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We propose a collective Hamiltonian which incorporates interactions capable of gen-
erating rotations in nuclei with the simultaneous presence of octupole and quadrupole
deformations. It is demonstrated that the model formalism can reproduce the stag-
gering effects observed in nuclear octupole bands. On this basis we propose that the
interactions involved should provide a relevant tool to study collective phenomena in

nuclei and other quantum mechanical systems with reflection asymmetric correlations.

The properties of nuclear systems with octupole deformations [1] are of
current interest due to the increasing of evidence for the presence of octupole
instability in different regions of the nuclear table [2]. Various parametriza-
tions of the octupole degrees of freedom have opened a useful tool for under-
standing the role of the reflection asymmetric correlations and for analysis
of the collective properties of such kinds of systems [2]. An important step
in this direction is to elucidate the question: what are the collective nuclear

interactions that correspond to the different octupole shapes and how do they
determine the structure of the respective energy spectra?

In the present work we address the above problem by examining the in-
teractions that generate collective rotations in a system with octupole de-

formation. Based on the octahedron point symmetry parametrization of the




octupole shape [3], we propose a general collective Hamiltonian which incorpo-
rates the interactions responsible for the rotations associated with the differ-
ent octupole deformations. It will be shown that after taking into account the
quadrupole degrees of freedom and the appropriate higher order quadrupole-
octupole interaction the model formalism is able to reproduce schematically
some interesting effects of the fine rotational structure of nuclear octupole
bands.

Our model formalism is based on the principal that the collective proper-
ties of a physical system in which octupole correlations take place should be
influenced by the most general octupole field V3 = Zi=_3 of? ’zY;,,“, (in the
intrinsic, body-fixed frame), which can be written in the form [3]:
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(with 72 = 22 4 2 + 22) belong to the irreducible representations (irreps) of
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the octahedron group (O). Aj is one-dimensional, while F; and F; are three-
dimensional irreps. The seven real parameters eg and €, (i) (r = 1,2; i = 1,2,3)

determine the amplitudes of the octupole deformation.

Our proposition is that the collective Hamiltonian which incorporates the
shape characteristics of the octupole field (1) can be constructed on the basis
of the above octahedron irreps. For this purpose we introduce operator forms
of the quantities Az, Fi(5) and Fp(i) (i = 1,2,3) in which the cubic terms of
the Cartesian variables z, y and z in Eqs (2)—(8) are replaced by appropriately
symmetrized cgmbﬁinations of cubic terms of the respective angular momentum
operators I, I, I, (with 2 = IZ + I2 + IZ). The following Hamiltonian is
then obtained:
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where ag and f;; (r =1,2; i = 1,2,3) are the Hamiltonian parameters.
The general collective Hamiltonian of a system with octupole correlations
should contain also the standard (axial) quadrupole rotation part (a simulta-

neous presence of octupole and quadrupole degrees of freedom is assumed)
fIrot = Aj2 + AII? ’ (17)

where A and A’ are the inertial parameters. In addition, we introduce the
following higher order diagonal quadrupole-octupole interaction term (corre-

sponding to the product Ya¢ - Y30):
Hyoe = fqoc%(lsfi —14131% + 31,1 . (18)
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Finally, the Hamiltonian of the system can be written as
H= f{bh + fI,-ot + Hos + fIqoc . (19)

Here Hy, = Ho + fil, is a pure phenomenological part which provides the
bandhead energy Ey, = Ey + fxK (Eg and fi are free parameters).

The physical relevance of the Hamiltonian (19) depends on the possibility
to determine in a unique way the third angular momentum projection K.
We suggest that for any given angular momentum I the quantum number K
should be determined so as to minimize the respective collective energy. The
resulting energy spectrum represents the yrast sequence of energy levels for
our model Hamiltonian.

As a first step in testing our Hamiltonian we consider its diagonal part

He =ﬁbh+ﬁrot+ﬁgct+ﬂqoc ) (20)

were the operator fIgct =H Fy(1) Tepresents the diagonal part of the pure
octupole Hamiltonian Hoe, Eq. (9). The following diagonal matrix element is

then obtained:

5
Ex(I) = Eo+ fik+AI(I+1)+ A'K> + fuu (§K3 - gKI(I + 1))
+ fqoc% (15K5 — 14K3I(I +1) + 3KI2(I + 1)2) . (21)

The respective yrast sequence E(I) is determined after minimizing Eq. (21)
as a function of integer K in the range —I < K < I. The obtained energy
spectrum depends on six model parameters: E; essentially responsible for
the bandhead energy; fr which provides minimal energy for K = Ky, =
Iyp; A and A’ are the quadrupole inertial parameters which should generally
correspond to the known quadrupole shapes (axes ratios) of nuclei; fi; and
fqoc are the parameters of the diagonal octupole (11) and quadrupole-octupole

(18) interactions respectively.



Table 1: The “yrast” energy levels, E(I) (in KeV), and the respective K-
values obtained by Eq. (21) for the parameter set Eg = 500keV, fy = —7.5keV,
A = 12keV, A’ = 6.6keV, fi; = 0.56keV, fooc = 0.085keV.

T EM) K]JI E() K| I EQ_ K
1 522772 1 | 13 233581 5 | 25 5453.12 11
2 568.327 1 | 14 2576.57 6 | 26 5694.49 12
3 637.005 1 | 156 2827.57 6 | 27 59355 12
1 72871 1 | 16 3082.36 7 | 28 61575 13
5 840.857 2 | 17 334494 7 | 29 637829 13
6 971.155 2 | 18 3608.18 8 | 30 657537 14
7 112322 2 | 19 3877.05 8 | 31 6770.62 14
8§ 1288.09 3 | 20 4143.16 9 | 32 6937.23 15
9 147271 3 | 21 441303 9 | 33 7101.62 15
10 166856 4 | 22 4676.45 10 | 34 723221 16
11 1880.56 4 | 23 4942.01 10 | 35 736044 16
12 2101.68 5 | 24 5197.18 11 | 36 744945 17

We applied several sample sets of the above parameters and obtained the
corresponding schematic energy spectra. One of them is given in Table 1. It is
seen that the “yrast” values of the quantum number K gradually increase with
the increase of the angular momentum I. We remark that they correspond
to the local minima of Eq. (21) as a function of K. Such a behavior of the
spectrum corresponds to a wobbling motion and could also be interpreted as
a multiband-crossing phenomenon.

In addition we see that the K- values of the odd and the even sequence
of levels are in groups, couples which implies the presence of an odd-even
staggering effect. Indeed, the presence of such an effect is demonstrated in

Fig. 1 (a)-(e), where the quantity
Stg(I) = 6AE(I)—4AE(I—1)—4AE(I+1)+ AE(I+2)+AE(I-2), (22)

with AE(I) = E(I +1)— E(I), is plotted as a function of angular momentum
I for several different sets of model parameters. (The quantity Stg(I) is the
discrete approximation of the fourth derivative of the function AE(I), i.e. the

fifth derivative of the energy E(I). Its physical relevance has been discussed




extensively in Refs [4, 5].)

Fig. 1(a) illustrates a long AI = 1 staggering pattern with several irreg-
ularities, which looks similar to the “beats” observed in the octupole bands
of some light actinides such as ??°Ra, ?*Ra and ?*Ra [4]. In Fig. 1(b) the
increased values of f1; and fgo. provide a wide angular momentum region (up
to I ~ 40) with a regular staggering pattern. A further increase of fj,. results
in a staggering pattern with different amplitudes, as shown in Fig. 1(c). Fur-
ther, staggering pattern with many “beats” is obtained, as shown in Fig 1(d).
An example with almost constant staggering amplitude is shown in Fig. 1(e).
It resembles the form of the odd—even staggering predicted in the SU(3) limit
of various algebraic models (see Ref. [4] for details and relevant references). It
also resembles the odd—even staggering seen in some octupole bands of light
actinides, such as 22?Rn [4].

Now we can discuss the general Hamiltonian structure (19) including the
various non-diagonal terms (10), (12)-(16) which provide a K-bandmixing in-
teraction. In Fig. 1(f) a staggering pattern in the presence of K-bandmixing
is illustrated. We see that the mixing leads to a decrease in the staggering
amplitude with the increase of angular momentum, so that the staggering pat-
tern is strongly suppressed. This pattern resembles the experimental situation
in 228Th [4] (odd-even staggering with amplitude decreasing as a function of
I).

In such a way, we find that the axial symmetric (diagonal) term H F(1) 18
the only pure octupole degree of freedom which provides a staggering behavior
of the quantity (22). Thus, our analysis suggests that the Al = 1 staggering
effect observed in systems with octupole deformations should be considered as
the manifestation of the axial symmetric “pear-like” shape.

The staggering patterns illustrated in Fig. 1 reproduce the form of almost
all known AI = 1 staggering patterns in nuclei. So, we suppose that the model

parameters could be adjusted so as to reproduce quantitatively the staggering
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Figure 1: AI = 1 staggering patterns [Eq. (22)] obtained: (a) - (e) by the
diagonal Hamiltonian (20) for several different sets of model parameters; ()
by adding three non-diagonal terms H F(2) [Ea- (12)), H F,(1) [Eq- (14)] and
aH Fy(2) [EQ. (15)] to the diagonal Hamiltonian (20).




effects in all nuclear octupole bands as well as in some rotational negative
parity bands built on octupole vibrations.

In closing, we note that the collective interactions considered in this work
suggest the presence of various fine rotational band structures in nuclear sys-
tems with collective octupole correlations. In particular, they produce various
staggering patterns, which appear as the result of a delicate interplay between
the terms of a pure octupole interaction and those of a high order quadrupole—
octupole interaction. The analysis carried out illustrates the dominant role of
the axial symmetric “pear-like” shape for the presence of a Al = 1 staggering
effect. The obtained multi K- band crossing structures can be thought of as
a wobbling collective motion of the system. Finally, the interactions used in
this work should provide a natural handle for the study of collective phenom-
ena in nuclei and in other quantum mechanical systems with complex shape
correlations.

This work has been supported by the Bulgarian National Fund for Scientific
Research under contract no MU-F-02/98.
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