CERN LIBRARIES, GENEVA

CM-P00046443

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN/SPSC/76-109 SPSC/P 77/S November 29, 1976

Search for Neutrino Oscillation at CERN-SPS

Istituto di Fisica G. Galilei, Università di Padova INFN, Sezione di Padova

M. Baldo-Ceolin, F. Bobisut, E. Calimani, S. Ciampolillo, H. Huzita, M. Loreti, F. Mattioli, G. Miari, G. Puglierin, A. Sconza

It is proposed to investigate in BEBC, filled with Neon, the $v_{\mu} \leftrightarrow e$ oscillation, which is expected if $m_{\nu_{\mu}}$ and/or $m_{\nu_{e}}$ are different from zero, and transitions $v_{\mu} \leftrightarrow v_{e}$ can occur.

The oscillation length "%" is a function of the momentum p of the neutrino and of Δ , which is the m_1-m_2 mass difference (m_1 and m_2 are respectively the v_1 and v_2 masses). A typical value of "%" is 2.5 km for p=1 GeV and $\Delta=1$ eV².

It has been evaluated that about 150 ν events are expected in BEBC in 100.000 pictures per 10^{13} protons per pulse, considering the length of the ν beam at the CERN-SPS (~1 km), the protons extracted from the SPS at an energy close to that of injection (~10 GeV), and properly scaling the Argonne ν -spectrum.

With this number of events an upper limit $\Delta < 0.1~{\rm eV^2}$ will be set with 90% confidence level.

Should the effect be there, the knowledge of the energy of each individual event will allow the determination of both Λ and θ , the mixing angle of $\nu_1-\nu_2$.