex position in the global frame.
The derivatives of the residuals with regard to the primary vertex coordinates are there-
fore:

∂resα

∂vi

= n̂i.
−−→
projα (35)

where α = X, Y , i = x, y, z, and n̂x = (1, 0, 0), n̂y = (0, 1, 0), n̂z = (0, 0, 1), in the global
frame.

5.5 Derivatives with respect to the scattering angles

Consider two scattering planes (i.e modules) a and b. We study the effect of the scattering
occuring through plane a on the residuals computed in plane b.

If a ≥ b, i.e the track passes through plane b before plane a, then the answer is
trivial: the derivatives of the residuals computed in plane b with regard to the scattering
occuring later in plane a are null.

If a < b: following the same formalism used in the previous paragraphs, we get:

∂resb
α

∂Ψa
= −

∂~eb

∂Ψa
.
−−→
projb

α (36)

where Ψ = Θ, Φ are the scattering angles.
The quantity ∂~eb

∂Ψa represents the rate of the variation δ~eb of the intersection point of the
track with plane b, given a change in the scattering angle in plane a, δΨa (the path length
is fixed here).
Changing the angle Θa by δΘa is equivalent to a rotation of angle δΘa about the axis ~ua

φ

whose centre is ~ea, where (~ua
r , ~u

a
φ, ~u

a
θ) are the local axes corresponding to the local frame

of module a, in spherical coordinates (~ua
r is along the track direction at the point ~ea).

Thus, the variation of the position of the intersection point in plane b is:

δ~eb = δΘa~ua
φ × (~eb − ~ea) (37)

= δΘa(−sin(Φa)X̂a + cos(Φa)Ŷ a) × (~eb − ~ea)

8



In the same way, changing the angle Φa by δΦa is equivalent to a rotation of angle
δΦa about the axis Ẑa whose centre is ~ea:

δ~eb = δΦaẐa × (~eb − ~ea) (38)

Equation 36 becomes then:

∂resb
α

∂Θa
= −[(−sin(Φa)X̂a + cos(Φa)Ŷ a) × (~eb − ~ea)].

−−→
projb

α (39)

∂resb
α

∂Φa
= −[Ẑa × (~eb − ~ea)].

−−→
projb

α

5.6 Comments about the derivatives

A certain number of points are worth being mentionned about these derivatives:

• The formulae shown in equation 32 are general and do not depend on any assumption
about the trajectory.

• However, for the derivatives with regard to track parameters, one needs underlying
assumptions, such as constant magnetic field, to get them analytically. The possible
concern is that the non-uniformity of the magnetic field will have to be taken into
account, particularly in the endcaps region where the field varies more rapidly.

• Following the comments in the previous point, the alternative we envisage is that
the derivatives with respect to the track parameters may be calculated numerically
or semi-numerically since from equation 32, only ∂~e

∂p
would have to be calculated

numerically. We can hope that the analytical derivatives will be precise enough, at
least for the barrel region, and we will try to avoid, whenever it is possible, to use
a numerical derivation, to save computing time.
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6 Conclusions

A simple, generic formalism to solve an arbitrary track alignment problem has been
presented. The solution is based on the minimisation of the generalised χ2 and uses the
first order linear expansion of the latter. The formalism has number of apparent features:
Good points:

• It makes maximal use of the reconstruction information, in a well defined way al-
lowing all the DoF to be fitted (apart from few degenerate modes).

• In principal, it converges in one pass (provided that the update required to the
alignment is not too big)

• It can deal with the non-uniform B-field.

• Possibility of adding constraints: E/p comes as a natural constraint, adding the
following term to the χ2: (E/p − 1)2/σ2, as well as Z → µ+µ− for the alignment-
dependent mass scale calibration, adding (mµµ − mZ)2/Γ2 to the global χ2.

Points of concern:

• The solution requires solving a system of n linear equations with n parameters where
n is the number of DoF’s of the system. The task is numerically challenging. Some
considerations about possible strategies are given in Appendix D.

• First order linear expansion to fit tracks/alignment parameters, valid for small dis-
tortions only - may require iterations.
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A The reference solution for the most general case

including the common vertex fit per event and var-

ious external constraints

In the following page, we present the key expressions defining the solution in the most
general case. The colour coding should help the reader associate various bits of the final
expression with their origin. We have:

• Constraints on track parameters (π),

• Contributions from beam constraint,

• Constraints on alignment parameters (a),

• Fit for the vertex position (b).

For brevity we use the simplified notation:
∂r
∂π

≡ ∂r
∂π
|π=π0, b=b0, a=a0

, ∂r
∂b

≡ ∂r
∂b
|pi=π0, b=b0, a=a0

, ∂r
∂a

≡ ∂r
∂a
|π=π0, b=b0, a=a0

in all cases.

12



The reference solution for the most general case

including the common vertex fit per event and external constraints

χ2 =
∑

ev

(
ev∑

tk

(
r(π, b, a)T V −1r(π, b, a) + (π − x)T S−1(π − x)

)
+ (b − v)T Q−1(b − v)

)

+ (a − t)T U−1(a − t) (1)

δπ = −J−1
(
ET V −1r(π0, b, a) + S−1(π0 − x)

)
(2)

δb = −

(
ev∑

tk

FT WF+Q−1

)−1

︸ ︷︷ ︸

M−1

b

(
ev∑

tk

(FT Wr(π0, b0, a) − FT V −1EJ−1S−1(π0 − x)) + Q−1(b0 − v)

)

(3)

where:
E ≡ ∂r

∂π
, F ≡ ∂r

∂b
, J ≡ ET V −1E + S−1, W = V −1 − V −1EJ−1ET V −1 (4)

Defining:

αr
a ≡

∂r

∂a
+ F

db

da
=

∂r

∂a
−FM−1

b

(
ev∑

tk

FT W
∂r

∂a

)

(5)

We can write the final solution for the alignment as:

δa = −

M−1

︷ ︸︸ ︷
{
∑

ev

(
ev∑

tk

αr
a
T Wαr

a +
db

da

T

Q−1 db

da

)

+ U−1

}−1

{
∑

ev

(
∑ev

tk

(

αr
a
T Wr(π0, b0, a0) + dπ

da

T
S−1(π0 − x)

)

+ db
da

T
Q−1(b0 − v) )

+U−1(a0 − t) }

(6)

where from (2), (3) and (5) we have:

dπ

da
= −J−1ET V −1αr

a and
db

da
= −M−1

b

ev∑

tk

FT W
∂r

∂a
(7)
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B Two alternative track trajectory parameterisa-

tions - without and with the explicit fit of MCS

deflection angles

In the “standard” representation, the track is described by five parameters (position
and direction at the perigee). Hits associated to the track have residuals resulting from
propagating the track through the magnetic field volume in the absence of scattering
material. Therefore, the error matrix of the residuals is composed of a diagonal matrix
corresponding to the measurement errors and a non-diagonal matrix responsible for the
Multiple Coulomb Scattering on the measurement surfaces.

V = Vmeas + VMCS where VMCS =
∂r

∂α
NMCS

∂r

∂α

T

(1)

NMCS is a diagonal matrix describing the rms of expected deflection angle on a given
scattering plane (according to the theory of Molière) and ∂r/∂α are derivatives relating the
deflection angle (α) to the change of track extrapolation to the consecutive measurement
planes. Vmeas describes the intrinsic resolution of the sensitive devices and is diagonal by
construction.

An alternative approach defines a track not only by the five parameters of its helix but
also by a sequence of scattering angles attributed to every scattering plane it traverses.
In this approach, we are bound to identify scattering planes with the actual mesurement
planes. In this formalism some objects change their identity:

r −→ r ≡

(
r′

α

)

, π −→ π ≡

(
π
α

)

and V −→ V ≡

(
Vmeas 0

0 NMCS

)

. (2)

At the same time the apparent residuals have to be redefined to accomodate the zig-
zagging track trajectory:

r′ = r +
∂r

∂α
α, (3)

as well as the matrix of hit residual derivatives with respect to track parameters:

∂r

∂π

′

=

(
∂r
∂π

∂r
∂α

0 1

)

. (4)

It can be shown that track fits using the two above formalisms lead to the same track
perigee parameters. The proof is beyond the scope of this paper2

As can be seen from Eqs. (1) through (4) the procedure is straightforward and requires
only two computations:

V = Vmeas +
∂r

∂α
NMCS

∂r

∂α

T

and r = r′ −
∂r

∂α
α (5)

It has been verified that the fit results do not change after the above compactification.

2http://hepwww.rl.ac.uk/Atlas-SCT/alignment/algorithm ms.pdf
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C Some comments on the linear approximation

To solve for the alignment, we minimize the χ2 which, in the absence of explicit constraints,
is given by the residuals (and deflection angles) and their weight matrix:

χ2 =
∑

tracks

rT V −1r and r = m − e(π, a) (1)

The usual way of solving analytically χ2 problems is to assume that the quantities
used to build the χ2 (here the residuals) are linear in the parameters of interest (here
the alignment parameters). This leads to the following parabolic expansion near the
minimum:

χ2 = χ2
0 +

dχ2

da
.δa +

1

2
δaT .

d2χ2

dada
.δa (2)

where χ2
0 = χ2(a0).

The minimization leads to the following estimation of the alignment parameters:

δa = −(
d2χ2

dada
)−1(

dχ2

da
) (3)

The complete expression of an element of matrix d2χ2

dada
is

d2χ2

daidaj

=
∑

tracks

drT

dai

V −1 dr

daj
︸ ︷︷ ︸

first term

+
d2rT

daidaj

V −1r

︸ ︷︷ ︸

second term

(4)

According to the linear approximation, the second term is dropped. It turns out that
in some cases, for particular tracks, the first term above is much smaller than the term
which is dropped. However, this is not a problem since the expression involves a sum over
many tracks and so, even if the first term for a given track vanishes, it is likely that its
second term is much smaller that contributions from other tracks.
Furthermore, for the misalignments expected, it is anticipated that the linear approxima-
tion will be good. Even if some of the initial misalignments are large, by applying the
alignment procedure once, any large uncertainties in module position will be significantly
reduced, so that changes to the parameters on a second iteration will be compatible with
the assumption of linearity to the required precision.
Having said this, there may be some consequences of these approximations and these will
be examined in subsequent studies on the performance of the alignment algorithm.
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D An approximate solution

The final matrix M is generally singular. The null eigenvalues correspond to the global
DoF’s of the entire system. Moreover, the remaining eigen spectrum spans over 10 orders
of magnitude making the solution numerically challenging. The simplest solution by
substitution is not good here.

An elegant alternative is provided by diagonalisation of the matrix, MD = UMUT .
The operation is, however, quite CPU time consuming (6× more than simple matrix
inversion!).

The workaround might come from the iterative procedures using approximate matrices.
In the simplest case, we define an “ideal” matrix M̂,3 invert it and use it to obtain the
solution by iteration:

a = −
∞∑

n=1

{

1 − M̂−1M
}n

M̂−1 dr

da

T

V −1r0, (1)

which converges to −M−1 dr
da

T
V −1r0 if | 1 − M̂−1M |< 1.

3The matrix can be obtained from simulated events using the nominal detector geometry.
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