
Report on the Reference Database for 
CMS Monte Carlo Production RefDB

The ARDA Group

Editors: J. Herrala, J. Andreeva

Description of RefDB
RefDB is the CMS Monte Carlo Reference Database [REFDB]. It was used for the first
time during the Spring 2002 CMS Computing Production. RefDB is also used by the CMS
Grid prototypes in both the USA and Europe to allow them to produce data for the CMS
physics community.

RefDB has four functionalities:
� RefDB serves as a production request submission system for the physicists. Web

forms allow physicists to define all the request details, including every parameter of
physics software. RefDB records the production requests done by the physicists.

� The production process needs to distribute the work to the regional centres and to
trace the production progress. RefDB can be accessed via a http client, eg. web
browser, by worklow planner tools, eg. McRunjob, as the central source of
production instructions. This mechanism allows a high level of automation in the
production process.

� RefDB is used for the coordination and monitoring of the world-wide distributed
production. Jobs are monitored locally, eg. using BOSS, and metadata is transferred
asynchroniously to RefDB for validation and book-keeping.

� Finally, RefDB is a metadata catalogue for the physicists who want to find out what
data is available and how to access it.

RefDB is based on a MySQL database designed for CMS Monte Carlo Production book
keeping. The (user) access to RefDB is mostly done with php scripts via the CMS web
server (cmsdoc.cern.ch), which is an Apache web server running php extensions. Users
must respectively use the http getter method, eg. wget command, in order to fetch the
data.

Measuring the performance
The goal of the this study is to get quantitative experience on the performance of RefDB in
a physics analysis environment. The main objective is to find out how many concurrent
connections/requests RefDB is capable to handle robustly and in an acceptable time.

The implemented queries were similar to ones used for extracting from RefDB information for the
creation of the set of production or analysis jobs for a given data collection. Information extracted
from RefDB represents the table, every row contains the set of parameters required for creating of a
given job:

1. Run number (integer). 

2. XML POOL catalog fragment in a zipped form (txt). XML POOL catalog fragment is an

1



extraction of full record of XML POOL catalog containing references to the input files
corresponding to a given run number, it does not keep trace of a real physical file location , but
has full information about logical file names and META file attributes used by COBRA
application. Catalog fragments are used for recreation of the full POOL XML catalog
corresponding to a given data collection and used for the further analysis. 

3. So called RUNID value, which is required by COBRA application and is used as a key value
while attaching data files to the META files of a given collection (txt). Several data collections
of different sizes (different number of records in the corresponding table) have been tried.

The performance of the data transfer was analysed by using data collections of different sizes
(different number of records in the corresponding table) ranging from 1Mb to 20Mb of data:

Number of records
in a collection

Size of a record Size of the whole collection

209 5.55 kb 1.2 Mb

985 5.55 kb 5.5 Mb

3487 5.55 kb 19.5 Mb

Table 1: The collection size listing in the performance analysis.

First round of stress testing was done in a read-only mode. To simulate the access to data
store during data taking, we updated RefDB every 10 seconds with information which a
common production job sends to data base when it is successfully finished. However, this
did not have a measurable impact on the performance.

Performance tests
One should note that the performance tests were run on the RefDB development server,
147MHz Ultrasparc 5 workstation, which today can be regarded as an low-performance
machine. However, the test suite produced by this study can easily be applied on the
production database as well. The Apache/php front-end is run on cmsdoc, which is a Sun
Sparc Ultra 60. The client is a P4-machine with 512MB of memory. All the machines are
connected to a fast ethernet of 100Mbit/s. In order to simulate concurrent user requests,
the client machine is running a Ruby script which forks several processes which
simultaneously send requests to the RefDB server via the Apache/php front-end. The time-
to-complete of these requests was measured with an increasing amount of concurrent
processes. In addition the size of the requested collections was varied, where the size of
the collection equals the number of records selected from the SQL database back-end (as
in Table 1). 

The result is shown in Figure 1. For large requests or high numbers of clients the clients
failed on the request. A limiting factor was the amount of concurrent connections that the
database can handle. A typical error message from the server is:

2



Warning: mysql_connect(): Too many connections in
/afs/cern.ch/cms/production/www/RefDB_test/cgi_dev/myadmin/lib.inc.php on line 311
Error

MySQL said: Too many connections

This error state prevents the system from being overloaded. Actually, the system was
acting in a robust manner during the whole test chain. No crashes were recorded. 

Figure 2 shows at which rate the data is transferred from RefDB to the clients. It can be
seen that the trasfer rate saturates as a function of concurrent connections. The maximum
value depends on the size of a single request that is the amount of records in the
collection. It was observed that the most probable bottleneck of the overall performance is
the CPU limitation of the MySQL server, which uses about 100% of the available CPU by
dealing only with 2-5 concurrent requests.

3

Figure 1: The average time-to-complete of a request presented as a function of the number of concurrent
queries. The collections were discribed in the Table 1.

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120 140 160

tim
e-

to
-c

om
pl

et
e 

[s
]

number of concurrent connections

Average response time

3487 records, 19.5Mb/connection
985 records, 5.5Mb/connection
209 records, 1.2Mb/connection



4

Figure 2: Average data transfer rate between RefDB and clients as a function of the number of clients.

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160

tr
an

sf
er

 r
at

e 
[M

b/
s]

number of concurrent connections

Average transfer rate

209 records, 1.2Mb/connection
985 records, 5.5Mb/connection

3487 records, 19.5Mb/connection



Figures 3 to 5 present the response time of RefDB as a function of amount of concurrent
connections. It should be noted that the bars present standard deviation, not measurement
error.

5

Figure 3: Response time for a collection of 1.2Mb.

Figure 4: Response time for a collection of 5.5Mb.

Figure 5: Response time for a collection of 19.5Mb.

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140 160

tim
e-

to
-c

om
pl

et
e 

[s
]

number of concurrent connections

Response time of retrieving 209 records, 1.2Mb/connection

max
std.dev.
average

min

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

tim
e-

to
-c

om
pl

et
e 

[s
]

number of concurrent connections

Response time of retrieving 985 records, 5.5Mb/connection

max
std.dev.
average

min

0

100

200

300

400

500

600

700

800

900

1000

1100

0 10 20 30 40 50 60

tim
e-

to
-c

om
pl

et
e 

[s
]

number of concurrent connections

Response time of retrieving 3487 records, 19.5Mb/connection

max
std.dev.
average

min



Figures 6 to 8 present the distribution of time-to-complete for individual queries. The
distributions presents the largest successful amount of parallel connections for each
collection.

6

Figure 6: Distribution of response time for a collection of 1.2Mb.

Figure 7: Distribution of response time for a collection of 5.5Mb.

Figure 8: Distribution of response time for a collection of 19.5Mb.

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40

n

response time [s]

Distribution of the response time (150 connections, 209 records, 1.2Mb/connection)

0

5

10

15

20

25

0 20 40 60 80 100 120 140

n

response time [s]

Distribution of the response time (100 connections, 985 records, 5.5Mb/connection)

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

n

response time [s]

Distribution of the response time (60 connections, 3487 records, 19.5Mb/connection)



Conclusions
The response times were measured for the RefDB development server, which has an
order of magnitude slower processor that the production server. Nevertheless, the results
of the stress test were acceptable in current state. There should not be need to serve more
that 50 users concurrently, which RefDB is able to handle even with large collections of 20
Mb. Another aspect is the response time, which varied from 10 to 600 seconds for 50
concurrent users depending on the size of the collection. 

The implemented queries were similar to what is done while extracting from RefDB information for
creating of set of production or analysis jobs for a given collection (run numbers, catalog fragments
to construct an XML POOL catalog, information used by COBRA application).

7



Bibliography
REFDB: Lefebure V., Andreeva J., RefDB: The Reference Database for CMS Monte Carlo
Production, 2003

8



9


