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Evaluation of nuclear data has been performed for 237 Np, 241 Am, 242'Am and 242mAm. Neutron data

were obtained at energies from 20 to 250 MeV and combined with JENDL-3.3 data at 20 MeV. Evaluation

of the proton data has been done from I to 250 MeV. The coupled channel optical model was used to

obtain angular distributions for elastic and inelastic scattering and transmission coefficients. Pre-

equilibrium exciton model and Hauser-Feshbach statistical model were used to describe neutron and

charged particles eission from excited nuclei. These evaluation is the first work for producing full sets of

237evaluated file up to 250 MeV for Np and Americium isotopes.
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1. Introduction

The nuclear data evaluation at intermediate energies has the principal meaning for increasing of

accuracy of data used in different applications. Such applications include developments of concepts of the

accelerator-driven waste transmutation system, radiation therapy, isotope production for medicine, material

research using the accelerators and others. In data evaluation special attention should be given for incident

particle energies below 250 MeV, where application of codes based on the intranuclear cascade evaporation

model and the QMD-model is rather questionable due to the physical limitations or the deviation of the

calculated and measured nuclear reaction characteristics.

The goal of this work was to obtain the nuclear data for 237 Np, 241 Am, 129Am and 242mArn suitable

to study neutron transport, heating, change of nuclide composition of the nuclear fuel and for other

applications in the whole energy range from thermal energy up to 250 MeV. Both neutrons and protons

were considered as incident particles in the present work. The evaluation has been done with theoretical

models, as semi-empirical and empirical approaches, whose validity has been approved based on the large

number of experimental data. Neutron data at the energy 20 MeV were combined with new JENDL-3.3

evaluation. Proton data are obtained from I to 250 MeV.

2. Brief Description of the Nuclear Models and Codes used in the Present
Work

Coupled-channel optical model has been used to provide total cross section, angular distributions

for elastic and inelastic scattering, and to calculate transmission coefficients for neutrons and charged

particles. Parameters of the optical potential were obtained to perform the calculations up to 250 MeV. The

numerical calculations were carried out with ECIS96 code [1]. The Hauser-Feshbach statistical and pre-

compound models realized in GNASH code 2] were used for the calculation of particle emission spectra

and nuclide production cross sections.

Nuclear level density was obtained on the basis of generalized superfluid model with the

parameters fitted to the cumulative number of low-lying levels and observed neutron resonance densities

[3]. The expression for nuclear level density is written as follows

p (U, J, c = p qP (U', J, n) K vib (U') K,., (U),

where Pqp(U',J,7t) is the density of quasi-particle nuclear excitation 4], Kvib(U') and Kr,)t(U') are vibrational

and rotational enhancement factors at the effective energy of excitation U The vibrational enhancement

coefficient Kib(U') was calculated according to Ref.[3].
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For the inner saddle and axially symmetric saddle deformation otational enhancement factors

2 -47c G 2were obtained as follows Y,,(U' = al , for the asymmetric saddle point K.,(U' = 2 1 CY and for

the outer saddle K,(U' = 2 2 151, where a I and TH are perpendicular and parallel spin cutoff

functions. The attenuation of the rotational enhancement with the excitation energy growth was considered

according to Refs.[3,6].

The nuclear level density parameters were calculated according to the following expression 3,41

a(U = a(l + 6W(p(U'-Ec.nd)/(U'-Ev.nd ),if U, > U" (2)

a(Uc,), if U'< U"

where the asymptotic value of level density parameter is equal to H =A(CC+PA- 113), (X=0.073 = 15,

(p(U)= I-exp(-yU), T0.4/A"3 MeV-1, 8W is the shell correction. The effective energy of excitation U',

critical energy of the phase transition U, and the condensation energy Eond were defined according to

Refs.[3,41. For the ground state the shell corrections 8Wgs in Eq.(2) were calculated on the basis of Myers,

Swiatecky approach 7]. For the inner and outer saddle points the values of SW SA and SW SB were taken

from Ref.[51 considering the difference between types of the saddle symmetry.

The fission barriers were considered as spin-dependent and described as follows [8],

Bf (J = C' Id M + f (T) g(J (W,' - Wgs (3)

where Id M is the spin-dependent barrier calculated according to Sierk liquid-droplet model 9], 6gs

and 8W, are the shell corrections for ground state and the i-th saddle point, respectively, C is the

adjustment factor, fT) and gJ) are temperature and spin fade-out functions. Factors C were defined in the

present work to provide an agreement between calculations and available experimental data for neutron

interactions with uranium isotopes. The nuclear temperature fade-out function fT) in Eq.(3) was calculated

according to Ref.[81:

1, for T1.65MeV

5.809exp(-1.066T), for T > 1.65MeV'

The function g(J) was defined according to the following expression [81:

1
9(J) (5)

I exp(J - 112) / AJ

where the parameters JI/2 and J are equal t J/2=24, A=2.5 [101. Nuclear dissipation effects resulting in

reduction of fission width with growth of excitation energy were taken into consideration based on the

results of Refs. I , 2.

The pre-equilibrium nucleon spectra were calculated with exciton model. Values of averaged

squared matrix element for two body interactions were obtained from Ref. [ 1 31, where the parameterization

- 2 -
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of M12 > has been done as a function of E/n (where E is the excitation energy and "n" is the number of

excitons). The description of the pre-compound model including angular momentum effects can be found

in Refs. 2,14].

Multiple pre-compound eission has been considered. Certain improvement in the description of

such eission has been done in the present work comparing with the GNASH algorithm 2]. The general

expression for the second pre-equilibrium particle emission spectra calculation used in GNASH code has

the following form [I I

da7 e U- In,
j dcy i 0)(1pO, E + Q) co(p - , h, U - E - Q) (n,=EE f R j Tj (E) dU (6)

dE n =c,,uU=E+ dU p o)(p, h, U)

where "i" and j" is the type of the first and second pre-compound particle emitted, respectively; E is

emission energy and Q is separation energy for j"-particle; dy (n) j/dU is differential cross section of p-h

state after pre-equilibrium emission of "i"-particle; R(')ij is the neutron-proton distinguishability factor

calculated according to Ref.[161; Tj(E) is the probability of the j-particle to escape with energy E;

summing is for all "n"-exciton states and primary particle types.

Calculation of Tj(E) from Eq.(6) in the GNASH code 2 is based on simple approximation

considering s-wave transmission coefficient. The actual values used in the code are shown in Fig. . In the

present work the probability of particle emission, Tj(E), is calculated as follows

X�j
T: (E = - (7)

(E) + X� (E + Q)

where ?�j is the particle eission rate and is the intranuclear transition rate corresponding to the

absorption of j"-particle in nucleus. The eission and intranuclear transition rates are calculated according

to the following relations

inv
(2S j+I)RjE(Tj (E) (8)

712h 39j

V. Cynn
(E + Q) p, (9)

where Sj and gj are the spin and the reduced mass of rt I is the inverse reaction cross section,

n,gj is the single level density, Vj is the velocity of the particle of j"-type inside the nucleus, (F i is the

nucleon-nucleon interaction cross section corrected for the Pauli principle, p is the nuclear density.

Calculation of Tj(E) according to Eqs.(7)-(9) corresponds to the basic assumptions of the hybrid exciton

model [ 1 6,17]. Values of Tj(E) calculated in such a way are shown in Fig. I for neutrons and protons. An

example of particle spectra calculated with the Tj(E) values obtained by Eqs.(7)-(9) is shown in Fig.2 for

209Bi(pp') reaction at the incident proton energy equal to 62 MeV. The experimental data are taken from

Ref.[18]. The use ofEqs.(7)-(9) improves an agreement with experimental data as shown in Fig.2.

- 3 -
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The model used in the original GNASH code 21 to describe the pre-compound spectra of the

composite particles contains the noticeable shortcomings. The example is given in Fig.3. This figure shows

the x-particle spectra for P+209Bi reaction at the primary energy =90 MeV, calculated on the basis of the

approach described in Ref.[2] and with pre-equilibrium model described below. The calculations with

GNASH code are not in good agreement with the available experimental data 191. It should be noted that

any variation of the main parameters of pre-equilibrium model 2 coul d not provide a reasonable

agreement with experimental data for complex particle emission from heavy nuclei. The shortcomings of

the GNASH algorithm 21 for description of the pre-compound eission for the particles with A 2 were

pointed out also in ReQ201.

In the present work pre-equilibrium x-particle emission spectra were calculated in the framework

of coalescence pick-up model 211 combined with the knock-out model as shown in Refs.[22,23]. Multiple

3pre-equilibrium emission was taken into consideration. For deuteron, triton and He spectra calculation the

exciton pick-up model 241 was applied. Contribution of direct mechanism to deuteron emission was

considered on the basis of phenomenological approach 25]. All approaches considered above were tested

using available experimental data in the intermediate energy region of primary particles.

Fission neutron and yspectra were obtained on the basis of the model described in

Ref.[26]. This model is the refined Fong approach 271 adjusted to experimental data for fission fragment

yields and other fission characteristics in the wide energy range of primary particles. The algorithm

described in Ref.[261 was used before as the part of the intranuclear cascade evaporation code 28]. In the

present work to increase accuracy of the obtained results this algorithm was introduced in ALICE code

[29,301, which is at the same time the modified and extended version of the original Blann code 31].

Application of this code (ALICE/ASH) allows to use more sophisticated models, such as optical model for

inverse cross sections and superfluid model for nuclear level density calculations, comparing with the

approaches usually used in the codes based on the INC model.

2373. NP

3.1 Neutron Data Evaluation

Total, elastic and reaction cross sections calculated in the present work with coupled-channel

model are shown in Figs.4-6 in comparison with systematics predictions 32, 33] and JENDL-3.3 data.

Neutron elastic and inelastic scattering angular distributions for the selected excited levels are shown in

Figs.7-9 at the pimary neutron energy equal to 20 MeV together with the data from JENDL-3.3, ENDF/B-

VI and CENDL-2. The calculated elastic scattering distribution for E=50, 100 and 250 MeV is presented

in Fig. IO. Figure I I shows the direct neutron inelastic scattering cross sections calculated for the excited

levels 72+ and 92+ at the energies up to 250 MeV.

- 4
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Fission cross sections calculated with GNASH and ALICE/ASH codes are compared in Fig.12

with Fukahori's systematics predictions 33], evaluated data in Ref.[34] and experimental data 35-39]. The

evaluated (nf) reaction cross section is shown in Fig. 13 at the energies up to 250 MeV. Figure 14 shows

the evaluated (nf) cross section in more detail at the energies up to 50 MeV. Contributions of nuclides with

different Z in (nf) cross section is presented in Fig. 5.

Neutron production cross section calculated by GNASH and ALICE/ASH codes without the

consideration of the post-fission evaporation is shown in Figs. 16 and 17. Contributions of different nuclei

in neutron production is shown in Fig. Figure 19 illustrates the neutron double-differential cross sections

calculated by GNASH code at the primary neutron energies equal to 50-200 MeV. Evaluated (nxn)

reaction cross sections are shown in Fig.20. Figures 21 and 22 show the post-fission neutron characteristics.

Comparison of total neutron production cross section for uranium isotopes and 237 Np is presented in Fig.23.

Evaluated charged particle production cross sections are shown in Figs.24-30.

3.2 Proton Data Evaluation

Basic characteristics of the proton interaction with 237 Np evaluated in the present work are shown

in Figs.31-40. Figure 31 shows the proton reaction cross section calculated using different sets of coupled-

channel model parameters and evaluated according to the systematics from Ref.[32]. Calculated elastic

scattering angular distribution is shown in Fig.32 for the primary proton energy equal to 10, 50 and 250

MeV.

Figure 33 shows the fission cross section calculated with GNASH and ALICE/ASH codes, the data

measured in Refs.[40-44], the cross section estimated according to the systematics 33] and evaluated data

in Ref.[34]. Data from ReQ40] is cited in Ref.[451. There is a good agreement between calculated and

evaluated cross sections based on Refs.[33,341. The ratio data of proton induced fission cross section (pf)

to neutron fission cross section (nf) evaluated in the present work and are obtained in Ref.[461 are shown

in Fig.34. Figures 35 and 36 illustrate contribution of different nuclei in total fission cross section (pf) for

237
Np.

Neutron and proton production cross sections are shown in Figs.37-39. Charge particle production

cross sections are shown in Fig.40.

4 Americium Isotopes with A=241 and 242

Basic features noted above for the neutron and proton interactions with Neptunium isotopes at the

intermediate energies remain valid for Americium-241 and 242. The shape of the evaluated cross sections,

particle spectra, Z- and A dependence of integrated values, like as particle production cross section, are

similar for various actinides considered in the present work. The examples are shown in Figs.41-48.

- -
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Figures 41 and 42 show neutron total and elastic scattering cross sections for 241 Am calculated by

coupled-channel optical model, cross sections evaluated according to the systematics from Refs.[47,48] and

data taken from JENDL-3.3. Fission cross section for 241 Am calculated with GNASH and ALICE/ASH

codes is shown in Figs.43 and 44 together with measured data from Refs.[49,50 cross sections evaluated

with Fukahori's systematics 33], JENDL-3.3 and ENDF/B-VI data. There is a good agreement among

JENDL-3.3 data, cross section calculated by GNASH code and experimental data from ReQ50]. The

calculated result by GNASH code was adopted as a final evaluation. Neutron production cross section for

241 Am and 242'Am are presented in Fig.45 for neutron induced reactions, Neutron induced fission cross

section for 242'Am and 242'Am are compared in Fig.46. The main difference of cross sections is observed

below 20 MeV. Recommended proton induced fission cross section and y-production cross section for

241 Am and 2429Am are shown in Figs.47 and 4. The corresponding cross sections for 2429Am and 242rnAM

are sin-dlar.

5. Conclusion

New data evaluation has been performed for 237 Np, 241 Am, 2429Am and 212mArn at the intermediate

energies. For the first time the evaluation for actinides; has been done for neutron and proton induced

reactions at the energies up to 250 MeV.

The evaluation procedure has included applications of theoretical models and analyses of available

experimental data. The coupled-channel optical model, pre-compound and equilibrium models were used

for nuclear reaction characteristics calculation. Neutron data obtained were combined with the JENDL-3.3

data at the energy 20 MeV to get full data set at the energies from 10-5 eV to 250 MeV. The data for the

proton induced reactions were evaluated in the energy region from I to 250 MeV.
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Fig.2 Energy distribution of secondary protons in p 209 Ri interactions at the energy E=62 MeV
calculated using new algorithm (solid line) and old one (dashed line) for Tj(E) calculation. The
experimental data are from Ref. [ 1 81.
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Fig.3 a-particle spectra for p 209 Bi reaction at EP=90 MeV calculated using pre-compound model for
complex particle en-dssion 2] (dotted line) and with approach described in te present work (solid
line). The experimental data are from Ref. 191.
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Fig.4 Total neutron cross section for 237 Np calculated using different sets of coupled-channel optical
model parameters, evaluated according to Ref.[32] and taken from JENDL-3.3.
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Fig.5 Neutron elastic scattering cross section for 237 Np calculated using different sets of the coupled
channel optical model parameters, evaluated according to Ref.[321 and taken from JENDL-3.3.
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Fig.6 Neutron reaction cross section for 237 Np calculated using different sets of coupled-channel optical
model parameters, evaluated according to Refs.[32,33] and taken from JENDL-3.3.
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Fig.7 Elastic scattering angular distributions for Np at the primary neutron energy En = 20 MeV
obtained in the present work and taken from different evaluated nuclear data libraries.

13 -



JAERI-Research 2002-032

1 2 237 Np(nn') E =20 MeV
n

------ CENDL-2

------- ENDF/B-Vl

33.2 keV 7/2') ---- JENDL-3.3
present calculation

1 0

E .........
-------------

100

10-1
0 30 60 90 120 150 180

angle (deg)

Fig.8 Neutron inelastic scattering angular distributions for 237 Np at the primary energy E 20 MeV for
the excited level 33.2 keV 72+) obtained in the present work and taken from different data
libraries.
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Fig.9 Neutron inelastic scattering angular distributions for 237 Np at the primary energy En 20 MeV for
the excited level 75.9 keV 92+) obtained in the present work and taken from different data
libraries.
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Fig.10 Elasticscatteringangulardistributionsfor 237 Np at different neutron incident energies calculated in
the present work.

237 Np(nn')
33.2 keV 72'

---- 75.9 kev 92'

10 2

E

0

CD
CI)
COCI) 1 0
0
O

1 0 0 I

0 50 100 150 200 250

Neutron energy (MeV)

Fig.11 Directneutroninelasticscatteringcrosssectionscalculatedfor 237 Np for the excited levels 72+ and
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Fig.12 Fission cross section for 237 Np calculated with GNASH and ALICE/ASH codes, cross section
estimated using the systematics 33], data evaluated in Ref.[341 and measured in Refs.[35-391.

3000 -

237 Np(nf)
2500 -

2000 -
E
C:
0 0 z ace 0 01500 0U 0 t6 VO o'Pa)CO
CO)co 1000
0 + Pankratov (1 960) JENDL-HE

C) X Pankratov (11 963)

500 & Behrens 11 982)
o Lisowski (1 988)

e Shcherbakov 2000)

0 I I I

0 50 100 150 2 250

Neutron energy (MeV)

Fig.13 Fission cross section for 237 Np at the energies up to 250 MeV evaluated based on the results of
calculations and experimental data (solid line) and the experimental data from Refs.[35-391.
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Fig. 14 Evaluated fission cross section for 237 Np at the energies below 50 MeV. See cornments for Fig. 3.
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Fig. 15 Relative contribution of nuclei with different atomic numbers in total fission cross section for
237 Np calculated by GNASH code.
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Fig.16 Neutron production cross section for 237 Np without contribution from the post-fission evaporation
calculated by GNASH code.
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Fig. 17 Comparison of neutron and proton production cross sections calculated with GNASH and
ALICE/ASH codes for 237 Np without contribution from post-fission evaporation.
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Fig. 18 Relative contribution of nuclei with different atomic numbers in the neutron production cross

section for 237 Np without contribution from post-fission evaporation calculated by GNASH code.
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Fig.19 Examples of neutron double-differential cross sections calculated with GNASH code and the
Kalbach systematics 13] for 237 Np at the incident neutron energy equal to 50, 100, 150 and 200
Mev.
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Fig.20 Evaluated (nxn) reaction cross sections for 237 Np.
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Fig.21 Total number of prompt fission neutrons (solid line) and neutrons emitted from excited fission
fragments (dotted line) evaluated in the present work for 237 Np. Below 20 MeV JENDL-3,3 data
(-x-) are shown.
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Fig.22 Normalized fission neutron spectra calculated in the present work for 237 Np (solid line) and
Maxwellian spectra (dashed line) for the primary neutron energies equal to 30, 100 and 250 MeV
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Fig.23 Cmparison of total neutron production cross sections including contributions from all processes
for -uranium isotopes and 237 Np.
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Fig.24 Total proton production cross sections for 237 Np, evaluated in the present work, obtained by the

systematics 52], measured in Ref.[53] and taken from FENDLJA-2.
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Fig.25 Relative contribution of nuclei with different atomic numbers in the proton production cross
section for 237 Np without contribution from post-fission evaporation calculated by GNASH code.
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Fig.26 Total deuteron production cross section for 237 Np, evaluated in the present work, obtained by
systematics and taken from FENDUA-2.
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Fig.27 Total triton production cross section for 237 Np, evaluated in the present work, obtained by
systematics and taken from FENDIJA-2.
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Fig.29 Total a-production cross section for 237 Np, evaluated in the present work, obtained by systematics
and taken from FENDUA-2.
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Fig.30 Production cross section for different particles emitted from fission fragments alculated in the
present work.
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Fig.31 Proton reaction cross section for 237 Np calculated using different sets of coupled-channel optical
model parameters and evaluated according to Ref.[321.

10 10

1 9 237 NP(PP,) E =10 MeV

1 0 ------- E =50 MeV
7 P

10 ------- E =250 MeV
6

1 0
5

1 0
4

10
3

10
E 2

10

C3 lo'
0

_63 10

10-1
........................

lo-
3

lo-

lo-

10-5
6

lo-
0 30 60 90 120 150 180

angle (deg)

Fig.32 Proton elastic scattering angular distributions calculated in the present work for 237 Np at the
different primary proton energies.
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Fig-33 Fission cross section for P+237 Np interaction calculated with GNASH and ALICE/ASH codes,

cross section estimated by the systematics 133], data evaluated in ReQ341 and measured in
Refs. 40-441.
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Fig.34 Ratio of (pf) and (nf) cross sections for 237 Np obtained in the present work (solid line) and in
ReQ46] (dashed line).
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Fig.36 Relative contribution of nuclei with different atomic numbers in total fission cross section for

2379 Np irradiated by protons calculated in the present work.
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Fig.37 Neutron and proton production cross sections calculated with GNASH and ALICE/ASH codes
without post-fission evaporation contribution for proton induced reactions P+237 Np.
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Fig.38 Total neutron production cross section for 237 Np including contribution from (pxnypzcL)
reactions, pre- and post-fission events (solid line), the part of this cross section corresponding to
the post-fission evaporation (dashed line).
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Fig.39 Total proton production cross section for 237 Np including contribution from (pxnypza) reactions,
pre- and post-fission events (solid line), the part of this cross section corresponding to the post-
fission evaporation (dashed line).
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Fig.40 Total deuteron-, triton-, 3He- and a-production cross sections for 237 Np irradiated by protons
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Fig.41 Neutron total cross section for 24'Am calculated with coupled-channel optical model, estimated

by the systematics 32,481 and taken from JENDL-3.3.
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Fig.42 Neutron elastic scattering cross section for 24'Am calculated with coupled-channel optical model,

estimated by the systematics 32,48] and taken from JENDL-3.3.
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Fig.43 Neutron induced fission cross section for 241 Am calculated with GNASH and ALICE/ASH codes,
cross section estimated by the systematics 33] and measured in Refs.[49,501.
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Fig.44 Neutron induced fission cross section for 24'Am calculated with GNASH and ALICE/ASH codes,
cross section estimated by the systematics 33], measured in Refs.[49,50] and taken from
JENDL-3.3 and ENDF/B-VI.
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Fig.45 Neutron production cross section for 241 Am and 2429Am.
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Fig.46 Recommended neutron induced fission cross section for 129Am and 242mAm.
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-f Y 9 H Wb/A 1 bar=O I MPa= IO'Pa 3. baril, JlS-N1A06DE�j-t-A;b*J:A

I Gal=1 ci/s'=10-'m/s 2 !A�(CMI) A 2 DY] 5�!: 1 - C5�fAz� tl-CL,
3rz Im cd. sr Z.

R ft Ix Im/m, I Ci=3.7xlO"Bq 4. ECM*31P*,=M'P-Ntbar, barntik

A, Bq S-1 I R=2.58xlO-'C/kg y ffUE0)*1ftJ mmHg-1_�-A20)t-�':YU

-f Gy J/kg Irad=IcGy=10-'Gy

ja F SvIJ/kg I rem =I cSv = 10-'Sv

J3 N(=10'dyn) kgf lbf ff MPa(=10bar) kgf/cm' atm mmHg(Torr) lbf/in'(psi)

1 0.101972 0.224809 1 10.1972 9.86923 7.50062 x 10' 145.038

9.80665 1 2.20462 0.0980665 1 0.967841 735.559 14.2233

4.44822 0.453592 1 0.101325 1.03323 1 760 14.6959

IPa.s(N-s/m')=IOP(,f7;<)(g/(cm.s)) 1.33322 x 10-1 1.35951 x 10-' 1.31579 x lo-, 1 1.93368 x 10-1

AW-Ir I m/s= 10 4St( A l, A) (CM'/S) 6.80460 x IO-' 51.71496.89476 x lo-, 7.03070 x 10-'

X=10'erg) kgf- m kW h cal UtW�) Btu ft - lbf eV I cal = 418605 J

A, 1 0.101972 2.77778 x 10-1 0.238889 9.47813 x 10- 0.737562 6.24150 x 10 = 4184 J (OAJL�?)

1 9.80665 1 2.72407 x 10-1 2.34270 9.29487 x IO-' 7.23301 6.12 082 x 1 0 = 41855 J (15 'C)

41 3.6 x 10' 3.67098 x 10' 1 8.59999 x 10' 3412.13 2.65522 x 101 2.246 94 x IO" = 41868 J MMMX)

4.18605 �.O. 426858 1.16279 x 10-' 1 3.96759 x 10-1 3.08747 2.61272 x IO" I Ps IL"w0j)

1055.06 107.586 2.93072 x 10- 252.042 1 778.172 6.58515 x 1011 75 kgf. m/s

1.35582 0.138255 3.76616 x 10-1 0.323890 1.28506 x 10-3 1 8.46233 x 10 11 735.499 W

1.60218 x IO-` 163377 x 10`1 4.45050 x 10`1 382743 x IO` 1.51857 x IO` 118171 x 10` 1

Bq ci Gy rad N C/kg R a Sv rem

.70270 x I - 100 3876 _�j I 100

R fit fit

3.7 x I 1 0.01 1 2.58 x 10-1 I 0.01 I

(86 12P 26 0 Na)
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