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vature on the standard four dimensional half sphere. Using topological methods from the theory

of critical points at infinity, we prove some existence results.
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Resume

Ce papier est consacre a la prescription de la courbure scalaire avec une courbure moyenne

minimale du bord sur la demi-sphere standard de dimension quatre. En utilisant des methodes

topologiques de la theorie des points critiques a 1'infini, nous prouvons quelques resultats d'existence.

1 Introduction

In this paper, we are interested in some nonlinear equation arising from a geometric context.

Namely, let

S» = {x = (zx, ...,zn+1) 6 Rn+1 / \x\ = 1, xn+i > 0}

be the standard half sphere endowed with its standard metric g, η > 3 and let

/ : 5" —> R be a given function and we consider the following problem : does there exist a

metric g conformally equivalent to g such that Rg = f and hg = 0 ? where Rg is the scalar

curvature of 5" and hg is the mean curvature of 55", with respect to g. Setting g = «4/(n~2)p

a conformal metric to <?, where ω is a smooth positive function, the above problem has the

following analytical formulation : find a smooth positive function which solves the following

problem

(p) |L,U. Agu+ 4 „ ^ #u-> m S+

where ν is the outer normal vector with respect to g and where Κ =· ή?~\\ f·

Such kind of problem (P) has attracted much attention (see [1] [10], [12], [13], [16],[18] [19], [20],

[21], [22], [24] and the references therein).

The main difficulty one encounters in problem (P) appears when we consider it from a variational

viewpoint, indeed, the Euler functional associated to (P) does not satisfy the Palais-Smale

condition, that is, there exist noncompact sequences along which the functional is bounded and

its gradient goes to zero. This fact is due to the presence of the critical Sobolev exponent in

(P). Moreover, there are topological obstructions to solving (P), based on the Kazdan-Warner

type condition, see [14]. Hence it is not expectable to solve problem (P) for all functions K,

and so a natural question arises : under which conditions on Κ, (P) has a positive solution?

Yanyan Li [24] and Djadli, Malchiodi and Ould Ahmedou [18] studied problem (P) on the

three dimensional standard half sphere. Their method involves a fine blow up analysis of some

subcritical approximations and the use of the topological degree tools. Ben Ayed, El Mehdi and

Ould Ahmedou [12], [13] gave some sufficient topological conditions on Κ to find solutions to

(P) for η bigger than or equal to 4. Their approach uses algebraic topological tools from the

theory of critical points at infinity (see Bahri [4]).

Notice that problem (P) is, in some sense, related to the well-known Scalar Curvature problem



onSn

(Ρ1) - AgU +
 n(n~^u = jf u(n+2)/(n-2) in gn

to which many works have been devoted (see for example the monographes [2], [23] and references

therein.)

Regarding problem (Pf), there is a difference between the three cases η = 3, η = 4 and higher

dimensions. In the case η — 3, the interaction between two of the functions failing the Palais-

Smale condition dominates the self interaction, while for η = 4, there is a balance phenomenon,

and for η > 5 the self interaction dominates the interaction of two of those functions (see [5],

[7], [9])-

For problem (P), such a balance phenomenon (i.e. the self interaction and the interaction are of

the same size) appears in dimensions 3 and 4, see [18], [13]. In this work, we focus on the four

dimensional case to give more existence results. We are thus reduced to find positive solutions

of the following problem

-Aau + 2u = Kv? in 5i
(1) \ 'it - 0 on

Precisely, we borrow some of the ideas developed in Bahri [5], Aubin-Bahri [3], Ben Ayed-

Chtioui-Hammami [11], Ben Ayed-El Mehdi-Ould Ahmedou [12], [13] and Chtioui [17]. The

main idea is to precise the topological contribution of the critical points at infinity between the

level sets of the associated Euler functional and the main issue is under our conditions on K,

there remains some difference of topology which is not due to the critical points at infinity and

therefore the existence of a solution of (1).

In order to state our results, we fix some notations and assumptions that we are using in our

results. Let G be the Green's function of Lg on Sj. and Η its regular part defined by

Gfoy) = (1 - cos^^y)))-1 - H(x,y),

OinS^ dG/dv = 0 on

Let Κ be a (73 positive function on S+.

Throughout this paper, we assume that the following two assumptions hold

(1.1) Κ has only nondegenerate critical points yo, yi, ..., ym such that yo is the unique absolute

maximum of Κ on S+ and such that

(1.2) All the critical points of K\ = K/dS4 are zi, ..., zmr, and satisfy

-χ— fa) < 0, for i = l,...,m'

Now we introduce the following set

= {y € Si/VK(y) = 0 and ~ + 4#(y*, ifc) > 0}



Thus we are able to state our first result

Theorem 1.1 If yo $. jF* ', then problem (1) has a solution.

In the above result, we have assumed that yo £ ̂  · Next we want to give some existence result

for problem (1) when yo € F+· To this aim, we introduce some notation.

For s £ N* and for any s-tuple TS = (ii,...,is) € (F+)s such that ip φ iq if ρ / q, we define a

Matrix M(rs] = (Mp?)i<p)9<s, by

and we denote by p(rs} the least eigenvalue of M(rs). It was first pointed out by Bahri [4] (see

also [7] and [9]}, that when the self interaction and the interaction between different bubbles are

the same size, the function ρ plays a fundamental role in the existence of solutions to problems

like (P). Regarding problem (P), Djadli-Malchiodi-Ould Ahmedou [18] observed that such kind

of phenomenon appears when η = 3.

Now let Ζ be a pseudogradient of Κ of Morse-Smale type (that is the intersections of the stable

and the unstable manifolds of the critical points of Κ are transverse).

(1.3) We assume throughout this paper that Ws(yt) Γ) Wu(y3) — 0 for any yz 6 F+ and for

any yj ^ <7
r+, where Ws(yi) is the stable manifold of yi and Wu(y3] is the unstable manifold of

yj for Z.

(Hi) Assume that y0 G F+

Let yn 6 ̂ " \{yo} such that

(1.4) K(y%l } = max{K(y)/y 6 ̂ +\{yo}}

and we denote by k^ = 4 — i(ytl), where i(yij is the Morse index of Κ at yn.

(U2) Assume that i(yn) < 3.

We then have the following result :

Theorem 1.2 Under assumptions (Hi] and (H^), if the following three conditions hold

(AQ) M(yo,yjj) is nondegenerate

< 0

then problem (1) /ias a solution of Morse index kll or kzi + 1.

In contrast to Theorem 1.2, we have the following results based on a topological invariant for

some Yamabe type problems introduced by Bahri [5j. To state these results, we need to fix

assumptions that we are using and some notation.

(Hs) Assume that p(yo,yZi) > 0

Let



Under (1.3) and (1.4), we derive that X = Ws(ytl)OWs(yo). Thus X is a manifold of dimension

ktl without boundary.

We denote by Cyo(X) the following set

Cyo(X) = {a5yo + (1 - α)δχ / a e [0, 1], χ € X},

where δχ is the Dirac measure at x.

For λ large enough, we introduce the map f\ : Cyo(X) — » Σ+, defined by

where ||.||, Σ+ and ί(χ,λ) are defined in the next section by (2.1), (2.2) and (2.3) respectively.

Notice that Cyo(X) and fx(Cyo(X)} are manifolds in dimension ktl + 1, that is, their singulari-

ties arise in dimension ktl — 1 and lower, see [5]. We observe that Cyo(X) and f\(Cyo(X)) are

contractible while X is not contractible.

For λ large enough, we also define the intersection number(modulo 2) of f\(Cyo(X)) with

where Ws(yo,ytl)oo is *ne stable manifold of the critical point at infinity (yo,ytl)oo (see Corollary

3.2 below) for a decreasing pseudogradient V for the Euler functional associated to (1) which is

transverse to f\(Cyo(X}}. Thus this number is well defined, see [26].

(H4) Assume that K(y0) > 2K(yil).

We then have the following result

Theorem 1.3 Under assumptions (H^), (H^) and (H^), if /u(yn) = 0 then problem (1) has a

solution of Morse index ktl or k%l + 1 .

Now we give a statement more general than Theorem 1.3. To this aim, let k > 1, and define X

as the following

X =

where i(y) is the Morse index of Κ at y.

(y), with Bk is any subset in {y G F+/ i(y) = 4 — A;},

.

(Hs) We assume that X is a stratified set without boundary (in the topological sense, that is,

X € Sk(S\), the group of chains of dimension k and dX = 0).

(He) Assume that for any critical point ζ of K in JfXji/o}, we have p(yo,z} > 0.

For y 6 Bk we define, for λ large enough, the intersection number(modulo 2)

By the above arguments, this number is well defined, see [26].

(Hr) Assume that K(y0) > 1K(y) Vy €

Then we have the following theorem



Theorem 1.4 Under assumptions (Η$), (ife) and (H·?), if μ^) — 0 for any y G B^, then

problem (1) has a solution of Morse index k or k + 1.

Next we state a perturbative result for problem (1). To this aim, we set

(Hs) Assume that X is not contractible and denote by ra the dimension of the first nontrivial

reduced homology group.

We then have

Theorem 1.5 Assume that assumption (-Hg) holds. Thus there exists a constant CQ independent

of K such that if

\\K-l\\L°°(S*.) <co,

then problem (1) has a solution of Morse index > m.

Lastly, under the assumption (J?s), we can also find the following existence result :

Theorem 1.6 Under assumption (H^), if the following two conditions hold

(C*i) for any s, M(rs} is nondegenerate

(Cz) p(yi, yj) < 0 Vyz, y3 e .F1" such that y% / %,

then problem (1) has a solution of Morse index > m.

The rest of the paper is organized as follows. In section 2, we set up the variational structure

and recall some known facts. Lastly, section 3 is devoted to the proofs of our results.

2 Some Known Facts

In this section we recall the functional setting and the variational problem associated to (1).

We will also recall some useful previous results.

Problem (1) has a variational structure, the functional being

Js4Vu + 24u*
J(u) = —

defined on the unit sphere of .H'1(S+) equipped with the norm

s*.
H | = |Vw| + 2 u2. (2.1)

Problem (1) is equivalent to finding the critical points of J subjected to the constraint u 6 Σ+,

where

>0}, E = {we Hl(S\)/ \\u\\ = 1}. (2.2)



The Palais-Smale condition fails to be satisfied for J on Σ+. To characterize the sequences

failing the Palais-Smale condition, we need to fix some notation.

For a 6 5+ and λ > 0, let

where d is the geodesic distance on (5:J.,g}. This function satisfies the following equation

Let ψ(α>\) be the function defined on S\. and satisfying

Now, for ε > 0 and ρ € Ν*, let us define

ρ
Σ/3αι, ...,Ορ € S+, 3λι,..., λρ > Ο, Bcti,..., <χρ > Ο s.t. \\u — } ^ (x^H < ε,

— — 1| < ε, Aj > ε"1, ey < ε and A,cii < ε or Ajdj > ε"1},

where δτ = 5αι,λ.) ι̂ = d(at, 95|) and ε"1 = \/\3 + λ^/λΐ + λίλ.,(1 - coscil(ai, %))/2.

The failure of the Palais-Smale condition can be described, following the ideas introduced in

[15], [25], [28] as follows:

Proposition 2.1 Assume that J has no critical point in Σ+ and let (uk) € Σ+ be a sequence

such that J(uk) is bounded and VJ(uk) — > 0. Then there exist an integer ρ 6 Ν* , a sequence

£k > Ο (εκ — * 0) and an extracted subsequence ofu^, again denoted (uk), such that Uk € V(p, ε^).

If a function u belongs to V(p, ε), we assume that, for the sake of simplicity, \ldl < ε for i < q

and \di > ε~ι for i > q. We consider the following minimization problem for u € V(p,s) with

ε small
g ρ

min{||n - £ α,ί(βιΛ) - ^ «.¥»(&, Λ) 1 1 » «i > Ο, λ, > 0, at € 3S\ and 6, € 5^}. (2.4)

We then have the following proposition which defines a parametrization of the set V(p, ε). It

follows from the corresponding statements in [5], [6], [27].

Proposition 2.2 For any ρ € Ν*, there is ερ > 0 such that if ε < ερ and u € V(p, ε), the

minimization problem (2.4) has a unique solution (up to permutation). In particular, we can

write u G V(p, ε) as follows

q ρ



where (αϊ, ..., αρ,αι,...,αρ,λι,...,λρ) «s the solution of (2.4) and ν € .ff^S") suc/ι ί/ιαί

(V,, (,,,,-ο,*,,*",,,,^/ «<„,>,}.

We also have the following proposition whose proof is similar, up to minor modifications to the

corresponding statements in [4] (see also [27])

Proposition 2.3 There exists a Cl map which, to each (αϊ, ..., αρ, «ι, ..., αρ, ΑΙ, ..., λρ) such that

Σ?=ι αί^« ^ ^(ρ>ε) OT^ small ε, associates ν = V(at j0 i jx t) satisfying

( g Ρ \ ϊ ί 9 Ρ \ }
2J «A' + y] Oj^i + ΰ I = min < J I ̂ J «A + ̂  θίτφ% + ν Ι , υ satisfies (Vo) ?.
i=l t=q+l J *· \t=l i=g+l / -̂

Moreover, there exists c > 0 sucft ίΛαί ί/ie following holds

imi ̂  Σ - Σ ^ Σ
Next we are going to recall a useful expansion of functional J in V(p,e).

Proposition 2.4 /Jo?/ For ε > 0 small enough and u = ^f=i ^^(α,,λ,) ^ ^(i3)^); we ^awe i/ie

following expansion

2£Γ(ο,,ο,·

3 Proof of Theorems

Before giving the proof of our theorems, we extract from [13] the characterization of the critical

points at infinity of our problem. We recall that the critical points at infinity are the orbits of

the gradient flow of J which remain in V(p, ε(«)), where e(s) , a given function, tends to zero

when s tends to 4-00 (see [4]).

Proposition 3.1 [13] Assume that for any s, M(rs) zs nondegenerate. Thus, for ρ > 1, there

exists a pseudogradient W so that the following holds:

There is a constant c > 0 independent of u — Σ?=ι ̂ ^ + Ζ^=ο+ι α}Ψ] ^ V(p>£) so

w (



,..Ν , _ Ύ , ·. τττ ,TIr\\ V~\ |VjK"(a7)

η (- ~ - — J -
,·

(Hi) \W\ is bounded. Furthermore, the only case where the maximum of the \ 's is not bounded is

when each point ai is close to a critical point yyi of Κ with ̂  φ j^ for^ φ k and p(ytl, ...,yt ) > 0,

where p(yili---,yip) denotes the least eigenvalue o/M(yn,...,yIp).

Corollary 3.2 [13] Assume that for any s M(rs) is nondegenerate, and assume further that J

has no critical point in Σ+. Then the only critical points at infinity of J correspond to

ρ

Σ Κ(&> )~1/2¥X ,00). with Ρ € Ν* and p(ytl , ...,ytp) > 0.
J=l

In addition, in the neighborhood of such a critical point at infinity, we can find a change of

variable

(αι,.,.,Ορ, λι,.-.,λρ) -^· (αι,...,αρ,λι,..., λρ) := (ο, λ)

such that

or = («ι, ..., otp), c is a positive constant, η is a small positive constant, *Λ = (λι, ..., λρ),

Now we are ready to prove our theorems.

Proof of Theorem 1.1 For η > 0 small enough, we introduce, following [13], this neighbor-

hood of Σ+

νη(Σ+) = {η£Σ/ e2J(-u)J(u)3\u-{2

L4 < η},

where u~ = max(0, — u).

Recall that, from Proposition 3.1 we have a vector field W defined in V(p, ε) for ρ > 1. Outside

Up>iV(p, ε/2), we will use — VJ and our global vector field Ζ will be built using a convex

combination of W and —VJ. Τ^(Σ+) is invariant under the flow line generated by Ζ (see [9]).

Arguing by contradiction, we assume that J has no critical point in νη(Σ+). For any y critical

point of K, set

( $4 \1/2

c<x>(y) = -^γ-τ ) .
\K(y)J

Since yo is the unique absolute maximum of K, we derive that

coo(yo) < coo(y)> »y Φ yoj

where y is any critical point of K.

Let UQ Ε Σ+ such that

Coo(yo) < J(UQ) < inf c00(y) (3.1)



and let 77(5, «ο) be the one parameter group generated by Z. It is known that |VJ| is lower

bounded outside V(p, ε/2), for any ρ G T*f and for ε small enough, by a fixed constant which

depends only on ε. Thus the flow line 77(5,^0) cannot remain outside of the set V(p, ε/2).

Furthermore, if the flow line travels from V(p,e/2) to the boundary of V(p, ε), J^(S,UQ)) will

decrease by a fixed constant which depends on ε. Then, this travel cannot be repeated in an

infinite time. Thus there exist po and SQ such that the flow line enters into V{po,e/2] and it

does not exit from Υ(ρο,ε). Since UQ satisfies (3.1), we derive that po = 1, thus, for s > SQ,

Using again (3.1), we deduce that X i ( s ) is outside V(y,r) for any y e J7+\{j/o}> where V(y,r)

is a neighborhood of y and where r is a small positive real. Now, by assumptions of Theorem

1.1 and by the construction of a pseudogradient Z, we derive that AI(S) remains bounded along

the flow lines of Z. Thus we obtain

|VJ(77(s, η0)).Ζ(η(3, «0))| > c> 0 Vs > 0,

where c depends only on UQ.

Then when s goes to +00, J(ry(s,«o)) goes to — oo and this yields a contradiction. Thus there

exists a critical point of J in νη(Σ+). Arguing as in [9], we prove that such a critical point is

positive and hence our result follows. ID

Now before giving the proof of Theorem 1.2, we state the following lemma. Its proof is very

similar to the proof of Corollary B.3 of [6] (see also [5]), so we will omit it.

Lemma 3.3 Let «i, 02 € 5+, (χι, 0:3 > 0 and λ large enough. For u = CKi<£( a iu + Ο'2ψ(α2,\)>

we have

Proof of Theorem 1.2 Again, we argue by contradiction. We assume that J has no critical

point in V^(E+). Let

-̂ C-J-.-L W2

We observe that under the assumption (Αι) of Theorem 1.2, (yo,ytl) is not a critical point at

infinity of J. Using Corollary 3.2 and the assumption (^2) of Theorem 1.2, it follows that the

only critical points at infinity of J under the level ci = cco(yQ,yi1) + ε, for ε small enough,

are φ(ϋθ!<Χ)) and φ^ ;00). The unstable manifolds at infinity of such critical points at infinity,

Wu(yo)oo, Wufa^oo can be described, using Corollary 3.2, as the product of Ws(yo), Ws(yll)

(for a pseudogradient of K] by [A, +oo[ domain of the variable λ, for some positive number A

large enough.

Since J has no critical point, it follows that JCl = {u 6 E+/J(u) < ci} retracts by deformation

on XOQ = Wu(yo)oo U Wu(yll)rx> (see Sections 7 and 8 of [8]) which can be parametrized by

10



Χ χ [Α,+οο[, where Χ = Wg^).

Under (1.3) and (1.4) (see the first section), X — Ws(yo) U Ws(yll}. Thus X is a manifold in

dimension kn without boundary.

We claim now that XQQ is contractible in JCl. Indeed, let h : [0,1] χ Χ x [A, + oo [ ι—> Σ+

defined by

/ι is continuous and satisfies

and

In addition, since K(x) > K(yil) for any χ € Jf, it follows from Lemma 3.3 that J(h(t, χ, λ)) <

ci, for each (i, re, λ) e [0, 1] x X x [.A, +00 [. Thus the contraction h is performed under the level

c\. We derive that X^ is contractible in JCl, which retracts by deformation on Xac, therefore

Χ,χ, is contractible leading to the contractibility of X, which is a contradiction, since X is a

manifold in dimension ktl without boundary. Hence there exists a critical point of J in Τ^(Σ+).

Arguing as in [9], we prove that such a critical point is positive. Now we are going to show that

such a critical point has a Morse index equal to k^ or fcn + 1.

Using a dimension argument and since h([Q, 1], X^) is a manifold in dimension kll -f 1, we derive

that the Morse index of such a critical point is < ktl + 1.

Now, arguing by contradiction, we assume that the Morse index is < ktl — 1. Perturbing, if

necessary J, we may assume that all the critical points of J are nondegenerate and have their

Morse index < ktl — 1.

Such critical points do not change the homological group in dimension fc^ of level sets of J.

Now let c00(yi1) = Sj K(y%1)~1^ and let ε be a small positive real. Since X^ defines a

homological class in dimension ktl which is trivial in JC1 , but not trivial in JCoo(3/I )+ε, our result

follows. Π

Proof of Theorem 1.3 We notice that the assumption (H^) implies that (yoi2/ii) is a critical

point at infinity of J. Now, arguing by contradiction, we assume that (1) has no solution. We

claim that f\(Cyo(X)) retracts by deformation on X U Wu(yo,y l : i)oo· Indeed, let

u =

the action of the flow of the pseudogradient Ζ defined in the proof of Theorem 1.1 is essentially

on a (see [5] and [11]).

- If α < 1/2, the flow of Ζ brings a to zero and thus u goes in this case to Wu(yo)00 = {yo}·

- If α > 1/2, the flow of Ζ brings α to 1 and thus u goes, in this case, to Wu(yzi )QO = X^.

- If a — 1/2, since only x can move then yo remains one of the points of concentration of u and

x goes to Ws(y-l), where y, = yn or yl = yo and two cases may occur :

- In the first case, that is, yt =yll,u goes to Wu(yo,yn)oo ·

11



- In the second case, that is, yz = yo, there exists SQ > 0 such that X(SQ) is close to yo· Thus,

using Lemma 3.3, we have the following inequality

J(u(s0)) < Coo(yo,yo) +7 := «=2,

where c00(yo^yo} = 54' (2/K(yo))1/2 and where 7 is a positive constant small enough.

Now, using assumption (#4), it follows from Corollary 3.2 that JC2 retracts by deformation on

Wu(yo)oo = {yo} and thus u g°es to Wu(yo}<x>. Therefore f\(Cyo(X)) retracts by deformation

on XQO U Wu(yo,ytl)oo.

Now, since μ^^ = 0, it follows that this strong retract does not intersect Wu(yojyti)oo and

thus it is contained in X^. Therefore X^ is contractible, leading to the contractibility of X,

which is a contradiction, since X is a manifold of dimension kn without boundary. Hence (1)

admits a solution. Now, using the same arguments as those used in the proof of Theorem 1.2,

we easily derive that the Morse index of the solution provided above is equal to k^ or Ar t l + 1.

Thus our result follows. D

Proof of Theorem 1.4 Assume that (1) has no solution. Using the same arguments as those

in the proof of Theorem 1.3, we deduce that f\(Cyo(X}} retracts by deformation on

X<*> U (Uj^Wud/d.y)») U D,

where D C σ is a stratified set and where σ = iJyQX\BkWu(yo,y)00 is a manifold in dimension

at most k.

Since p(y) = 0 for each y G Bh, f\(Cyo(X)) retracts by deformation on Χ,χ, U D, and therefore

Η^Χ,χ,υΌ) = 0, for all * 6 N*, since fx(Cyo(X)} is a contractible set. Using the exact homology

sequence of (Xoa U D, XOQ), we obtain

... -)· JWJToo U£>) ̂  -Hib+i(*oo U £>,*«) ̂

Since H^X^ \J D} = 0, for all * 6 N*, then Hk(Xoo) =

In addition, ( .Xoo U D , .Xoo ) is a stratified set of dimension at most k , then Hk+ 1 (-X^oo UD , -SToo ) = 0 ,

and therefore H^Xoo) = 0. This implies that Hk(X) = 0 (recall that X^ = Χ χ [A, oo)). This

yields a contradiction since X is a manifold in dimension k without boundary. Then, arguing

as in the end of the proof of Theorem 1.3, our theorem follows. Π

Proof of Theorem 1.5 We argue by contradiction. Assume that (1) has no solution. Let

GI = §54 . Using the expansion of J, see Proposition 2.4, we derive that there exists a constant

CQ independent of K such that if \\K — 1| ̂ 00(54 ) < CQ, then the following holds

J(u)<ci, Vt i€V(l ,e ) and J(u) > ci Vu € V(p, ε) with ρ > 2,

where ε is a small positive real.

Therefore, it follows from Corollary 3.2 that the critical points at infinity of J under the level c\

12



are in one to one correspondence with the critical points y of Κ such that y G F+ . Since J has

no critical points in Σ+, it follows that JC1 retracts by deformation on X^ = liyt&^+Wu(yl)0o

(see sections 7 and 8 of [8]) which can be parametrized by X x [A, +oo[ (we recall that X =

Now we claim that X^ is contract ible in JC1 . Indeed, since S\. is a contractible set, we deduce

that there exists a contraction h : [0, 1] x X -» 5+, /ι continuous and satisfies for any ο 6 -X",

/ι(0, ο) = α and /ι(1,α) = OQ a point of 5+. Such a contraction gives rise to the following

contraction h : [0, 1] x X^, ->· Σ+ defined by

[0, 1] x A" x [A + oo [ 3 (t, α, λ) ι—» ν>(Α(ίιβ)ιλ) + δ € Σ+.

For t = Ο, ¥>(Λ(ο,α),λ) + ϋ - ^(α,λ) + ϋ € ^LOQ. Λ is continuous and /ι(1,α, λ) = ψ(αο,λ) + ϋ, hence

our claim follows.

Now, using Proposition 2.4, we deduce that

Choosing CQ small enough and A large enough, we then have </(¥>(/i(t,a),A)) < ci· Therefore such

a contraction is performed under the level GI, so X^o is contractible in JCl, which retracts by

deformation on XQO, therefore XOQ is contractible leading to the contractibility of X, which is

in contradiction with assumption (H$). We derive that (1) has a solution. Lastly, the same

arguments as those in the proof of Theorem 1.2 easily give the desired estimate for the Morse

index of the solution provided above and therefore our result follows. D

Proof of Theorem 1.6 Arguing by contradiction, we assume that (1) has no solution. No-

tice that under the assumption of our theorem, J has no critical point at infinity having more

or equal to two masses in its description and therefore the only critical points at infinity of J

are tp(y,oo) such that y e Ρ+. Since J has no critical point, it follows that Σ+ retracts by

deformation on X^ = U2/e:p+Wit(y)oo, see [8]. Thus we conclude that X^ is contractible since

Σ+ is a contractible set. So X is contractible and this is a contradiction with our assumption.

Hence (1) has a solution and as above, we derive that the Morse index of such a solution is >

τη, therefore our result follows. Π
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