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Abstract

Using the charge reversal and time reversal properties of the Kerr-Newman solution,
a definition of antimatter in General Relativity is proposed, which would provide a
parameter-free explanation of the apparent cosmological term evidenced by super-
novae, CMB and LSS data. Tests on positronium and antihydrogen, which could
be realized in the next few years next to the CERN Antiproton Decelerator facility,
are briefly discussed

1 Introduction

It seems obvious that General Relativity is unable to distinguish gravitation-
ally matter from antimatter. Central to the General Theory of Relativity, the
Equivalence Principle seems to imply, through the Einstein equations relating
the metric tensor to the stress-energy tensor that, for identical initial condi-
tions, the trajectory must be independent of the nature of the test particles
or antiparticles.

A number of authors have proposed various solutions appearing to circum-
vent this argument, notably by extensions of general relativity [1,2]. In the
following, we follow a different approach by showing that charge-reversal (C)
and time-reversal (T) properties exist in simple solutions of General Relativ-
ity that evoke strongly the transformation relating matter to antimatter. In
particular, the Kerr-Newman geometry [3-5], which describes the geometry
associated with a charged and spinning mass, and the simple geometry as-
sociated with a spinning cosmic string [6] can be used to show that General
Relativity appears to propose, through the discrete C, P and T transforma-
tions, a rather natural, if surprising, definition of antimatter.

The three discrete symmetries C, P and T are fundamental to the definition
of antimatter. In effect, according to the CPT theorem [7,8], considered to be
valid in extremely general conditions —although this theorem has not been
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demonstrated in the case, notably, of curved spacetimes [9,10]— the CP trans-
formation relating matter and antimatter is strongly associated to the discrete
T time-reversal symmetry, whose violation has recently been demonstrated
experimentally for the first time [11]. Conversely, CP violation, discovered
experimentally in 1964 by Christenson et al. [12], introduces an asymmetry
between matter and antimatter [13], which appears extremely limited and
confined until now to the neutral meson systems. Therefore, to an excellent
approximation, antimatter appears as the CP-transformation of matter. Sim-
ilarly, if the CPT symmetry is exact, antimatter can be defined, at the same
excellent approximation, as “matter going backwards in time” [14]. In a first
part, we will recall the properties of the Kerr-Newman geometry, representing
a charged spinning mass, to exhibit its charge and time-reversal properties.

2 A Kerr-Newman electron is also a positron

In order to test the existence of charge-reversal properties, it appears adapted
to use the maximal analytic extension of the Kerr-Newman geometry which
represents the geometry associated with a mass m (supposed for the moment
positive), specific angular momentum a = L/m, and an electric charge e. We
will use the fast Kerr geometry, i.e. respecting the condition e? 4+ a? > m?.
In this case, the geometry has a simple topology and is not afflicted with a
Cauchy horizon. Note that this condition is met for all elementary particles,
with the notable exception of the scalar Higgs boson.

The disk limited by the annular singularity present in the Kerr-Newman ge-
ometry constitutes a “wormhole”between two asymptotically flat spacetimes
isomorphic to R4, in which the top and bottom of the disk in the first spacetime
are identified, respectively, to the top and bottom of the disk in the second
spacetime [15]. An example is provided by the Kerr-Newman geometry with
the m, a and e parameters of an electron:

m~ 0.9 x 107®kg,a = k/2m,e ~ 1.6 x 107°C
In this case, the radius of the ring is ~ 100 fm.

The fast Kerr geometry is particularly simple since it involves no horizon. The
angular momentum imposes an annular shape to the singularity, which appears
naked but nevertheless almost invisible since the measure of initial conditions
allowing to reach the ring singularity is zero. Brandon Carter has studied the
topology of this solution [5], noting the striking analogy that a “Kerr-Newman
particle”bears with real particles. In particular, the gyromagnetic factor of the
Kerr-Newman electron is ¢ = 2 and the geometric extension of the ring is of the
order of the Compton wavelength of the electron, giving it a spatial extension



compatible with its cross-section.

Another interesting feature concerns the charge conjugation (C) properties of
this solution. By crossing the non singular interior of the ring, an observer
will measure the charge and mass of the electron with a reversed sign. For a
particle physicist, this means that the particle with the quantum numbers of
an electron in the first spacetime has the quantum numbers of a positron in
the second spacetime, linked to the first by the interior of the Kerr ring. It is
important to note that if we assume that the initial “electron "has a positive
mass, the “positron”has necessarily a negative mass —m, inducing repulsive
gravity.

This results immediately from the symmetry properties of the metric and
electromagnetic field tensor form of the Kerr-Newman solution, which can be
expressed [5] in Boyer-Lindquist coordinates:

sin? @

ds® = '"pA—z (dt — asin® 9d¢)2 + 5 [(7'2 + a2) d¢ — adt}2

p?
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and :

F=2ep™ [(T‘Q - a2c0520( dr A (dt — asin2¢9d¢)]
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and where :

A =7r?—2mr+a? + e

and

p? =12 4+ a’cos*d

Another significant and surprising feature of the Kerr-Newman solution is the
fact that it is possible to go backward in time by exploring the second space-
time linked to the first by the interior of the Kerr ring. This feature was also
studied by Brandon Carter, and is known as the “Carter time machine” [16].
Initially considered as a source of paradoxical situations, the solutions incor-
porating CTCs are now known to lead to consistent solutions [17-19]. Using
regions with CTCs to define antimatter appears consistent with antimatter
defined as matter going backwards in time, as suggested by the CPT theorem
and the Feynman-Wheeler picture [14].



3 Conjugate points in the Kerr-Newman geometry

An important generic property of General Relativity is the existence of points
of infinite magnification for the image of an object through the lensing created
by a massive object. Used in recent years to detect massive compact halo
objects (MACHOs) in our galactic neighborhood [20,21], this magnification,
when it is infinite, has the consequence that the lensed object may appear
infinitely more luminous and closer than its true position. This property is
even stronger for the fast Kerr-Newman geometry, where Closed Timelike
Curves (CTCs) exist between any two points. For a given point A in the
neighborhood of the ring, there exists a set of points B such that the radar
interaction between A and B —photons are emitted by A, scattered by B
and received back by A— is instantaneous. The signal emitted comes back
with zero time delay as seen by the emitter, and an object at location B will
then appear to an observer as if it were at location A. These points can be
explicitly constructed in the Kerr geometry in 2 + 1 dimensions, where the
spinning cosmic string is an exactly soluble model [6]. It is straightforward
to demonstrate that the set of such points B lies on a portion of ellipse —
a portion of ellipsoid in 3 + 1 dimensions — (Fig. 1) since the time pitch
associated with a 27 rotation around the spinning cosmic string can be written
as At = 8ma@, where a is the specific angular momentum per unit length of
the string [6].

From the existence of conjugate points in 2 +1 gravity, expected to be valid
also in 3 4 1 gravity from the existence of CTCs, there follows a (non local)
definition of antiparticles in general relativity as the time-reversed image of
particles observed through a Kerr ring. These Kerr rings could be present in
all elementary particles, if they are string loops, and in the past singularity of
the Big Bang. This (non-local) definition of antimatter and the symmetries ex-
hibited by the Kerr-Newman solution imply as a consequence a gravitational
repulsion between matter and antimatter, defined relatively to each other and
not in an absolute way. The coupling of systems with opposite arrows of time
is reminiscent of the dynamical systems studied by Schulman [22]. From the
persistence of individual arrows of time for such weakly coupled systems, in-
teractions of each system with the conjugate system are expected to appear
as noise.

4 Explaining the cosmological constant coincidence

During the sixties and early seventies, several attempts have been made, using
notably a conjectured repulsion in strong interactions [23], which failed to jus-
tify the survival of significant matter and antimatter domains in a symmetric



Cosmic string

Fig. 1. An observer in A can use a spinning cosmic string to discuss at zero time
delay with a set of points B located on a portion of ellipsoid. In the special case
where the angle deficit created by a cosmic string is 7, a point B exists such that
a signal emitted by A and reemitted by B comes back to A at zero time delay and
with a direction identical to that of the initial signal. The interaction between A
and B is then diverging, and as a consequence B appears to be at the position of A

universe. The gravitational repulsion evidenced in the Kerr-Newman solution
would, on the other hand, effectively lead to a symmetric matter-antimatter
universe. It is fascinating to note that this gravitational repulsion between
matter and antimatter as defined above appears to lead to a parameter-free
explanation of the value of the “cosmological constant "observed in recent
supernovae and CMB observations [24-26]:

Qeor = Qnatter + Qa ~ 1 £0.02

where a nearly flat universe is composed of only 0.045 of ordinary baryonic
matter, with a dark matter density Qmaser ~ 0.30 and an apparent cosmologi-
cal density Q4 ~ 0.70. To justify this statement, let us consider the expression
for the deceleration parameter g as a function of the scale factor a and its
derivatives:

When observed on a scale larger than the matter or antimatter domains, this
symmetric universe will appear flat with a parameter ¢ <~ 0 due to the re-
pulsion of adjacent domains. Therefore, in a situation where the cosmological
constant is zero, it is possible to parametrize the repulsive term by a cosmo-



logical constant respecting:
q= Qmatter/2 - QA <~ 0= QA = O(l)ﬂmatter ~ 0.5 x Qmattcr

Although, at any given epoch, this equality will locally be verified, the evo-
lution of the matter density pmaser with time has for consequence that the
derived value of the effective “cosmological constant ”energy density will vary
according to (1 4 z)® since the matter density varies approximately in this
way after recombination. Therefore, the simple approximation we have used
indicates that by using a large number of small-z supernovae, we would find a
value of the cosmological constant Q4 ~ Qmatter/2, while for the sample used
in the SN1a observations [24,25], it is simple to check that the supernovae
have redshift parameters such that the average value of ((1+2)?) ~ 3, leading
to an apparent 4 ~ 2 X Qa1ter. Therefore, the apparent extraordinary coin-
cidence between the matter and cosmological constant densities [27] is simply
explained in this symmetric matter-antimatter universe. Ripalda, in a differ-
ent theoretical context, has also noted that repulsive gravity would lead to a
cosmological constant density of the same order as the matter density [28].

5 Critical discussion

Antigravity is usually considered as being impossible within the context of
General Relativity. We recalled that, on the contrary, repulsive gravity is
present in a large number of solutions in General Relativity and that the
charge and time reversal properties of the solution provide a strong motiva-
tion for antigravity. In addition, it should be remembered that most if not all
the impossibility arguments against antigravity have been shown to present
loopholes (see Nieto and Goldman [2] for a critical discussion). In the follow-
ing, we briefly discuss some of the impossibility arguments associated with the
use of the (mr < 0) part of the Kerr-Newman solution.

In particular, using the (mr < 0) subspace in Kerr-Newman obviously violates
the weak energy condition. On the other hand, various counterexamples are
known for most of the expressions of positivity of energy (for a critical discus-
sion, see e.g. Visser, Chap. 12, Ref. [29]). Therefore, while it seems probable
that an instability will develop in some region of the maximal analytic ex-
tension of the Kerr-Newman solution, it does not mean, however, that the
subspace defined by the condition (mr < 0) has no physical content.

The two-body solution in General Relativity is presently not known and even
appears as a long-term goal. We note here that this solution might involve the
coupling of regions of space-time with opposite relative time arrows, which
would restore the symmetry between the (mr > 0) and the (mr < 0) parts of



the Kerr-Newmann solution.

Also, Penrose has conjectured that naked singularities are forbidden (the so-
called ”cosmic censorship” conjecture). It may seem that the cosmic censor-
ship hypothesis is grossly violated in the Kerr-Newman solution, which should
therefore be rejected as non-physical. In fact, the violation could be very mild
since, as noted already by Carter [5], the Kerr and Kerr-Newman singularities
can only be reached by an observer following a null trajectory with initial con-
ditions of zero measure. In this sense, the singularity present in these solutions
is nearly perfectly invisible, and it appears probable that in every realistic so-
lution (the Schwarzschild solution being exceptional with its perfect spherical
symmetry [30]), the singularities will be effectively invisible. Note that, in our
past, a global singularity (the Big Bang) is visible, while time asymmetry and
instability are manifest in almost every macroscopic physical phenomenon.

Until recently, it was believed that Closed Timelike Curves (CTCs) would
lead to inconsistencies and should therefore be avoided at all cost. A more
precise study [19,17,18] has shown that consistent histories can always be
found despite the presence of CTCs. Surely enough, the existence of CTCs in a
solution brings with it a loss of uniqueness and determinism in the solution, but
it may be useful to remember that quantum physics has the same characters.

Similarly, coupling two systems with opposite arrows of time was initially
considered as inconsistent, or leading at the very least to the destruction of
the individual arrows of time of each of the two subsystems (see e.g. [22] and
references therein). But Schulman [22] provided evidence, using simulations
of simple dynamical systems, that the coupling of dynamical systems with
opposite times would preserve the existence of individual time arrows. Note
also that the initial low entropy of the universe could be justified much more
easily in this context than in the standard cosmological model.

Finally, we note that the usual arguments invoked to exclude the existence of
large domains of antimatter through the non observation of diffuse gamma-
ray background [31] are not applicable since diffusion and annihilation at the
border of matter and antimatter domains is prevented to a large extent by
gravitational repulsion.

6 Experimental tests

There is presently no direct experimental test of the gravitational mass of
antiparticles. Fairbank and Witteborn [32] made pioneering measurements on
electrons but these measurements were inconclusive [33]. In fact, it can be
shown that, under realistic conditions, the measurement of the gravitational



mass of an electron is almost necessarily hidden in the Johnson noise of ad-
jacent metallic surfaces used to shield the measurement from external fields.
On the other hand, measurements on antiprotons, with a higher m/e ratio,
could probably be realized using high bandwidth Single Electron Transistor
(SET) electronics [34]. However, since the quark mass content of the proton is
only of the order of one percent, the significance of a null measurement could
remain ambiguous.

Measurements of the gravitational mass of antihydrogen and positronium
atoms have been proposed [35-37]. Realized on neutral systems, these ex-
periments could lead to the first precision measurements of the gravitational
mass of simple antiparticle systems. These measurements could be realized
within the next few years near the Antiproton Decelerator (AD) at CERN.

Precision measurements in cosmology, in particular on supernovae, could also
represent an important test. By observing SN1a supernovae of high z (typi-
cally > 1), the difference of prediction between a cosmological constant term
and a term directly linked to the matter content could be observed. Satellite
experiments such as SNAP, by observing samples of a few thousand SNla
supernovae, could test our hypothesis with precision.

Finally, we note that our definition of antimatter in General Relativity could

lead to a parameter-free explanation of CP-violation in the neutral meson
system [38-42].

7 Conclusions

Charge (C) and time (T) reversal properties of the Kerr-Newman solutions
suggest a natural definition of antimatter in General Relativity, strongly remi-
niscent of Dirac’s definition of antimatter. Although, clearly, the cosmological
consistency of our proposed definition of antimatter in general relativity has
yet to be demonstrated, it provides a parameter-free explanation of the oth-
erwise extraordinary coincidence of the cosmological constant energy density
with the matter density, evidenced in the supernovae SN1la and CMB data.
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