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Basic features of nuclear data evaluation for uranium isotopes 23U and *U at intermediate
energies are described. The coupled channel optical model was used to obtain total cross section,
reaction cross section, angular distributions and transmission coefficients. The direct, pre-compound
and evaporation models were used to describe neutron and charged particles emission from excited
nuclei. The neutron data evaluated were combined with JENDL-3.3 data below 20 MeV to obtain a full
data set in the whole energy range between 10° eV and 250 MeV. Evaluation of the proton data has

been done at energies from 1 to 250 MeV
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1. Introduction

Nuclear data evaluation at intermediate energics has a principal meaning for the increasing of
accuracy of data used in different applications. Such applications include the development of concept of
an accelerator-driven waste incineration system, radiation therapy, isotope production for medicine,
material research using accelerators and others.

In the data evaluation a special attention should be given for incident particle energies below
250 MeV, where application of codes based on the intranuclear cascade evaporation model and the
QMD-model is rather questionable due to the physical limitations or deviation of calculated and
measured nuclear reaction characteristics.

This work is devoted to nuclear data evaluation for uranium isotopes >**U and 28 irradiated by
neutrons and protons at energies up to 250 MeV. Theoretical nuclear models, availablc experimental
data and systemétics were used for the evaluation.

The neutron data were obtained mainly in the energy region from 20 to 250 MeV. Below 20 MeV data
from JENDL-3.3 library for 25y [1] and ¥ [2] were considered as the standard and were included
completely in the final file prepared from 10 eV 1o 250 MeV. The proton data were prepared at

energies from 1 to 250 MeV.

2. Brief Description of the Nuclear Models and Codes Used in the Present
Work

Coupled-channel optical model has been used to provide total cross section, angular
distributions for elastic and inelastic neutron scattering, to calculate the transmission coefficients for
neutrons and charged particles. The optimal set of the coupled channel optical model parameters has
been derived from analyses of available experimental data to perform the calculations up to 250 MeV.
The numerical calculations were carried out with ECIS96 code [3].

The Hauser-Feshbach statistical model and the pre-compound model realized in GNASH code [4] were

i

used for the calculation of particle emission spectra and nuclide production cross sections.
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Nuclear level density was obtained on the basis of generalized superfluid modet with paramcters fitted
to cumulative number of low-lying levels and observed neutron resonance densitics [5]. The expression

for nuclear level density is written as follows
p(U,J,n):pqp(U',J,n)Kvib(U')Krm(U'), (b

where pg(U’.J,n) is the density of quasi-particle nuclear excitation [6], K,in(U’) and K,(U’) are the
vibrational and rotational enhancement factors at the effective energy of excitation U’. The vibrational
enhancement coefficient K,;,(U’) was calculated according to Ref.|5].

For the inner saddle and axially symmetric saddle deformation the rotational enhancement

factors were obtained as follows K. (U’) = O'i , for the asymmetric saddle point K. (U’) =
2421 62 G, and for the outer saddle K,(U') = 26 [7], where G, and G, are perpendicular and

parallel spin cutoff functions, respectively.
The attenuation of the rotational enhancement with the excitation energy growth was
considered according to Refs.[5,8].

The nuclear level density parameters are calculated according (o the following expression [5,6]

all+dW(U'-E /(U'-E ,if U'>U
a(U _{a( (p( cond) ( Cond) 1 cr , )

~laqu,), ifuU'<U,

where the asymptotic value of level density parameter is equal to a =A(0L+BA'”3), 0=0.073, B = 0.115,
@(U)= 1-exp(=yU), y=0.4/A"" MeV"', 8W is the shell correction.

The effective energy of excitation U’, critical energy of the phase transition U, and the
condensation energy E...¢ were defined according to Refs.[5,6].

For the ground state the shell corrections W, in Eq.(2) were calculated on the basis of Myers,
Swiatecky approach [9]. For the inner and outer saddle points the values of SWSA and SWSB were

taken from Ref.[7] considering the difference between types of the saddle symmetry.

The fission barriers were considered as spin-dependent and described as follows [10],
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B} ()=C'B,, () +f(T)g()) BW! —dW,,). (3)
where B, (J) is the spin-dependent barrier calculated according to Sierk liquid-droplet model [11],

W,

and SWSi are the shell corrections for ground state and the i-th saddle point, respectively, C'is

S
the adjustment factor, {(T) and g(J) are temperature and spin fade-out functions.

Factors C' were defined in the present work to provide the agreement between calculations and
available experimental data for neutron interactions with uranium isotopes.

The nuclear temperature (T) fade-out function f(T) in Eq.(3) was calculated according to

Ref.[10]
1 for T<1.65MeV
f(T)= ; 4)
5.809exp(-1.066T), for T > 1.65MeV
The function g(J) was defined according to the following expression [10]
1
g()= )

1+expJ—1,,,)/ AT’

where the parameters J,,, and AJ are equal to J,,=24, AJ=2.5 [12].

Nuclear dissipation effects resulting in the reduction of the fission width with the growth of the
excitation energy were taken into consideration based on the results of Refs.[13,14].

The pre-equilibrium nucleon spectra were calculated with the exciton model taking account of
multiple pre-compound emission. Value of the averaged squared matrix element for two body
interactions was obtained from Ref.[15], where the parameterization of <|M|2> has been done as the
function of E/n (where E is the excitation energy and “n” is the number of excitons). A description of
the pre-compound model including angular momentum effects can be found in Refs.[4,16].

Examples of the (n,xn) and (n,f) reaction cross sections calculation by the GNASH with the
global set of model parameters are shown in Figs.1 and 2.

The mode! used in the original GNASH code [4] to describe the pre-compound spectra of the
composilc particles contains noticeable shortcomings. An example is given in Fig.3. This figure shows

an o-particle spectrum for p+2°9Bi reaction at a primary energy E,=90 MeV, calculated on the basis of
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the approach described in Ref.[4] and with  pre-equilibrium model described below. The calculations
with GNASH code are not in the agreement with the available experimental data [17]. Tt should be
noted that any variation of the main parameters of pre-equilibrium model [4] could not provide a
reasonable agreement with the experimental data for complex particles emission from the heavy nuclei.
The shortcomings of the GNASH algorithm [4] for description of the pre-compound emission for
particles with A > 2 were pointed out also in Ref.[18].

In the present work the pre-equilibrium o-particle emission spectra were calculated in the
framework of coalescence pick-up model [19] combined with the knock-out model as shown in
Refs.[20,21]. The multiple pre-equilibrium emission was taken into consideration. For deuteron, triton
and *He spectra calculation the exciton pick-up model [22] was applied. The contribution of the direct
mechanism to the deuteron emission was considered on the basis of phenomenological approach [23].
All approaches considered above were tested using the available experimental data in the intermediate
energy region of primary particles.

Fission neutron- and y-spectra were obtained on the basis of the model described in Ref.[24].
This model is a refined Fong approach [25] adjusted to experimental data for the fission fragment yields
and other fission characteristics in a wide energy range of primary particles. The algorithm described in
Ref.[24] was used before as a part of the intranuclear cascade evaporation code [26]. In the present work
to increase the accuracy of obtained results this algorithm was introduced in ALICE code [27,28],
which is at the same time a modified and extended version of the original Blann code [29]. Application
of this code (ALICE/ASH) allows to use more sophisticated models, such as optical model for inverse
cross sections and superfluid model for nuclear level density calculations, comparing with the
approaches usually used in the codes based on the INC model. Figure 4 shows an example of the fission

235

product yields calculation using ALICE/ASH code for the neutron interactions with ~U at the different

primary energies.
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3. Neutron Nuclear Data Evaluation for 2*U

Neutron scattering and absorption

To obtain total cross sections, angular distributions of scattered neutrons at primary energies up
to 250 MeV the coupled channel optical model parameters has been derived from the analyses of the
experimental data. For calculations at energies below 100 MeV the parameters from Ref.[30] were
adopted. The set of the CC optical model parameters is shown in Table 1.

The calculated total cross section is presented in Fig.5 with the experimental data [31-40] and
the results obtained with various sets of optical model parameters taken from Refs.[30,41,42]. The
experimental data at energies up to 250 MeV are cited by the compilation [43] and Ref.[30]. Only
limited number of measured data below 20 MeV is presented in Fig.5, which shows also values
predicted by the systematics. The systematics was obtained in Ref.[44] from an analysis of experimental
data for a wide range of nuclei at energies between 14 MeV and 1 TeV.

A good agreement is observed between the result of the present calculations, available
experimental data and systematics values. It should be noted that the parameter sets from
Refs.[30,41,42] used for the comparison were obtained at energies below 100 MeV demonstrating at
these energies good agreement with the experimental data.

There are no experimental data for elastic and reaction cross section for n+>**U interactions at
energies above 20 MeV. These cross sections obtained with the CC optical model and parameters from
Table 1 and Refs.[30,41,42] are shown in Figs.6 and 7, which also show the cross sections calculated at
energies below 20 MeV with the optical potential from Ref.[45] used for JENDL-3.3 file preparation.

The elastic scattering cross section calculated with different sets of optical model parameters
are in good agreement at energies below 100 MeV. At the higher energies the present calculations are
close to the systematics values [44]. For the reaction cross sections (Fig.7) results of the various
calculations differ noticeably. The calculation with the optical model parameters from Table 1 is in the

agreement with JENDL-3.3 at 20 MeV data and with the systematics [44] at energies above 100 MeV.

_5_
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Figures 8 and 9 illustrate calculated angular distribution for elastic and inelastic scattering for

the lowest 2*, 4" and 6 collcctive levels at primary neutron energies equal to 50 and 200 MeV.

Fission

The fission-evaporation competition was considered for more than two hundred residual nuclei
included in the calculation.

The fission of uranium, protactinium and thorium isotopes gives the most contribution in the
total fission cross section for n+>*®U interactions. The other nuclides give less than 7 % of the total
fission cross sections. The relative contribution of different elements for U fission cross sections
calculated by GNASH code is shown in Fig.10.

The fission cross sections calculated with GNASH code is compared in Fig.11 with available
experimental data above 20 MeV [46-48]. Measured ratios of the fission cross sections for 28y and U
from Refs.[46,48] were transformed to the absolute values using the fission cross sections for Py
obtained [rom the analysis of different experiments.

There is a reasonable agreement between the GNASH calculations and the experimental data
(Fig.11). Nevertheless, the final evaluation of (n.f) cross section has been performed based on the
statistical analysis of the available experimental data and theoretical calculations. The result is shown in
Fig.11 and signed as “JENDL/HE”. The fission cross section calculated with ALICE/ASH code is

compared with the experimental data in Fig.12.

Neutron production

The neutron production in n+U interactions has contributions from reactions without fission
(e.g. (n,2n)), the emission preceding the fission (e.g. (n,2nf) reaction) and the emission from cxcited

fission fragments.
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In the first two cases the neutron spectra have pre-compound tails and noticeable anisotropy in
the angular distribution. Such spectra were calculated with GNASH code and the angular distribution
was obtained by Kalbach systematics {49]. Examples of neutron spectra calculated at primary particle
energies equal to 50 and 200 MeV is shown in Fig.13.

Figure 14 shows the neutron production cross scction and the contribution of pre-fission
neutron emission calculated by GNASH code. Also the pre-fission neutron yield measured in Ref.[50] is
shown. The small correction of the data {50} was made for the comparison with the present calculations.
The data were measured in Ref.[50] for p+mU interactions and include the contribution of low energy
neutrons' . The correction was made to take account of the contribution of the pre-compound neutron
emission and the difference between the fission cross sections for proton and neutron induced reactions.

The neutron production cross sections calculated with GNA§H code are in good agreement
with JENDL-3.3 data at the energy equal to 20 MeV and with the experimental data [50].

The average number of neutrons emitted from the fission fragments and fission neutron spectra
were calculated with ALICE/ASH code. The calculations with ALICE/ASH code were performed under
assumption [14] that the ratio of the neutron and fission widths is not cnergy dependent at small
excitation energies. Parameters of the models realized in this code [27] were chosen to achieve a general
agreement with GNASH calculations and the experimental data.

Figure 15 shows the evaluated average number of prompt neutrons per fission <v> together
with available experimental data above 20 MeV [50,51]. The number of the post-fission neutrons was
obtained with ALICE/ASH code; the pre-fission contribution was calculated using GNASH code. Small
correction has been made to achieve the agrccment with the experimental data {51] below 30 MeV.
Calculated normalized fission neutron spectra are shown in Fig.16 for the energy of primary neutrons

equal to 30, 60 and 250 MeV. Also the Maxwellian fission spectra are shown here with the temperature

"'The “best” measured result for 155 MeV-protons on ***U according to Ref.[50] is 5.8 + 1.0 neutrons per
fission for the pre-fission evaporation and 5.1 £ 0.5 ncutrons for the post-fission events. The neutron energy

is detected below 9 MeV.
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© defined from the calculated fission spectra maximum location. It is seen, that at the relatively small
energies the calculated fission spectra are approximated by Maxwellian shape with a good accuracy. At
the high primary particle energies the calculated spectra differs from the Maxwellian ones at the high-

energy tail of the spectra.

Charge particle emission

Models to obtain the charged particle cmission spectra and yields were described above.
Angular distributions for all channels were estimated with Kalbach systematics [49].

Due to the lack of experimental data above 14.5 MeV the calculated charged particle yields are
compared with the systematics values at 62, 90 and 160 MeV. The systematics were obtained in the
present work based on measured data for charge particle yields in proton induced reactions. These data
were taken from Ref.[52] at 62 MeV (8 nuclei from 2C 1o mBi), Ref.[17] at 90 MeV (4 nuclei from
7Al to 209Bi) and from a compilation of the measured data in Ref.[53] around 160 MeV (number of
measurements: deuterons: 9 from '2C to *®Pb; tritons: 17 from '>C to **Th; *He: 15 from "*C to **Th;

a-particles: 13 from 12C 10 22

Th). The data and the systematics trends are shown in Figs.17-19.
The obtained formulas to estimate deuteron (Gy), triton (G), ‘He (on) and o-particle (Gy)
production cross sections are the following
62 MeV: 90 MeV:
04=061.894 S+79.095, ©,=290.285 5+98.8155,
0,=86.538 5+6.342, 6,=185.809 S+5.70936,

o= 15.1404 exp(-9.2863 S), oh=—16.1045 S+12.0636,

0,=183.049 exp(-7.578 S), G,=245.854 exp(—4.95716 S),

160 MeV:

04=265.529 §+65.3466,
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0,=143.391 S$+3.96263,

ay=—14.1149 §+14.0019,

Go=—147.131 §+125.526,

here the cross sections are given in mb, S=(A-2Z)YA, Z,A are atomic and mass numbers of the target

nucleus.

Figure 20 shows the calculated total proton production cross section and the contribution of the
post-fission evaporation. The experimental data from Ref.[54] at 14.8 MeV and the systematics
prediction at 14.5 MeV [55] are also shown. There is a good agreement of the calculated and
systematics values at 14.5 MeV. The experimental data from Ref.[54] seem to be too high comparing
with other measurements for heavy nuclei (sece Ref.[56]).

Calculated total deuteron production cross sections are shown in Fig.21 together with the
systematics predictions at 14.5, 62, 90 and 160 MeV. For 14.5 MeV the systematics from Ref.[55] was
used. The systematics value [55] was corrected to exclude possible (n,np) reaction contribution from the
measured sums of the cross sections for {n,d) and (n,np) reactions.

Figures 22 and 23 show the triton and the . He-production cross sections. The systematics value
for (n,t) reaction at 14.5 MeV was obtained from Ref.[57].

The calculated o-production cross section is presented in Fig.24 together with the experimental
data [54,58] and the systematics predictions. The systematics value at 14.5 MeV was obtained
according to Ref.[59). The production of the o-particles from the excited fission fragments is also

shown in Fig.24.

Kemission

Photon emission spectra from excited nuclei, except for the fission fragments,

were calculated with GNASH code. The post-fission emission was treated by ALICE/ASH code.

_9._
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Fig.25 shows the calculated total y-production cross section and the contribution of the emission from
the excited fission fragments. Below 20 MeV data from JENDL-3.3 are shown. There is a good
agreement between the values calculated above 20 MeV and those contained in JENDL-3.3

file.

4. Neutron Nuclear Data Evaluation for U

Neutron scattering and absorption

235

The total cross section calculated with ECIS code for “"U is shown in Fig.26 together with

h *®U there is quite limited number of

available experimental data [34,60,61]. In comparison wit
experimental data for 25U above 20 MeV, which do not cover all energy region under investigation.
Also Fig.26 shows the total cross section values taken from intermediate energy file prepared in the
Institute of Nuclear Power Enginecring (INPE) [62,63]. Evaluated data from Ref.[62] are based mainly
on the systematics values from Ref.[44], which are not shown here. A good agreement is observed for
two different evaluations.

Figure 27 shows the elastic cross sections for 23U evaluated in the present work and in Ref.[62]. There
is no experimental data for the considered cross sections above several MeV’s. For the elastic scattering
cross section, there is a reasonable agreement between two evaluations.

The present calculations for the elastic angular distribution are compared with the data from Ref.[62] in
Fig.28. In general, a good agreement is obtained up to primary neutron energy equal to 50 MeV. Above
50 MeV the evaluation [62] is based on semi-empirical systematics from Ref.[64] for elastic angular
distribution and the agreement between different data sets is seen only for low scattering angles.

The direct inelastic scattering cross sections were calculated for the members of the ground
state rotational band: 9/2° (46.2 keV), 11727 (103 keV), 13/27 (170.7 keV) and 15/2° (249.1 keV) levels.
It should be noted that JENDL-3.3 evaluation considers the direct components for two of the first levels
mentioned here, which give the most contribution to the total direct inelastic scattering cross section.

Fig.29 shows the calculated direct inelastic scattering cross sections at energies from 0.1 to 250 MeV.
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The inelastic scattering angular distribution with the cxcitation of the level 9/27 (46.2 keV)
evaluated by different authors is compared in Fig.30 for a neutron energy equal to 20 MeV. All
cvaluations except BROND-2.2 are in reasonable agrecment for angles below 30°. At large scattering
angles the difference of the data is more noticeable. A good agreement is achieved between the prescnt

calculations and JENDL-3.3 data.

Fission

As for n+>"*U interactions, the fission of uranium, protactinium and thorium isotopes gives the
most contribution in the total fission cross section for 2**U. The relative contribution of the different
elements to the (n,f) cross section is similar 1o those for 2y (see Fig.10 and Fig.31). The nuclei with
atomic number Z < 89 give less than 9 % of the total fission cross sections (Fig.31). The recommended
evaluated fission cross section for 2°U is shown in Fig.32 with the experimental data from Refs.[65,66].

The ratio of the (n,f) cross sections calculated by GNASH code and evaluated values is shown
in Fig.33 together with the results obtained using ALICE/ASH code. In general the deviation of the

calculated and recommended cross sections is less than 5 % and never exceeds 10 %.

Neutron production

The yields of the neutrons emitted before the fission calculated with GNASH code is shown in
Fig.34, as well as the data from JENDL-3.3 and ncutron yields preceding the fission. There is a good
agreement between results of the present calculations and JENDL-3.3 data as for the total, as for the
pre-fission ncutron production cross section at the energy equal to 20 MeV.

The neutron production cross sections obtained using GNASH and ALICE/ASH codes are

compared in Fig.35. The deviation of the different calculations is less than 10% at the primary neutron
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energies below 100 McV, is equal to 16 % at 150 MeV and 24 % at 250 MeV. The final data included
in JENDL-HE file are based on the rcsults obtained with GNASH code. For the illustration the
calculated (n,xn) reaction cross sections with the “x™ value up to 8 are shown in Fig.36.

Figure 37 shows an example of the angle integrated neutron spectra calculated by GNASH and
ALICE/ASH codes at 50 and 250 MeV. There is a good agreement in the shape of the spectra calculated
by the different codes except for the high-energy tail, where the direct inelastic scattering with the
excitation of the discrete levels plays the dominant role.

The averaged number of prompt fission neutrons <v> is shown in Fig.38 together with experimental
data [51,67]. The pre-fission part of the <v> was calculated by GNASH code and the post-fission
contribution was obtained using ALICE/ASH code. The calculated values are' in an excellent agreement
with JENDL-3.3 and measured data [51,67].

Figure 39 shows an example of the normalized fission neutron spectrum calculated in the present work
at a primary neutron energy equal to 200 MeV. Also the evaluated data from Ref.[62] and the
Maxwellian spectrum are shown. The observed deviation of the standard Maxwellian spectrum from the
one calculated by the theoretical approach one was discussed above for » #U. The difference between
present calculations and data from Ref.[62] is due to the different models used for the spectra
calculations. Evaluation [62] is based on the using of the intranuclear cascade evaporation model. The
advantage of the model used in the present work and implemented in ALICE/ASH code was discussed

above in the Section 2.
Charge particle emission

Proton production cross section calculated using GNASH and ALICE/ASH codes are compared in
Fig.35. The difference of the results is about 26 % at the primary neutron energy equal to 250 MeV. An

example of the proton spectra calculation at 50 and 250 MeV is shown in Fig.40.
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Figure 41 shows a comparison of the evaluated proton production cross section, experimental data [58],
systematics value [55] and data from FENDL/A-2 library. Present evaluation is in the agreement with
FENDIL/A-2 data at cnergies below 15 MeV. At higher energies difference between two data sets is
noticeable.
Evaluated deutcron, triton, *He and o-particle production cross sections are presented in Figs.42-45
together with FENDL/A-2 data and cross sections estimated using the systematics at energies around
14.5, 62, 90 and 160 MeV.
" Deuteron and triton evaluated yields are in the agrcement with the systematics values at 14.5 MeV [55]
and 14.6 MeV [57]. For (n,a) reaction the systematics prediction [59] at 14.5 MeV seems (o be too low.
A reasonable agrcement is obtained between the evaluated data and FENDL/A-2 at this energy (Fig.45).
At the same time the difference between the results of the present evaluation and data from FENDL/A-2
is significant in many cases (Figs.41-45). In this connection it should be noted that the data from
FENDL/A-2 for **U were prepared with THRES code [68] based on rough and simplificd description
of the reaction mechanism.

The yields of charged particles due to fission fragments de-excitation calculated using
ALICE/ASH. code are shown in Fig.46. Comparison of the data presented in Fig.46 with the total
charged particle production cross sections (Figs.36, 41-45) shows that the post-fission evaporation gives

only small contributions to the total particle yields.

Kemission

Calculated y-production cross section for 2*U is shown in Fig.47 together with JENDL-3.3 data.
Also the y-yield for the post-fission evaporation is shown. An example of the calculated y-spectrum is

given in Fig.48 {or the primary neutron energy equal to 250 MeV.
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5. Proton Nuclear Data Evaluation for 2%U

Scattering angular distribution and reaction cross section

Calculations were performed with the coupled channel model. Parameters of the optical
potential were chosen to provide an agreement between experimental and calculated proton angular
distributions, reaction cross section and to obtain reasonable energy dependence of the inelastic
scattering cross sections at energies up to 250 MeV. Below 65 MeV the parameters of the optical
potential from Ref.[30] were used. The available experimental data for elastic and inelastic scattering
differential cross sections [69-72] are limited by the energy range up 65 MeV and the using of the
optical model parameters from Ref.[30] provides the best agreement with the experimental data
comparing with other calculations. Comprehensive illustrations are given in Ref.[30] and are not
reproduced in the present work.

Figure 49 shows examples of the calculated elastic angular distributions at energies 150 and
250 MeV where experimental data are not available. The present results are located between the curves
obtained using the optical parameters from Ref.[30] and Ref.[42].

Reaction cross section at energies up to 250 MeV were measured for 2*®U in Refs.[69,73-76)].
Fig.50 shows the experimental data and reaction cross sections calculated using different CC model
parameters and the systematics from Ref.[44]. The cross sections calculated with the parameters from
Refs.[41,42] seem to be too high at energies above 100 MeV. The most reasonable results comparing
with the measured data are obtained in the present work.

Figure 51 shows the calculated direct inelastic scattering cross sections for 2*, 4" and 6" states

of ™®U at energies up to 250 MeV.

Fission
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Fission cross sections at energies up o 250 MeV were measured for >**U and natural mixture of
uranium isotopes in Refs.[69,74,77-102]. Both data for 28U and for natural uranium [78-81,86,95,98]
are used in the present work for the comparison with the calculated cross sections. The big number of
the data has been obtained 40-50 years ago. For many cases such data differ noticeably from the results
of the later measurements.

Figure 52 shows thc experimental data and calculated fission cross sections for “8U. The
caiculations were performed with GNASH and ALICE/ASH codes. The fission cross section predicted
by the systematics [103] is also presented in Fig.52. Part of the data measurcd below 20 MeV is not
shown not to “overload” the picture, It is scen that the calculated cross sections and systematics values

are close to the measured data from Ref.[92] and [102].

Neutron production

There is the lack of the experimental information for this one of the most important
characteristics of the proton interactions with 28y, Despite of the absencc of the directly measured
neutron production cross section (6,), the data from Refs.[50,104,105] can be used for the comparison
with the calculated cross sections after some treatment.

Neutron double differential cross sections measured for U in Refs.[104,105] at the primary
proton energies 113 and 256 MeV were converted in the total neutron production cross section. It was
done after the integration by the energy of the measured d’o/dedQ distributions and based on the
general dependency of do/dQ [17] from the angle of the emitted particle. The dominating contribution
in the neutron production for >80 is due to isotropic low energy neutron emission occurring in the
different stages of the reaction. This fact simplifics the recovery of the ¢, values based on the measured

d’6/dedQ distributions available at the limited number of angles.
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Data {rom Ref.[50] were measured for pre-fission and post-fission neutron emission at the
energy of outgoing neutrons from 0.5 to 9 MeV. These data were transformed to the total o, values after
the estimation of the contribution of the neutrons not detected in Ref.[50].

Figure 53 shows the evaluated total neutron production cross section and the values recovered
from the measured data as discussed above. The contribution of the post-fission neutrons is also shown
in Fig.53. There is a reasonable agreement between calculated and measured data.

The part of the total neutron production cross section corresponding to the pre-fission and
(p,xn)-emission calculated with GNASH and ALICE/ASH codes is shown in Fig.54. The deviation of
the different results at energies above 100 MeV is about 14-17 %.

For an illustration calculated and measured neutron double differential cross sections are shown

in Fig.55 for the primary proton energy equal to 113 MeV.

Charged particle production

The proton production cross sections calculated with GNASH and ALICE codes are shown in
Fig.54. The main difference between two different calculations is in the energy range below 40 MeV.
As in the case of the n+>*U interactions the contribution of the post-fission protons emitted are
negligible comparing with the total proton production.

The obtained deuteron, triton, *He and a-particle production cross sections are shown in Fig.56
together with the systematics predictions at 62, 90 and 160 MeV.

Examples of spectra calculated for the charged particle emission are presented in Fig.57 for the

primary proton energy equal to 100 MeV.

Isotope production cross sections
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The yields of the individual nuclides in the reactions excepting fission at energics below 250
MeV was measured in Refs.[78,81,106-114]. The data can be optionally divided in two groups
including the measurements performed in 1954-1961 years and in 1983-1994 years. The quality of the
old measurements is quite questionable and sometimes the deviation of the measured values for the
same nuclide are considerable (see e.g. data for 227py production in Ref.[106} and [107]).

The noticeable part of the measurements is for (p,n) reaction cross section. The experimental
data and the evaluated curve for this reaction are shown in Fig.58.

The spécial attention of experimentalists was devoted to (p,3n) reaction. The yield of 236Np
produced in this reaction was measured as for the meta-stable [108-112], as for the ground [111,112]
state of the nucleus. Fig.59 shows the evaluated (p,3n) reaction cross sections corresponded to the sum
of the ®™Np and *®Np vyields. Data from Ref[110] corresponding to “*"Np production were
transformed to the total 2 °Np yields based on the isomeric ratio measured in Ref.[111]. Figure 60 shows

the (p,xn) reaction cross sections together with the experimental data from Ref.[109].

¥production

The calculated total y-production cross section for p+>°U interaction is shown in Fig.61. The
yield of y-rays from post-fission evaporation is also shown.
Figure 62 shows the (p,y) reaction cross section for 2**U and single available experimental point at 200

MeV from Ref.[109].

6. Proton Nuclear Data Evaluation for 2°U

Scattering angular distribution and reaction cross section

Considerably less amount of experimental data is available for the proton induced reaction

characteristics for 2*U comparing with 2*U.



JAERI-Research 2002-028

Figurc 63 shows the reaction cross section for **U calculated using different sets of the
coupled channel optical model, estimated according (o the systematics [44] and measured in Ref.[69].

The comparison of the calculated elastic angular distribution and single available experimental
data [69] at a primary proton energy equal to 22.8 MeV is shown in Fig.64. A good agreement is
observed for all range of the detected angles.

The energy dependence of the direct inelastic scattering cross sections is presented in Fig.65 for
the members of the ground state rotational band: 9/27 (46.2 keV), 11/27 (103 keV), 13/27 (170.7 keV)

and 15/27 (249.1 keV).

Fission

235 .
U was measured in

Fission cross section at energies below 250 MeV for
Refs.[77,78,82,92,94,99,102,115-117]. The data obtained by authors of Ref.[116] are cited by
Refs.[118,119].

Figure 66 shows the experimental data, the fission cross section calculated by GNASH code,
ALICE/ASH code and obtained with systematics [103]. Also the data of the recent fission cross section
evaluation [118] are shown. Some measured data presented in Fig.66 are cited by Ref.[120].

There is a reasonable agreement between (p.f) reaction cross sections calculated in the present

work, the measured data (cxcepting data from Ref.[82]), systematics predictions and independent

evaluation from Ref.[118].

Neutron production

Evaluated neutron production cross scction is shown for U in Fig.67 in comparison with the

data obtained for ***U.
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The evaluated (p,xn) reaction cross scction are presented in Fig.68 together with the

experimental data from Ref.[109].

Charged particle and yray production

The energy dependence of the charged particle and y-production cross sections and the shapes
of the corresponding spectra are similar for both of uranium isotopes, *5U and *U. These data were

238

discussed for “"U above. The absolute values of the cross sections differ slightly for >80 and *°U and

can be found in the evaluated data files.

7. Conclusion

The description of the new data evaluation in the intermediate energy region for 28U and U
is presented here. For the first time the evaluated data for 281 and *"U were obtained for neutron and
proton induced reactions at energies up to 250 MeV (see Table 2).

The evaluation includes the application of the theoretical models and the experimental data analysis.
The coupled channel optical model, pre-compound and equilibrium models were used for nuclear
reaction characteristics calculation. The neutron data obtained at cnergies above 20 MeV were
combined with JENDL-3.3 data file to obtain full data set at energies from 107 eV to 250 MeV. The

proton data evaluation has been performed at energies from 1 to 250 MeV.
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Table 1. Optical model parameters for neutron interactions with U a energies up to 250 MeV.

(Potentials and energy are given in MeV, radii and diffuseness in fm)

Parameter Energy range
Vr=46.65 — 0.307E+0.001 E* - 5.0 (A-2Z)/A, E <100

Vg =64.214 — 0.47352 E+ 0.0009088 E— 5.0 (A-2Z)/A, E> 100
Wp=4.49+0.491 E-9.0 (A-2Z)/A, E<11.2
Wp=9.99-0.071 (E-11.2) -9.0 (A-2Z)/A, 11.2 <E < Eqay
Wp =0.0, E > Enax
Wy=0.0, E<112
Wy=0.1000 (E-11.2), 11.2<E< 150
Wy =13.88, E > 150
Vs0=6.02,

rr=1.2616,

ag=0.643,

rp=1.2331,

ap=0.567+0.0022 E, E<11.2
ap=0.5916, E>11.2
ry=1.245,

av=0.324,

rso=1.12,

as0=0.59-0.002 E, E <100
as0=0.39, E > 100

B=0.219, Pw=0.053, Pso=—0.0065,
Enax = 126.761 (1.1984—(A-2Z)/A).




Table 2. Staus of intermediate nuclear data evaluation for 2**U and
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235

U.

Organization Year Primary Maximal Basic data below 20 | Reference
particle primary MeV for neutron data
energy file
U-238
LANL 1988, neutrons, 100 MeV ENDF/B-V [121]
1989 protons
INPE, FZK 1995 neutrons 50 MeV ENDF/B-VI, par- [63]
tially JENDL-3.2
IPPE, ENEA, | 1999 neutrons 150 MeV ENDF/B-VI [18]
RIT
JAERI 2001 neutrons, 250 MeV JENDL-3.3 This work
protons
U-235
INPE, FZK 1997 neutrons 300 MeV ENDF/B-V1 [63]
JAERI 2001 neutrons, 250 MeV JENDL-3.3 This work
protons
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Fig.1  Examplc of GNASH code calculation (dotted line) with the global set of model parameters for

(n,xn) and (n.f) reaction cross sections for 28 as well as JENDL-3.3 (solid line).
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parameters for (n,xn) and (n,f) reaction cross scctions for 25 as well as JENDL-3.3 (solid

line).
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Fig.3  An a-particle spectrum for p+209Bi reaction at E;=90 MeV calculated using the pre-compound
model for complex particle emission of GNASH [4] (dotted line) and with approach described

in the present work (solid line). The experimental data are from Ref.[17].
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Fig.4  Fission product yields for the neutron interactions with U at energies of 14, 100 and 250
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file are shown in the top figure (o).
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Fig.5 Total neutron cross section for 28U calculated using different sets of coupled channel optical

model parameters. Measured data are taken from Ref.[31-40].
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model parameters.



JAERI-Research 2002-028

4000

----- CC Young-95

—-—--CC Young-98

— — = CC Sukhovitskii

—<— CC Haouat (JENDL-3.3)
-~ Barashenkov systematics
—— Present work

3000 4 *

2000 — =

1000 ~

Reaction cross section (mb)

1 LI ¥
50 100 150 200 250
Neutron energy (MeV)
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Fig.12 Fission cross section for 28U calculated by ALICE/ASH code (solid line).
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Fig.13 Examples of neutron double differential cross sections calculated with GNASH code and
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Fig.15 Total number of prompt fission neutrons and the ncutrons emitted from excited fission

fragments evaluated in the present work for 28y, Experimental data are from Refs.[S50,51].



Fig.16 Normalized fission neutron spectra calculated in the present work for U (solid line) and
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Fig.21 Evaluated deuteron production cross section and the systematics predictions for 0
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Fig.37 An example of neutron angle integrated spectra calculated using GNASH and ALICE/ASH

codes for 2**U at incident neutron energies equal to 50 and 250 MeV.
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Fig.44 Comparison of the total *He production cross section for 25y, evaluated in the present work,

taken from FENDL/A-2 and predicted by the systematics.
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Fig.45 Comparison of the total a-particle production cross section for “~U, evaluated in the present

work, taken from FENDL/A-2, measured for 28y {54] and predicted by the systematics.
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Fig.46 Calculated production cross sections for protons, tritons, *He- and o-particles emitted from
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excited fission fragments in n+2*U interactions.
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Fig.47 Tolal y-production cross section, contribution of the post-fission emission and JENDL-3.3 data
for 2U.
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Fig.48 Total y-spectrum and the post-fission contribution calculated for U irradiated by 250 MeV-

neutrons.
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Fig.49 Angular distribution for elastic proton scatlering on 28U at incident energics equal to 150 and

250 MeV obtained using different sets of the coupled channel optical model parameters.
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Fig.50 Proton reaction cross section for 2®U calculated using different sets of the coupled channel

optical model parameters.
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Fig.51 Direct proton inelastic scattering cross sections for the excited levels 2¥, 4*, and 6" of **U.
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Fig.52 Fission cross section for 28y calculated by GNASH code (solid line), ALICE/ASH code
(dashed line) and evaluated by the systematics [103] (dotted lines) together with the

experimental data.
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Fig.53 Total neutron production cross section and the contribution of the post-fission evaporation

calculated in the present work for p+23BU interaction.
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Fig.54 Comparison of the neutron and proton production cross sections calculated for irradiation of
2By by protons with GNASH and ALICE/ASH codes without the contribution from the post-

fission evaporation.
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Fig.55 The neutron double differential cross sections calculated in the present work (solid line) and

238

measured in Ref.[104] for p+7U at the primary proton energy equal to 113 MeV.
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Fig.57 Calculated proton, triton, *He and a-particle spectra for 28U irradiated by 100 MeV-protons.
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Fig.58 Evaluated (p,n) reaction cross section for U and the experimental data from
Refs.[78,109,110,112-114].
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Fig.59 Evaluated (p,3n) reaction cross section for 28y and the experimental data from

Refs.[109,110,112]. Data from Ref.[110] are transformed as discussed in the text.
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Fig.60 Evaluated (p,xn) reaction cross section for *¥y and the experimental data from Ref.[109].
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Fig.61 Total y-production cross section and the contribution of the post-fission emission for p+2U

interactions.
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Fig.62 Evaluated (p,y) reaction cross section for 2%U and the experimental data from Ref.[109].
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Fig.63 Proton reaction cross section for 28U calculated using different sets of the coupled channel

model parameters, predicted by the systematics {44] and measured in Ref.[69].
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energy equal to 22.8 MeV from Ref.[69].
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Fig.65 Direct proton inelastic scattering cross sections calculated for 25U for the excited levels 9/27,
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Fig.66 Fisston cross section for 35y calculated by GNASH code (solid line), ALICE/ASH code
(dashed line), evaluated by the systematics [103] (dotted line), obtained in Ref.[118] (dotted-

dashed line) together with the experimental data.
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Fig.67 Total neutron production cross section and post-fission evaporation contribution for p+mU

(solid line) and p+mU (dotted line) interactions.
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Neutron and Proton Nuclear Data Evaluation for 2*U and #**U at Energies up to 250 MeV
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