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Abstract

In the above mentioned proposal, we proposed to study the β decay of 38Ca,

and in particular to measure its half-life with high precision. The INTC has raised

questions concerning the feasibility of such a high precision study due to the fact

that the daughter half-life is only about a factor of two longer. We have performed

Monte Carlo simulations which show that for the ISOLDE situation, i.e. where

an activity is accumulated for some time, transported to a measurement station

and then measured, the half-life can not be determined by only measuring the β

decay. The parent and daughter half-lives are too close for a fit to describe both

contributions correctly. However, with the present intensities, coincidences with the

1.57 MeV γ ray allow to reach the high-precision goal. Details of the MC simulations

and the results are described in the following.
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1 Experimental details

The 38Ca activity will be produced with ISOLDE as described in the proposal (fluorination
of calcium) and sent to the experimental setup. The activity will be deposited on a moving
tape outside a 4π ”pill box” gas detector which we are setting up right now. This gas
detector will be surrounded by a high-efficiency NaI setup to detect γ rays from the decay
of 38Ca. The electronics will work with a fixed dead-time per event which is much longer
than any possible delay from the electronics or the data acquisition. Therefore, each
event will generate the same dead-time, independed on e.g. the number of channels to be
treated etc. This allows to precisely correct for the dead-time in the analysis. Each cycle
consists of an activity collection of about 1 second, the transport of the activity into the
gas detector, and a measurement period of 20 half-lives, i.e. 10 s. After each cycle, the
data are written on disk and the spectra are cleared to be ready for a new cycle.

We performed Monte Carlo simulations to check whether the half-life of 38Ca can be
measured in the presence of the 38Km daughter activity and, if needed, whether when
requiring a γ coincidence with the 1.57 MeV γ ray from the β decay of 38Ca, we can still
reach sufficient statistical precision. A γ coincidence could include part of the Comp-
ton plateau above 511 keV, as the daughter activity has no γ line beyond the 511 keV
annihilation quantum.

2 The Monte Carlo simulations

In the simulations, we tried to use as realistic conditions as possible. We assume an average
production rate of 5000 38Ca per second to prepare a pure sample. This is possible as
38Ca will be prepared through fluorination and none of the contaminants produce fluor
molecules. However, due to the beam-on / beam-off cycles needed to determine the half-
life, we will have an effective counting rate of only 500 per second. Simulations which
used only the β decay showed that a fit is not able to distinguish between the two half-life
components (38Ca and 38Km) present. The two half-lives are too close to each other, even
if the 38Km half-life, which is well known, is kept fix.

In order to distinguish between the decay of 38Ca and the daughter decay of 38Km,
we will therefore gate on the 1.57 MeV γ ray in the decay of 38Ca. The branching ratio
of this ray is about 20%. With an almost 4π geometry of NaI detectors (two detectors
which sandwich the β detector), we can reach a detection efficiency of 50% which yields
a total efficiency of 10%. Therefore, we will use an effective counting rate of 500 38Ca per
10s cycle in our simulations.

A cycle starts with the accumulation of the activity on a tape for about 1s, its transport
into the detector device and the measurement of the half-life for 10 seconds, i.e. 20
half-lives by gating on the 1.57 MeV γ ray. In addition to the 500 38Ca counts, we
added a background rate of β − γ coincidences of 1 per second. The generated data are
subject to a fixed dead-time (5µs). We assumed that one run will consist on average
of 720 measurement cycles and that we will perform about 48 such runs. This yields
a total effective measuring time of 4 days. Between the different runs, we will modify
the experimental parameters such as fixed dead-time, discriminator thresholds, detector
high-voltage etc. These modifications will allow us to verify that the experimental result
is not biased by any experimental parameter.
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3 Results

Figure 1 shows one measurement cycle as generated by the MC simulations. This cycle
contains about 500 38Ca decays and 10 background counts. About 2 hours of measurement
will form a run. Before summing the cycles, the data are dead-time corrected channel-
by-channel with the fixed dead-time to yield the dead-time corrected run data. Figure 2
shows the decay spectrum from one such simulated run. These data are then fitted with
an exponential decay and constant and give a half-life value for each run. Once all the
runs are treated, the error weighted average gives the final half-life.

Figure 1: Decay time spectrum for a single
cycle. The spectrum contains parent and
background contributions. The line is a fit
to the data points.

Figure 2: Decay time spectrum for a run
of about 720 cycles. The data are dead-
time corrected before summation of the in-
dividual cycles. The constant shows the
background contributions. The full line is
the sum of background and 38Ca contribu-
tion as determined by the fit. In the figure,
we give the half-life as determined for this
run.

Figure 3 gives the half-life values for the 48 runs simulated and the average half-life.
It can be seen from the figure that a relative error well below 10−3 can be obtained with
a measuring time of 4 days. However, experimental data usually have some additional
uncertainties or inconsistancies which are not included in the simulations. For example,
for the 62Ga data, the experimental errors had to be increase by a factor of almost 2 to
get a reasonable χ2. Nevertheless, such a measurement will improve the half-life error
for 38Ca by at least a factor of 20. With such a precision, 38Ca can be included in the
compilation of the most precisely measured 0+

→ 0+ β transitions, as soon as the other
quantities needed, i.e. the Q value and the branching ratios, are known with an equivalent
precision.

Details about the analysis procedure used here which will also be applied to the ex-
perimental data can be found in reference [1].

The Q value meaurement can be performed relatively easily with ISOLTRAP and the
beam time for this measurement has been accepted by the last INTC. As for the branching
ratio measurement with a absolute precision of 0.1%, we have started to characterise a
single-cristal germanium detector with high precision sources and simulations to reach
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this goal.

Figure 3: Half-lives (points) as determined for the different runs. The present example is
a simulation for 48 runs with an average of 720 cycles per run and a cycle duration of
10 s. The total uncertainty in the simulations amounts to 0.1 ms. The input half-life was
440 ms.

4 Summary

We believe that with a total measurement time of 6 days, we can reach the goal of a half-
life precision of 0.1% or less. Compared to the initial proposal, the beam-time request
increased from 10 to 18 shifts. Such a measurement will allow us to make a significant
contribution to our understanding of the 0+

→ 0+ β transitions and the weak interaction.

Beam time needed for half-life measurement: 18 shifts
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