File Transfer in the Grid
The ARDA Group

Editor: B. Koblitz

Abstract: We present a quick overview on the properties and performance of
RootD, GridFTP and RFIO from the point of view of a grid-based analysis
environment.

Introduction

In this paper we give an overview of three file transfer protocols which are con-
sidered for deployment in the LHC Computing Grid: The RootD file transfer
daemon of the Root analysis environment [ROOT], the GridFTP file transfer ap-
plication from the Globus toolkit [GLOB] and the RFIO file transfer program®'.

For all three protocols a small client program was written which simulates sev-
eral clients by using the Linux fork () system call. Using these clients the stabil-
ity and performance of the servers were tested when handling several concur-
rent transfers. All three file transfer protocols also allow reading parts of the
files and the test clients made use of this capability by reading parts of the re-
mote file into a buffer before writing the data out to a local file, except for the
RootD protocol, which offers remote-access only to Root data files and for which
our client-implementation used the FTP like direct file transfer API.

Security and General Behaviour

The RFIO protocol was designed for the transfer of files in a trusted environ-
ment with a minimum of overhead. Thus it is the only transfer protocol which
currently does not use a secure authentication (this is currently added to the
protocol) and therefore lays open the overhead of authentication when compar-
ing with the two other protocols. However, RFIO offers a minimum of authentic-
ation by sending the user's name as well as user-id and group-id to the server
which then checks access privileges. Both GridFTP and RootD offer authentica-
tion with strong encryption through SSL and SSH (RootD also allows other oth-
er authentication mechanisms but SSH is the most convenient to set up for a
single site). None of the protocols does encrypted data transfers by default,
however GridFTP offers this as an option.

The desired behaviour of a reliable file-transfer protocol should be to allow as
many simultaneous connection as is possible without endangering the stability
and responsiveness of the server, as well as to provide useful feedback to the
client. Table 1 summarizes the results of the file transfer protocols using sever-
al concurrent file requests by the provided clients?. The number of connections

1 For RootD the CVS version from May 12% 2004 including several patches for RootD from
G. Ganis which were published in version 4.00/06a was used, GridFTP from Globus 3.2 and
RFIO version 1.6.1.

2 rfcp in the case of RFIO, globus-url-copy in the case of GridFTP and a custom client
written using the RootD-API.

grid-ftp rootd rfio

Number of 40/s 10 (default of no direct limit,
clients accep- (xinetd) sshd for concur- | only time-outs
ted by default rent authentica-
tion processes)
Abandoned no yes yes
daemons
Empty files if yes - no
no connec-
tion

Table 1: General behaviour of the 3 file transfer protocols.

is limited for GridFTP by the xinetd which is used to start the GridFTP servers
when clients connect. The default for this is 40 connections per second, after
which further connections are refused. For RootD this limit is the number of 10
concurrent SSH authentication sessions provided by the sshd. Note that this
does not limit the total number of transfers by RootD, only the number of con-
currently connecting clients. RFIO finally does not seem to have a hard limit. In-
stead rfcp commands fail with time-outs. While the feed-back of GridFTP to the
user is quite good, RootD does have difficulties figuring out the cause for the re-
fused connection. It will consider SSH authentication to be not-working and will
consequently flood the user with the results of other failed authentication at-
tempts via different authentication methods?®. This feed-back is only given on
stderr. There is no way for a program to understand the underlying problems
because the relevant calls in the RootD API do not report any errors on return.

Another behaviour tested was what happens if client programs were prema-
turely terminated: In this case RootD and RFIO could leave abandoned server
processes. In the case of RootD this prevented further connections to the serv-
er. GridFTP has the peculiarity that when connections failed empty files were
created on the client side. Hanging client processes have been observed for
RootD (again rendering the server useless) and for GridFTP.

Concerning the API the three solutions differ drastically. While RootD only al-
lows for remote access to root-files via the streaming mechanisms, plus a pos-
sibility to initiate a file transfer, RFIO provides a full POSIX-inspired access
mechanism to the remote files via adapted open, read/write and close com-
mands using a file number as handler. GridFTP finally comes with a compre-
hensive API which offers monitoring of the transfers as well as it's own multi-
threading model. Programming for this API is difficult and entails much longer
programs (a factor of 3 in case of out client program compared to the RFIO
solution).

3 This behaviour was the reason for the patches by G. Ganis, unfortunately his patches did
not entirely solve this problem.

Q —_— 1] RootD 16K

g - time-outs ot
GridFTP 10K ----u=---
GridFTP 100K
RFIO 10K =merteeen
RFIO 100K — — —

A
| D
* * 60 86 100

clients
Figure 1: File transfer speed for RootD, GridFTP and RFIO depending on the number of

clients concurrently transferring files. For RFIO time-outs prevent a reliable transfer for
more than 20 clients when transferring 100KB files.

Performance of Large File Transfers

All three file transfer applications provide similar performance when transfer-
ring large files in their standard configurations. GridFTP can optionally use mul-
tiple streams for data transfer, which can increase the file transfer speed over
WAN connections considerably [GSIF]. In our test set-up using a dual PIII serv-
er at 800MHz and with 1GB of memory connected to a P4 2.8GHz client with
512MB of memory via a 10MBit Ethernet connection, the transfer rate for large
(1GB) files was in the order of 570KB/s and differed little for the three file
transfer applications.

Many Concurrent File Transfers

While single large file-transfers are considered to be the usual use-case for file-
transfer in the Grid as a production environment, the situation as seen in cur-
rent user analysis environments is often different [ABH]: Users will read only
small parts of many files, for example if they are interested in a small subset of
high energy physics events which are spread over many files. In this situation,
the file access speed and the capability of the server to handle many client re-
quests becomes important. Also clients erroneously starting several transfers
should not crash the system. In the following, we look into the stability and per-
formance of the file transfer applications using several concurrent transfers.

In order to test the performance of the three file transfer applications, client
programs were written which forked into several concurrent processes reading
a remote file into a buffer and writing the data out to a local file (in case of
RootD only a file transfer was initiated). The tests were done with relatively
small files of 10KB and 100 KB size so that the access speed dominates the per-
formance. The result as the transferred KB per second depending on the num-
ber of concurrently connecting clients is shown in Figure 1 and represents the
performance of the server accessing many files. It is evident that RFIO has a
problem with many concurrent request. For files of a 100KB size it time-outs for
more than 20 concurrent clients. For smaller files its performance drastically

decreases at this point. Its very high performance for low numbers of connect-
ing clients can be explained by the small overhead of authentication. This over-
head is highest for RootD, due to its usage of SSH. All protocols have in com-
mon that their transfer capability increases first with growing numbers of cli-
ents and then start to drop again. This underlines the usefulness of multiple
streams for data transfers. Interestingly, the much larger implementation of
GridFTP offers a much higher performance than RootD.

Conclusions

The performance of all three investigated file transfer protocols RootD, RFIO
and GridFTP is similar for large files, while it differs by an order of magnitude
for small files (10KB and 100KB) where the file accessing speed is dominant
and thus the overhead due to authentication is high. All three solutions still
have some problems with handling serving several concurrent requests and es-
pecially the reporting of errors to the application in a way so that it can react in
a sensible way.

Bibliography

ROQOT: http://root.cern.ch

GLOB: http://www.globus.org

GSIF: http://www.ihep.ac.cn/~chep01/paper/10-012.pdf
ABH: http://www slac.stanford.edu/~ahb/xrootd

