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The spectral properties of hybrid meson interpolating fields are investigated. The
quantum numbers of the meson are carried by smeared-source fermion operators
and highly-improved chromo-electric and -magnetic field operators composed with
APE-smeared links. The effective masses of standard and hybrid operators indicate
that the ground state meson is effectively isolated using both standard and hybrid
interpolating fields. Focus is placed on interpolating fields in which the large
spinor components of the quark and antiquark fields are merged. In particular,
the effective mass of the exotic 1~ meson is reported. Further, we report some
values for excited mesonic states using a variational process.

1. INTRODUCTION

Major experimental efforts are currently aimed at determining the possible
existence of exotic mesons; mesons having quantum numbers that cannot be
carried by the minimal Fock space component of a quark-antiquark pair. Of
particular mention is the proposed program of the GlueX collaboration as-
sociated with the forthcoming upgrade of the Jefferson Laboratory facility.
The observation of exotic states and the determination of their properties
would elucidate aspects of QCD which are relatively unexplored.

The quantum numbers JP€ = 0+~, 07—, 17+, etc. cannot be carried
by a quark-antiquark pair in a ground-state S-wave. Lattice QCD calcu-
lations exploring the non-trivial role of explicit gluon degrees of freedom
in carrying the quantum numbers of the meson suggest that exotic meson
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states do indeed exist and have a mass the order of 2 GeV !. These findings
are further supported here.

2. SIMULATION METHODOLOGY

Operators carrying exotic quantum numbers can be constructed by merg-
ing standard local interpolating fields g*(z)I'¢®(z) with chromo-electric,
E%(z), or chromo-magnetic fields, B*(z). The JPC quantum numbers of
the interpolator are derived from the direct product of those associated with
the quark bilinear and E2® (1~7) or B# (1+~). For example, combining
the vector current of the p meson with a chromo-magnetic field, 1=~ ® 1~
provides 0t @ 17t @ 2~F with the 0~*: §%y;q®B% (7 meson) and the
17F: €;53°7iq° B (exotic). We restrict ourselves to the lowest energy-
dimension operators, as these provide better signal with smaller statistical
errors. Table 1 summarizes the standard and hybrid interpolating fields
explored herein.

Table 1. JFPC quantum numbers and their associated meson interpolating fields.
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The formulation of effective interpolating fields for the creation and an-
nihilation of exotic meson states continues to be an active area of research.

For example, one can generalize the structure of the interpolating fields
further to include nonlocal components where link paths are incorporated
to maintain gauge invariance and carry the nontrivial quantum numbers
of the gluon fields. In this case, numerous quark propagators are required
for each gauge field configuration rendering the approach computationally
expensive.



Here we consider local interpolating fields. Gauge-invariant Gaussian
smearing 3 is applied at the fermion source (¢t = 3), and local sinks are used
to maintain strong signal in the two-point correlation functions. Chromo-
electric and -magnetic fields are created from APE-smeared links 4 at both
the source and sink using the highly-improved O(a*)-improved lattice field
strength tensor °. In this study, the smearing fraction o = 0.7 (keeping 0.3
of the original link) and the process of smearing and SU(3) link projection
is iterated four times . This amount of smearing is sufficient to provide a
meaningful topological charge and appears to be suitable for the creation
of exotic mesons. As such, the results presented here supersede an earlier
presentation of hybrid meson masses 2.

Propagators are generated using the fat-link irrelevant clover (FLIC)
fermion action 7 where the irrelevant Wilson and clover operators of the
fermion action are constructed using fat links while the relevant operators
use the untouched (thin) gauge links. FLIC fermions provide a new form
of nonperturbative O(a) improvement &° where near-continuum results are
obtained at finite lattice spacing. Access to the light quark mass regime is
enabled by the improved chiral properties of the lattice fermion action 9.

Excited states are extracted using a variational technique, corresponding
to a construction of optimal linear combinations of the original operators.
For the sake of completeness, we shall discuss this here, in direct analogy
to the procedure described in 1.

3. ANALYTICAL PROCESS

Consider the momentum-space meson two-point function for t > 0,

Gy(t,9) = 3 e PEQxi(t, B} (0,0)19) (1)

where 4, j label the different interpolating fields and we focus on Lorentz
scalar interpolators for simplicity. At the hadronic level,

Gy (6. P)=3 "% 3" Qi(t, )| H, p)

oy
x(H,p|x}(0,0)|2) ,

where the |H,p') are a complete set of hadronic states.

ST IH,p)H,p| =1 . 2)

H,p
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We can make use of translational invariance to write this as
> (0 1) (B9[] )
Z,H,p

=" e Bt Qi H,p)(H, plx} 1) - (3)
H

Xi (O)eiﬁ'fe—ﬁt

It is convenient in the following discussion to label the states which have
the x interpolating field quantum numbers as |H,) fora =1,2,---,N. In
general the number of states, N, in this tower of excited states may be
infinite, but we will only ever need to consider a finite set of the lowest
such states here. After selecting zero momentum, p’'= 0,

N
Gij(t) = Gi(£,0) = > e™™=tagale (4)
a=1

where A$ and )\;'.a are coefficients denoting the couplings of the interpo-
lating fields x; and x;, respectively, to the state |Hy). If we use identi-
cal source and sink interpolating fields then it follows from the definition
of the coupling strength that )\;'." = (A\%)* and from Eq. (4) we see that
Gi;(t) = [Gi(t)]*, i.e., G is a Hermitian matrix. If, in addition, we use only
real coefficients in the link products, then G is a real symmetric matrix.
For the correlation matrices that we construct we have real link coefficients
but we use smeared sources and point sinks and so in our calculations G is
a real but non-symmetric matrix. Since G is a real matrix for the infinite
number of possible choices of interpolating fields with real coefficients, then
we can take A and /\}a to be real coefficients here without loss of generality.
In constructing correlation functions, we effectively average over {U} and
{U*} configurations to ensure A? is purely real, even on a finite ensemble
of gauge field configurations 1.

Now, let us consider the ideal case where we have N interpolating fields
with the same quantum numbers, but which give rise to N linearly inde-
pendent states when acting on the vacuum. In this case we can construct
N ideal interpolating source and sink fields which perfectly isolate the N
individual hadron states |H,), i.e.,

N
ot =S "u xi, (5)
=1

N
QSG‘:Zv:“ Xi » (6)
i=1



such that
(Hp| 67 |Q) = bap 2, )
(Q ¢* |Hp) = dap 2°, (8)

where z® and z1® are the coupling strengths of ¢* and ¢! to the state |Hy).
The coefficients u& and v}* in Egs. (3) may differ when the source and sink
have different smearing prescriptions, again indicated by the differentiation
between 2 and z'® (recall z is real).

For notational convenience for the remainder of this discussion repeated
indices i, j, k are to be understood as being summed over, whereas o de-
noting a particular state is not. At =0, it follows that,

Gy(t) uf = (Z trep { (€2 X} m>}> ug
= xegtaemmat, (9)

The t-dependence in this expression is purely in the exponential term, lead-
ing to the recurrence relationship

Gij(t)u§ = e™Guk(t + 1) uf , (10)
which can be rewritten as
(Gt + D] Gt u§ = ™ u . (11)

This is the generalized eigenvalue equation for [G(¢ +1)]~1G(t) with eigen-
values e™e and eigenvectors u*. Hence the natural logarithms of the eigen-
values of [G(t + 1)]71G(t) are the masses of the N hadrons in the tower of
excited states for the given quantum numbers . The eigenvectors are the
coeflicients of the  fields providing the optimal linear combination for that
state.

One can also construct the equivalent left-eigenvalue equation to recover
the v vectors, providing the optimal linear combination of annihilation in-
terpolators,

V% Grj(t) = eMev;*Gy(t +1) . (12)

Recalling Eq. (9), one finds:
Gij(t) uf = Zie\ee=mat | (13)
vi® Gyj(t) = 2*A[%e™ et (14)

Vi Grj(1)Ga(t) uft = 2921 Ag Al e 2mat | (15)



The definitions of Eqgs. (7) and (8) imply
vi® Gij(t) ud = z%z1%e™ ™, (16)

indicating the eigenvectors may be used to construct a correlation function
in which a single state mass m,is isolated and which can be analyzed using
the methods of Section II. We refer to this as the projected correlation
function in the following. Combining Egs. (15) and (16) leads us to the
result

0" Giy(BGalt) uf
v,’;"‘le(t)u;"

= AZA[Femat | (17)

By extracting all N2 such ratios, we can exactly recover all of the real
couplings A$ and /\;‘-a of x; and x; respectively to the state |Hg).

Note that throughout this section no assumptions have been made about
the symmetry properties of G;;. This is essential due to our use of smeared
sources and point sinks.

In practice we will only have a relatively small number, M < N, of
interpolating fields in any given analysis. These M interpolators should be
chosen to have good overlap with the lowest M excited states in the tower
and we should attempt to study the ratios in Eq. (17) at early to interme-
diate Euclidean times, where the contribution of the (N — M) higher mass
states will be suppressed but where there is still sufficient signal to allow
the lowest M states to be seen. This procedure will lead to an estimate for
the masses of each of the lowest M states in the tower of excited states.
Of these M predicted masses, the highest will in general have the largest
systematic error while the lower masses will be the most reliably deter-
mined. Repeating the analysis with varying M and different combinations
of interpolating fields will give an objective measure of the reliability of the
extraction of these masses.

In our case of a modest 2 x 2 correlation matrix (M = 2) we take a
cautious approach to the selection of the eigenvalue analysis time. As al-
ready explained, we perform the eigenvalue analysis at an early to moderate
Euclidean time where statistical noise is suppressed and yet contributions
from at least the lowest two mass states is still present. One must exercise
caution in performing the analysis at too early a time, as more than the
desired M = 2 states may be contributing to the 2 x 2 matrix of correlation
functions. We guard against this by insisting that the projected states be
t-invariant, as determined by a x? fit.
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Figure 1. Effective mass plot of the 1=+ exotic meson obtained from the hybrid inter-
polating field €;513%vx B{tq®.

4. RESULTS

The following results are based on 110 mean-field O(a?)-improved Luscher-
Weisz 10 gauge fields on a 163 x 32 lattice at 3 = 4.60 providing a lattice
spacing of a = 0.122(2) fm set by the Sommer scale, o = 0.449.

Of the hybrid interpolators listed in Table 1, only the interpolating
fields merging the large spinor components of the quark and antiquark
fields provide a clear mass plateau. The effective mass plot for the exotic
1~ meson is illustrated in Fig. 1, where a plateau at early times is observed
confirming the existence of the exotic 17+.

Figures 3 and 4 illustrate the effective masses M(t) = —log(G(t +
1)/G(t)), obtained from the first and third, and second and fourth, pion
(0~+) interpolators of Table 1 for our intermediate quark mass (m2 ~
0.6 GeV?). Excellent agreement is seen between the standard and hybrid
interpolator-based correlation functions. Similar results are seen in Fig. 5
comparing effective masses obtained from the first and third p-meson (177)
interpolators of Table 1.



3.0 : T T T T T

(GeV)
o
NN
|

-+

M
o
T
I

OO | | | |
0.0 0.2 0.4 0.6 0.8 1.0 1.2
M ? (GeV)

Figure 2. Effective mass plot of the 1~F exotic meson obtained from the hybrid inter-

polating field €;x; 7y B¢, vs m2 derived from the standard pion interpolator g%ysq°.
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Figure 3. Effective mass plot for correlation functions of the standard pion interpolator
d*vsq® and the hybrid pion interpolator g%; B;."’qb.
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Figure 4. Effective mass plot for correlation functions of the standard axial-vector pion
interpolator §*v5y49® and the hybrid pion interpolator §%v4v; B;‘bqb.
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Figure 5. Effective mass plot for correlation functions of the standardp-meson interpo-
lator g®v;¢® and the hybrid p interpolator §*y47vs B;.‘bqb.
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Table 2. Meson masses as a function of the hopping parameter .

JPC Operator x = 0.1260 x = 0.1266 k= 0.1273 K = 0.1279 x = 0.1286
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Table 3. Pion excited state from variational analysis.

Mass(GeV)
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