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Abstract

The strong absorption model of Frahn and Venter is used to study the elastic scattering of pions at
energies below and above the Delta resonance from a number of nuclei between '“N and *Sm. A
reasonable good fit is obtained in each case over the entire angular range except for a few cases of 65 and
80 MeV data where clearly the strong absorption conditions are not perfectly satisfied. The best fit
parameters values of the model and their systematics are discussed. The inelastic scattering of pions is
then studied. Pions leading to the lowest 2* and 3" collective states in some nuclei are analyzed. Again a
good account of the inelastic scattering processes is possible without any readjustment of any elastic
scattering parameters. The relevant deformation parameters are extracted. The proton and neutron matrix
elements M, and M, are extracted from the proton and neutron deformation parameters B, and B,
respectively.



1. Introduction

Pion-Nucleus scattering is one of the most important means to provide the information about nuclear
properties in the ground and excited states. The pion-nucleus scattering is a good tool, to know the
information about the proton and neutron radii and densities of nuclei. The pion is a boson with no spin
and can exist in all three charge states viz. positive, negative and neutral (i.e. @', @ and 7°). Pion’s
properties such as spin, mass and charge states have given it the correct behavior of an Yukawa particle.

The pion-nucleus scattering around 200 MeV is characterized by a strong and broad p-wave resonance
of width 125 MeV in the fundamental pion-nucleon interaction, termed as the A (3,3) or simply the (3,3)
resonance. The pion incident on a nucleon forms a resonance as '+ P—N’ (= A*™)— m'+ P at pion
incident energy at around 200 MeV. This is the so-called A™ resonance in an £,=1 state with J=3/2 and
I=3/2. Its width is ~ 125 MeV and its life time is ~ 5x10**sec.; which is too small to be measured directly.
In the region of the A (3,3) resonance and beyond it, the pion-nucleon interaction is strongly absorptive
and the high energy pions thus have wave length shorter than the characteristic dimension of the target
nucleus (<0.5 fm. or so). The interaction can thus be described to a first approximation as a diffraction
process. The angular distributions of pions and various projectiles under appropriate conditions indeed
display the above diffraction oscillations and these have been successfully accounted for by the diffraction
models[1-4]. Strong absorption phenomena greatly simplify the theoretical formalism in analyzing the
elastic scattering problem without requiring any knowledge of the absorption mechanism and naturally
lead to analytic expressions for the elastic scattering amplitude.

2. Mathematical Formalism

The elastic scattering amplitude of a spin-zero pion incident on a spin-zero target nucleus is in terms of the
usual partial wave expansion:

f(6)=~i—2(2£+1)(1—m)Pg (cos®) (1)
2k &

where the scattering function , 1, = exp(2id,), 1, is a sub matrix of the full scattering matrix S(£) and
8, is the phase-shift of the £-th partial wave. The condition |T| P (€)| <<1 or M, = 0 for 2<£ holds for the

strong absorption of the incident pions and the condition ]T]AZlor N,=1 for £ ¢ refers to the

scattering of the incident pions.
The scattering cross-section is:
T« 2
Oy =—5 . 20+ 1(1-n,[) @)
k® 5o
and the reaction cross-section is:
T~ 2
G, =FZ(2“D“"|“” ) 3)
£=0

which for spin-zero charged particle becomes:
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A complete analytical formulation 1s possible for the parametrized S-matrix model of M, in £-space with

or without Coulomb interaction [1], if one assumes the scattering function 1), split into real and

imaginary parts:

dg(t)
dt

The g(t)’s are continuously differentiable functions of the angular momentum t(= £+1/2), which is

Mg exp(-2i0,) = g(t) +ip )

characterized by critical angular momentum T*(=L+1/2) and rounding parameter A* in the £-space. Two
of the most important parameters, the cut-off angular momentum T and the rounding parameter A are
related respectively to the interaction radius R and the surface diffuseness d through the well known
expressions given by:

2n 172
T—kR[1~—kE] 6)
and
n on -1/2
A=kd|l-—— | 1—— @)

Here k and n are respectively the wave number and the Coulomb parameter. The analytic expression for
the elastic scattering amplitude f(8) is obtained after performing consistent approximations as in refs.[1-6]
starting from eqns.(1) and (5) ; f(6) has the form:

f(0)=-L (O_y2 ™0 {0 5 ey )

K sin6 sinh(mAB) 6
In the situation of strong absorption the SAM formalism can be extended to non-elastic processes, mainly
the inelastic scattering leading to various collective modes of excitation. In conjunction with the Austern-
Blair relation, the amplitude for the inelastic scattering is expressed in terms of the elastic scattering
matrix. Once the elastic scattering cross section is obtained in terms of the model parameters like T, A and
i, the inelastic scattering amplitude can be expressed as the first derivative of the elastic scattering
amplitude [7,8]. The resulting expressions for the inelastic scattering cross sections can be evaluated once

the scattering function 7, as a function of £ is known from elastic scattering. The differential cross

sections for single excitation of multiple order L in the Austern-Blair approximation is given by:

L
9 01)= Y[ ®) ©)

. 1 , L -
fLm(6) = l(2L+1)2cLZi‘~”£ (2¢ +1)2 e'("t*“r)(in._i)
2 ~ Y]

< £'L00J¢0 > < £'L,~-MM}¢0 > Y (6,0) (10)

Finally, the inelastic differential cross-section is given by:
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The functions oy (8) and By (8) are the elements of the rotation matrix and has the property:

oM (0) =03 if (L+M) is odd

BrLm(e) =03 if (L+M)is even
The coefficients Cy are the reduced nuclear matrix elements. For single excitation, the nuclear
matrix elements Cy, can be expressed in terms of the deformation distance & by,

CL = 8/(2L+1)? (12)
The functions o4y, (8) and P, (0) corresponding to L=2 state have the following forms:

1.3

042 (0) = (Z)(E)m (1+cos8),B;4,(0) =0,
_ I IVERT

o, 41(0)=0, |32,¢1 )= (E)("z") sin 6,

1
0y 0(0)= (Z)(3 cos8-1),8, =0

Eqn.(11) for the inelastic scattering cross-section for the I.=2 state becomes:

do _2, T2 8 2,1 12 1+ 3cin2 g2
o 0—-2)= 82(64n)(sin9)[(H_ +H,) {[4 (3cos0 —1)” + 3sin” 81J5(T6)

+Z—(1+cos@)2J%(T9)}+4(H_ ~H,)213(19)] (13)

For octupole excitation (L =3) the functionsasy (0) and Bsp(6) corresponding to 1=3 state are as

follows:

5]
O3 43 (6)=0.466 cosz’z— + 0.4191003%, Blﬂ ©)=0
.30 . 0
034,(0)=0, B3.42(8)=0.114sin —2— +0.3421sin 3
O(.3’i1 (9) = O. 1 805 COS"3'29 - 0.108 COS%, ﬁ3,il = O

03,0(8) =0, B3 (8) =0.069sin ? -0.375 sin%

Then eqn.(11) for the inelastic scattering cross-section for the L=3 state reduces to:
40 0 a2 T O 22 2 o a2
) (0 —3)=8;3 (64n)(sin e)[(H— H, )" {I5(T6)(20.3,(0) + B3, (8)
+J3(TO)20.2; () + 2%, (8))}+ (H_ +H,, )2 (I (T6)
x (2031 (8) + 237 () + B30 (8)) + I3 (T9)20.33(6)}] (14)

where,



H, =[1+u(6, £6)JFA(B, +6)]
Egns. (13) and (14) depend on the four parameters viz. T, A, p and 8;.. The SAM parameters T, A and p
are obtained from the analysis of the elastic scattering cross-section and the deformation length, 8;=pR is
determined by normalizing the SAM cross section with experimental ones. The deformation parameter
By is related to the deformation length &y through the expression:

81 = (T/K)By (15)
The proton and neutron deformation parameters, denoted respectively by B, and 8, are obtained from the

Br*)and B(n~)values using the following relations [9,10] which are strictly valid at pion energies
around the A - resonance,

ZBy =[3pmr*)-PrT)A/4
and

NB, =[3B(n ") -B(n" )] A/4 (16)
The proton and neutron matrix elements, M, and M, respectively, are then extracted from the above values
of B, and B, and from there the ratios of these to the single particle matrix elements, denoted

respectively by G,(7) and G,(7) are obtained, as in ref. [9]. The various terms are defined in ref. [9].

3. Results and Discussion

3.1 Elastic scattering
The result of the SAM analyses of the angular distribution data [14-19] for the elastic scattering of " and
7 are summarized respectively 1n tables I and II. Some typical fits are illustrated 1n figs.1-3.
The analytical expression (8) has been used to calculate the elastic scattering cross-sections for 7t incident
on the target nuclei "N at 162 MeV, %Si at 130, 164 and 226 MeV, “Ca at 65, 80 and 180 MeV and
#24648Ca at 180 MeV. The angular distribution data for the elastic scattering of 7" from the target nuclei
covered in the present work are available over the angular range 10°-130°. The fit obtained to the
experimental data is excellent in most cases. The SAM fit is usually poor at low energies, for example, the
fit is poor for “Ca at 65 and 80 MeV compared to quality of fit achieved at relatively higher energies.
Generally, it is observed that the SAM description to the data becomes increasingly better as both target
mass and projectile energy increase.

The interaction radius R and the surface diffuseness d are calculated from the best fit parameters using
relations 6 and 7 and these are shown in tables I and II. The standard nuclear radius is obtained from the
relation R =1 A'? and is presented in tables I and IL The standard nuclear radius ‘ro’ is approximately

constant at the value given by
1o = 1.4940.06 fm, for nt*
= 1.49+0.09 fm, for 7’



Table 1. The best fit SAM parameters for "

SAM Parameters

Denved quantities

Nucleus E.
(Mev) T A w4A R X (R-2) d o; G/TR? 1,
(fm) (fm) (fm) (fm) (mb) (fm)
“N 162 4.2 075 006 398 093 3.05 071 711.00 143 135
%si 130 4.9 083 0.045 520 1.04 416 0.87 1171.00 139  1.46
S 164 5.6 090 0.056 527 092 435 0.84 1191.00 137 148
Asi 226 648 095 0158 518 079 439 075 111000 132 145
Yca 65 4.0 060 023 613 146 464 088  1451.00 124 155
“ca 80 4.1 070 021 563 132 431 093 130000 131 143
“Cca 164 6.3 095 0092 594 092 502 0.88 147000 133  1.50
“Ca 180 6.8 093 0.108 611 088 523 0.82 151000 129  1.55
®Cca 241 775 097 0232 600 076 524 074 140000 124 152
“Ca 180 6.8 090 0.111 611 0.8 523 0.80 1491.00 128 1.52
“Ca 180 6.8 090 0.111 610 088 522 0.80 1491.00 1.28  1.50
®Ca 180 7.0 093 0.089 628 088 540 0.82 159000 129 1.51
¥2m 180 9.7 099 0333 8.8 088 7.94 0.87 272000 111 150




Table I1. The best fit SAM parameters for 7.

SAM Parameters Derived quantities
Nucleus E;,
MeV) T A W4A R i R-%) d C; o/TR® 1,
(fm) (fm) (fm) (fm)  (mb) (fm)

N 162 4.30 0.75 0.077 4.01 0.93 3.08 0.71  740.00 147 137
31 130 4.95 0.7 0.139  5.09 1.04  4.05 0.73 1120.00 138 1.43

%si 164 56 085 0009 515 092 423 079 1171.00 1.41 144
381 226 628 08 0103 493 079 414 063 1010.00 1.33 1.38
“Ca 65 4.2 0.5 0375 598 146 452 074 144000 128 1.51
“Ca 80 42 045 035 541 132 409 0.60 115100 126 137
®Cca 1633 65 085 0074 59 092 504 079 151000 1.35 1.51
“ca 180 686 093 0013 599 0.88 511 082 1541.00 137 1.52
“Ca 205 74 065 025 607 0.82 525 054 1390.00 1.19 1.54
Oca 241 775 099 0106 58 076 512 076 1440.00 1.33 149
“Ca 180 70 095 0.027 612 0.88 524 0.84 1610.00 1.36 1.53
“ca 180 7.5 1.0 0012 625 0.88 537 088 1690.00 137 1.58
%Ca 180 73 095 0.027 638 08 55 084 1721.00 134 1.53

2Sm 180 10.85 1.05 0.035 934 0.88 846 092 3531.00 1.28 1.60
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The surface diffuseness d remains roughly the same for the whole range of projectile energies and the
target nucle1 covered 1n this study. The surface diffuseness d remains approximately constant at the value
given by,

d = 0.82+40.10 fm, for "

= 0.7610.07 fm, for 7
The agreement between two 1 values is extremely good over a wide range of nuclear mass covered in the

present study and the value of d in the two cases (1" and @) agree with each other quite well. These
substantiate the confidence on the SAM parameters obtained.

The value of o, increases almost smoothly as both target mass and energy increase. The value of
G, /mR? remains fairly constant (= 1.32) throughout the analyses, as it should be and which is more

meaningful than the o, 1tself.

Y2 versus A'® is accomplished.

Mass dependence of O is looked 1nto, i.e. a plot of variation of (/)
Results are shown in fig.4 together with the linear least squares fits to the SAM values at energy E,=180

MeV covering a number of nuclei. The extracted values of G, at 180 MeV for T are consistently larger

than those for 70" (fig.4) and the difference between 70 and T’ (0,(n")—0,(n")) absorption cross

section increases systematically with an increase in mass number. These aspects are in conformity with
strong absorption situation and in agreement with known (3,3) dominance at around 200 MeV.

o9

{o/m)"™ (fon)

T M T T T T
2 3 4 [} 6

All:
Fig4 A" dependence of (c/n)"” The sohd and broken lines

represent the Jeast squares hinear fits for 0 and 71 respectively.
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3.2 Inelastic scattering
The 1nelastic scattering angular distributions [12,20] of pions with the excitation of the lowest 2*and 3

collective states in varnous nuclei are analyzed using the SAM parameters obtained from the
corresponding elastic scatterning (tables I and II). Some typical fits are illustrated in figs. 5-8. The
deformation parameters estimated from these analyses are summarized in tables III-IV. The relevant
parameters summarized by Raman et al. [13] and Spear [11] respectively for the lowest 2" and 3
collective states are also included in the tables for comparison.

The inelastic scattering of charged pions leading to the lowest 2* and 3™ collective states are
theoretically calculated using eqns. (13) and (14) with the SAM parameters fixed from the corresponding
elastic scattering analyses. A reasonably good reproduction of the experimental data in most of the cases is
possible, indicating thereby a dominant collective mode of excitation of the levels, as well as reliability of

the SAM analyses.

Table III. Deformation parameters for the lowest 2* state.

Deformation Parameter, 3,

Nucleus E, E,
(MeV) MeV) () ©) (c) (d)
“2Ca 1.52 180 0.20 0.21 0.247
“Ca 1.16 180 0.21 0.22 0.253
“Ca 3.83 180 0.07 0.108 0.101
1529 0.122 180 0.285 0.31 0.305 0.287
(@) Present work from the inelastic scattering of «*
®) Present work from the 1nelastic scattering of @

(c) Adopted values: ref. [13 ]
(d) DWIA calculation : ref. [12 ]

11



Table 1V. Deformation parameters for the lowest 3" states.

Deformation Parameter, B;

Nucleus Ex E,
(MeV) (MeV) (a) (b) (©) (@
“Ca 3.44 180 0.39 0.32 0.26
#Ca 3.31 180 0.32 0.25 0.23
“Ca 4.51 180 0.33 0.27 0.25
12Sm 1.041 180 0.10 0.15 0.12 0.12
(a) Present work from the inelastic scattering of «*
(b) Present work from the inelastic scattering of 7’
(©) Adopted values: ref. [11]
(d) Previous work : DWIA calculation; ref. [12]
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Fig.5. SAM fit to the inelastic scattering of pions leading to the lowest 2" and 3" state.
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Normalization of the SAM cross sections to the inelastic scattering data for a particular level of the same
nucleus is done in exactly the same way for both «* and 7” by fitting over a wide angular range as possible
and the normalization is done at the first maximum of the angular distributions of both «" and n’, where
the cross-sections at the subsequent peak or peaks are not given in magnitude or position.

The predicted angular distributions of 2* collective states for all the cases are very well reproduced. A
reasonably good fit is also obtained in most of the cases for the 3" collective states. The calculated
deformation parameters B, and f§; are compared with the values obtained from the DWIA analyses and
with other values obtained by other workers for 2* and 3" states. Our obtained values are usually close to
DWIA analyses. A close scrutiny of the values of the parameters shows that the present values are fairly
close to other values of the other workers. It is observed that there is hardly any difference between the
values of (") and Ba(n") and between B3(n*) and Ps(w’) values.

The matrix elements Gy(%) and G,(w) have been extracted by Peterson [9] (and partly worked out in
references therein) from the DWIA analyses of the inelastic scattering of pions at energies around the A-
resonance based on the Kisslinger potential. These results being relevant to the present work are included
in tables V(a) and V(b). The ratio (G,(n)/N) /(Gy(n)/Z) for most of the levels studied in the present work is
approximately unity or so, in good agreement with previous results obtained from the DWIA analyses [9]
within errors (tables VI(a) and VI(b)), suggesting thereby their isoscalar mode of excitation.

14



Table V. (a) Proton and neutron deformation parameters and transition matrix elements extracted from the
inelastic scattering of 180 MeV pions leading to the lowest 2° state.

Nucleus By Ba Gy(m) Gu(m) (G/NM(GZ)
() (a) (a) (b) (a) (b) (a) (b)
“Ca 0.205 0.2052 2.59 2.87 2.85 3.38 1.00 1.07
“Ca 0.226 0206  2.85 3.04 3.12 3.98 0.912 1.09
“Ca 0.0612  0.11 0.80 1.56 2.00 3.71 1.78 1.70
1328m 0.334 0272 13.06 119 15.44 18.9 0.82 1.094
(b)
Nucleus M, M, Go(m) Go(a)
(a) (b) (a) (b (a) (b) (b)
“Ca 17.03 189 1873 222 544  6.25 3.53
“Ca 19.37  20.7 21.18 277 597 7.02 4.77
“Ca 556  11.2 13.98 267 2.8 5.27 3.79
1%28m 202.76 184 239.68 202 28.5 30.8 7.67

(a) From SAM analysis (Present work)
(b) From DWIA analysis (Peterson [9] and references therein)

15



Table V1. (a) Proton and neutron deformation parameters and transition matrix elements extracted from the
inelastic scattering of 180 MeV pions leading to the lowest 3 state.

Nucleus B, Bo Gy(n) Gu(m) (G/NY(G,/Z)
(a) (a) (a) (b (a) (b) (a) (b)
“Ca 0446 0272 5.71 4.41 3.83 3.95 0.61 0.81
“Cca 0391  0.197 5.00 3.44 3.02 321 0.5 0.78
®Ca 0432 0.206 5.53 3.13 3.69 3.57 0.5 0.81
Blsm  0.092  0.148 3.65 4.31 8.52 5.44 1.6 0.87
()
Nucleus M, M, Go(m) Go(o)
(a) (b (a) (b (2) (b) (b)
“Ca 124 119 103.68 107 9.54 836 5.08
#Ca 11494 98 85.82 98 8.02  6.65 4.80
“%Ca 117.08 96.9 114.2 111 9.22 6.7 5.59
1328m 357.67 434 835.2 575 12.17 9.75

(a) From SAM analysis (Present work)
(b) From DWIA analysis (Peterson [9] and references therein)

4. Conclusions

A good account of the elastic scattering of pions at energies between 65 to 241 MeV i.e. below and above
the Delta resonance from several target nuclei between N to *Sm is given by the three parameters of the
strong absorption model of Frahn and Venter. Mass number dependence of the reaction cross-section
obtained in the present work is found to be consistent with previous studies using different models. The
SAM with the same set of parameters T, A and p as obtained from the elastic scattering analysis without
any adjustment, is successful enough in describing simultaneously inelastic scattering phenomena. The

16



estimated deformation parameters f; and PB; are in excellent agreement with previous works. There is
hardly any difference between By(n") and B,(r) and that between B3(n*) and B3(n"). The proton and neutron
deformation parameters are extracted from BL(n") and Pu(n’). Then, following Peterson [9] but using a
different model, the proton and peutron matrix elements are obtamed wherefrom it is possible to
determune the relative importance of protons and neutrons in the excitation of various levels in nuclei. It is
to be noted that the same set of elastic scattering parameters gives a fairly good account of the inelastic
scattering of pions populating to the lowest 2* and 3" collective states for most cases.

This no doubt speaks of the reliability of the SAM parameters. The crucial test of the parameters
extracted from elastic scattering lies to the extent of its ability in describing the non-elastic data [21]. The
SAM is thus a useful mode] in a situation dominated by the strong absorption by the nuclear surface and
the uniqueness of the model parameters is its advantage. But the major drawback is that it does not give
any nsight into the fundamental interactions in nuclei-like NN and in the present context the N and
A-hole interactions. These are all summarily replaced by a ‘black disc’ with a diffuse surface. The present
model takes advantage of the selectivity around the Delta resonance without provoking the strong energy
dependence of the pion-nucleon amplitude. But nonetheless all the observed features in the pion-nucleus
scatterings are reasonably well accounted for by the present model.
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