
Presented at the 2nd International DAQ Workshop on Networked Data Acquisition Systems, RCNP, Osaka, 13 - 15 November 1996

ATLAS Internal Note

DAQ-No-64

28 January 1997

Performance Analysis of ATM Network Interfaces
for Data Acquisition Applications

D. Calvet, P. Le Dû, I. Mandjavidze
CEA Saclay, 91191 Gif-sur-Yvette CEDEX, France

M. Costa, J.-P. Dufey, M. Letheren, C. Paillard
CERN, 1211 Geneva 23, Switzerland

Abstract
This presentation addresses some design aspects of ATM

network interface nodes for data acquisition applications in the
field of High Energy Physics. We present the development of
Windows NT and LynxOS device drivers for ATM network
adapters. We show a comparative study of the performance of
PCI/ATM network adapters on Pentium and PowerPC based
platforms. We evaluate the influence of the operating system on
performance and measure the overhead of our drivers. We pro-
pose several methods to improve the real time characteristics of
conventional network interface drivers and show their impact
on performance.

I. INTRODUCTION

Data acquisition and event selection systems for High
Energy Physics experiments, in construction or planned, need
to handle larger and larger data volumes in real time. The
demand on aggregate bandwidth has grown from a few
Mbytes/s for CERN LEP experiments to several tens of
Gbytes/s for future experiments at LHC [1], [2], [3]. Efficient
communication networks are needed to link several hundreds
of detector data sources to a comparable number of processors
running the selection algorithms for the on-line filtering of
events. The RD-31 collaboration [4] is investigating the use of
Asynchronous Transfer Mode technology (ATM) [5] for Trig-
ger/DAQ applications at LHC. One of the goals of the project
is to evaluate on small scale demonstrators the feasibility of
event builders based on ATM components [6].

In this paper, we investigate the interface between a node
(data source or destination processor) and the ATM network.
This interface is a key component in the system.

II. ATM N ETWORK BASED TRIGGER/DAQ
In High Energy Physics experiments, sophisticated multi-

level event selection systems are needed to reduce the raw data
flow to a level that can be recorded on permanent storage. The
first level of on-line event selection is generally based on fast
pipelined logic while subsequent levels use commercial pro-
cessors whenever possible. We proposed in [7] a model of a
Trigger/DAQ system for the second and third level trigger of
the ATLAS experiment. The system comprises a number of

data sources, destination processors and a supervision unit. An
ATM network links all components and is used to carry both
data and protocol traffic. The sources buffer event data frag-
ments previously digitized by the read-out electronics of the
detector. The destination processors collect event data from the
sources and run the on-line event selection algorithms. The
supervision unit controls the operation of the system. Messages
between various elements are exchanged at a rate up to
100 kHz. The size of messages ranges from less than 100 bytes
to several tens of kilobytes. It should be noted that the system
relies on quick request/response transactions.

The network of a Trigger/DAQ system has to handle various
types of traffic with different needs in terms of bandwidth, pri-
ority, routing latency, etc... The ATM technology has been
designed to carry simultaneously on a common physical
medium various types of traffic having different service
requirements. Our simulation studies in [7] showed that ATM
nodes and switching fabrics can handle in a single network the
various types of traffic specific to Trigger/DAQ applications.
These studies were focused on the protocol and data traffic
through the network, therefore the simulation model was rela-
tively simple. We did not take into account the software and
hardware overheads generated in the ATM network adapters.
In particular, the influence of the operating system and device
driver in the processor nodes and data sources were ignored.
These parameters can be measured on our demonstrators.
Then, we can use them to tune the simulation program so that it
gives a more accurate picture of the behavior of a real system
and allows to predict the performance of larger systems. In this
paper, we present the measurement of the most relevant param-
eters that characterize ATM interface cards.

III. ATM I NTERFACENODE ARCHITECTURE

At present, several tens of vendors offer ATM Network
Interface Cards (NIC) for workstations and Single Board Com-
puters (SBC). Cards based on several bus standards are avail-
able: VME, SBus, ISA, and PCI bus. Although the original
specification of the PCI bus was aimed at the PC/Workstation
market, it has also been adopted as a local peripheral bus for
mezzanine cards on SBCs [8]. As PCI is gaining acceptance on
the market, more and more vendors offer ATM components
with a built-in PCI interface [9], [10], [11]. The use of



2

PCI/ATM interfaces was therefore a natural choice for our
demonstrator. The architecture of a PCI/ATM node is pre-
sented in Figure 1.

Figure 1: PCI/ATM node architecture.

The host processor, cache and memory are connected to PCI
through a PCI bridge. This bridge/memory controller provides
a low latency access to the ATM network interface. It also pro-
vides a high bandwidth path for the ATM interface to access
directly the host memory. The bridge guarantees cache coher-
ency between processor caches and the main memory. The
ATM interface includes a Segmentation And Re-assembly
engine (SAR), with a PCI master/slave interface. The SAR per-
forms the ATM Adaptation Layer (AAL) and ATM layer proto-
col functions. The physical layer is handled by the PHY device
connected to an electrical/optical converter.

IV. DESCRIPTIONOF PLATFORMS TESTED

We investigated two different host platforms: a VME single
board computer and a PC. The characteristics of these plat-
forms are presented in Table 1.

Both platforms have 32 Mbytes of memory. The secondary
level cache is 256 Kbytes on the PC and 512 Kbytes on the
VME board. The ATM interface cards [12], [13], that plug in
the PC and the VME SBC [14] use the NicStar chip from IDT
[9]. This chip includes a PCI master/slave interface and a SAR
engine that supports AAL3/4 and AAL5. It implements Con-
stant Bit Rate (CBR) and Variable Bit Rate services (VBR)
with three levels of priority. The host memory, rather than on-
board memory, is used to re-assemble the packets received
from the network, store the packets to be transmitted and main-
tain various control structures. NicStar uses its PCI master
capability to access the host memory in order to reduce host
CPU utilization. These features permit the design of low cost
and efficient ATM adapters.

V. OPERATION OF ANATM NIC
At present, most commercial network adapters implement

the TCP/IP suite. Performance measurements of ATM adapters
over TCP/IP has been reported in [15]. Our own experience

with commercial ATM cards showed us that the real time per-
formance using TCP/IP is far from what is required for
demanding Trigger/DAQ applications. For this reason, we
decided to develop the device drivers for our ATM cards. We
could locate data transfer bottle-necks and find the limitations
of our drivers.

We will now describe how a conventional device driver con-
trols a network interface card. When an application wants to
send a message across ATM, it performs a “Send” call to the
corresponding device driver. The parameters passed are a
pointer to a User Transmit Buffer (UTB), the size of the buffer
and a connection identifier that specifies the destination of the
message. The “Send” function is executed in kernel mode. It
copies the UTB to one or several Kernel Transmit Buffers
(KTB) allocated from the non-paged memory pool (flow 1 in
Figure 2).

Figure 2: Device driver interaction with NIC.

This copy is needed unless the application can guarantee
that the UTB remains resident in the system memory until the
buffer has been sent. The “Send” function next places the
descriptors of buffers ready for transmission into a queue ser-
viced by NicStar. The “Send” function returns and the rest of
the transmit sequence is done by NicStar independently of the
host processor. NicStar fetches data from the KTBs in slices of
48 bytes (i.e. one ATM cell payload), forms ATM cells and
transmits them via the physical framer (flows 2 and 3).

Before NicStar can receive data across ATM, the device
driver must provide it with a supply of host memory locations
which may be used for the re-assembly of packets. These Ker-
nel Receive Buffers (KRB) are resident in memory. NicStar re-
assembles the packets directly in host memory KRBs by de-
multiplexing the incoming stream of ATM cells on the basis of
their connection identifier (flows 4 and 5). On packet comple-
tion, NicStar writes KRB descriptors in a queue serviced by the
device driver. Optionally, an interrupt can by generated. To
read incoming packets, the application performs a “Receive”
call to the device driver. It passes a pointer to a User Receive
Buffer (URB). The device driver copies data from KRBs to the
URB and frees the KRBs for re-use by NicStar (flow 6). The
“Receive” function also returns to the application the length of
the received packet and a connection identifier that specify its
source.

Table 1.
Characteristics of the platforms used

Platform Vendor CPU Clock OS

RTPC 8165 CES PowerPC 604 96 MHz LynxOS 2.3
PC XMT 5133 DELL Pentium 133 MHz WindowsNT 4.0

Processor

PCI Bridge and

Memory

Cache Controller

L2 Cache

SAR

PHY

N
I
C

PCI Bus

Host Bus

Send Receive

User Tx Buffer User Rx Buffer

Kernel Tx Buffer Kernel Rx Buffer

NicStar SAR

1

2

6

5

4
3

Kernel Mode

User Mode

To From
Network



3

VI. A NALYSIS OF OVERHEADS

From the previous description, two types of software over-
heads can be distinguished. First, the operating system has to
switch from user mode to kernel mode for each send or receive
transaction. We measured that this overhead amounts to ~10µs
for the platform running LynxOS, and ~60µs for the
Windows NT platform. We observed a larger overhead on the
PC because all function calls to a device driver are handled by
the I/O Manager, which is part of the Windows NT Executive
[16]. This overhead is significantly larger than the transmission
time of one ATM cell (~2.7µs for a 155 Mbit/s link) and
degrades the performance for small messages.

The second type of overhead is due to data copies for both
transmission and reception. We have measured the speed of
memory copy between cacheable buffers that are non-resident
in the cache. We found that our PC can perform this operation
at ~28 Mbytes/s and the VME SBC at ~36 Mbytes/s. This
introduces a performance degradation and places an additional
load on the host CPU.

We present in Figure 3 the performance of the drivers we
developed using the conventional approach.

Figure 3: Device drivers’ “Send” and “Receive” overheads.

The “Send” overhead is the time for the host processor to
complete the “Send” function call. This value does not include
data fetch and packet segmentation, both of them being per-
formed by NicStar without the intervention of the CPU. The
time needed for segmentation does not add to the host CPU uti-
lization since NicStar and the host CPU run concurrently. The
actual time for sending a packet by NicStar is determined by
the size of the message and the bandwidth allocated to the cor-
responding Virtual Channel.

To measure the overhead of the “Receive” function call, an
AAL5 packet of a given size is sent to the NIC. After the whole
packet has been re-assembled in the host memory by NicStar,
the “Receive” function is called. The measurement presented is
the amount of time spent by the host processor to pass the
received data to an application. Instead of interrupts, the appli-
cation uses polling to initiate the “Receive” operation.

For both “Send” and “Receive” operations, the overhead
due to the user/kernel mode switch and the execution of the
function code is dominant for short messages. For large pack-
ets, the latency grows linearly. The slope is determined by the
speed of memory copy.

VII. I NCREASINGPERFORMANCE

It can be seen from the previous measurements that the soft-
ware overheads and memory copy operations are a serious lim-
itation for the efficient use of high speed links. With drivers
written as previously described, an application running on the
PC can send minimum size AAL5 packets (40 bytes of user
data) at a maximum rate of ~15 KHz. This represents a maxi-
mum usable bandwidth of ~5 Mbit/s. This is a clear waste of
bandwidth for the 155 Mbit/s interface that we investigated.
For large packets, a significant additional load is placed on the
host CPU due to memory copies. This is a waste of CPU
resources. The latency of packet delivery is also increased.

These limitations are well known and several methods have
been proposed to make efficient use of available network
resources, in particular for small packets [17]. The solution that
we describe below uses a similar approach.

First, we mapped NicStar registers and data structures into
the application memory space to give the user direct control of
the interface. This avoids the penalty of switching between ker-
nel and user modes, because instead of making calls to a device
driver, a library of utility functions is called. Second, we modi-
fied the buffer management to give NicStar direct access to the
User Transmit and Receive Buffers. Therefore, no data copy is
needed. The application has to lock these buffers in memory
and provide NicStar with the list of physical addresses that
describe them. In order to avoid the penalty of retrieving the
list of physical addresses from a virtual address for each trans-
mit operation, we suggest that this is done just once when the
application program starts. The parameters passed to the
“Send” and “Receive” functions are modified. The “Receive”
function returns to the user a list of URBs that were used by
NicStar to store the received messages. We present in Figure 4
the performance of the optimized library that controls the ATM
adapters.

Figure 4: Library “Send” and “Receive” function overheads.

It can be seen that the overheads have been significantly
reduced. They do not depend on the speed of memory copy.
Overheads increase for packets larger than the size of a physi-
cal memory page (4 Kilobytes). For a continuous “Send” and
“Receive” operation, we can exploit the full bandwidth of the
155 Mbit/s link for messages larger than ~100 bytes (i.e. 2-3
ATM cells).

:Pentium, WindowsNT

o :PowerPC, LynxOS

.256 1 4 16 64
Message Size (Kbytes)

10

100

1000

S
en

d 
O

ve
rh

ea
d 

(µ
s)

.256 1 4 16 64
Message Size (Kbytes)

10

100

1000

R
ec

ei
ve

 O
ve

rh
ea

d 
(µ

s)

:Pentium, WindowsNT

o :PowerPC, LynxOS

.256 1 4 16 64

Message Size (Kbytes)

0

20

40

60

80

100

S
en

d 
O

ve
rh

ea
d 

(µ
s)

.256 1 4 16 64

Message Size (Kbytes)

0

20

40

60

80

100

R
ec

ei
ve

 O
ve

rh
ea

d 
(µ

s)



4

VIII. O THER BENCHMARKS

A relevant parameter for the applications that we consider, is
the request/response message round-trip latency. We made a
test with two identical hosts connected via our ATM interfaces
controlled by the optimized library. The master sends a request
message to the slave and waits for the reply. We measure the
message round-trip latency, TRR. For this benchmark, we set the
priority of the application to the maximum value allowed for
non-privileged tasks. The distribution of TRR is plotted in
Figure 5 for request and response messages of 40 bytes (i.e.
one ATM cell).

Figure 5: Packet round-trip latency.

The average packet round-trip latency amounts to ~165µs
for Windows NT and ~170µs for LynxOS platforms. The sum
of the CPU overheads for sending and receiving one cell is
~13µs while the overhead for Nicstar operation and physical
transmission is ~70µs. The sum of these two figures represents
half of TRR. Since Windows NT is not a real time operating sys-
tem, a long tail for the distribution of TRR can be seen. On the
other hand, the platform running LynxOS has much better time
response characteristics.

We performed the same test with request messages of 40
bytes and response messages of variable size. In this test, the
master does not wait for the reply from the slave before it
issues the next request (i.e. request messages are pipelined).

Figure 6: Request/Response benchmark performance.

This benchmark shows the capability of the host and inter-
face to handle traffic in both the transmit and receive direction
at the same time. The slave services the requests at a rate that
depends on the size of the reply message. The master receives
the replies at the same rate. The maximum rate that can be sus-
tained with the VME SBC is plotted in Figure 6.a. The corre-

sponding usable bandwidth is shown in Figure 6.b. For short
messages, the system can handle request/response at a maxi-
mum rate of ~20 kHz using the driver and ~50 kHz using the
library. When the size of messages is increased, the rate is
determined by the link bandwidth. The performance on the
PCs is comparable. When the application uses the library, satu-
ration of the link (i.e. ~135 Mbit/s) occurs for reply messages
larger than 512 bytes.

IX. DISCUSSION

We have presented two types of device drivers for our ATM
cards, each one having its own advantages and draw-backs.
The conventional approach permits a complete decoupling
between the application and the device. This provides security
of operation and allows multiple users to share the device
transparently. Standard Application Program Interfaces (API)
are provided to programmers. However, performance is poor,
especially for short messages. This is a serious limitation for
the real-time applications that we consider. Commercial net-
work interfaces (ATM, Ethernet and others) use this type of
device driver.

With the second approach we propose, it is possible to get a
significant increase in performance. The communication
latency can be reduced and no additional load is placed on the
host CPU for data movement. This is a key advantage for time
critical applications. However, there are a number of draw-
backs. Because the user has direct access to the interface, the
security of operation cannot be guaranteed by the operating
system anymore. The user is in charge of the management of
shared resources such as the exclusive access to the physical
device and to receive/transmit buffers. The use of standard
APIs is almost excluded.

At present, the performance of processors running the stan-
dard device drivers for NICs is not sufficient to fully exploit the
potential of high speed links. This is particularly true for short
messages. Although, the power of processors will certainly
continue to increase in the future, the limitations that we
observe are due also to the access to external devices such as
bridges and main memory. During the last decade, the perfor-
mance of these components did not increase as rapidly as the
clock frequency of CPUs. Nevertheless, we can foresee that
future host platforms equipped with commercial network
adapters will be able to make efficient use of the bandwidth
offered by high speed networking technologies.

The approach in the development of efficient device drivers
that we have described in this paper leads to satisfactory per-
formance for communications between the host platforms that
we have investigated using a 155 Mbit/s ATM link. It is the
solution that we can propose today to satisfy the real time con-
straints of Trigger/DAQ applications.

X. ACKNOWLEDGMENTS

The authors wish to thank Creative Electronic Systems SA,
especially A. Wiesel for giving us access to technical informa-
tion and efficient support.

100 200 300 400 500 600
TRR (µs)

10-4

10-3

10-2

10-1

100

101

102

P
ro

b 
(T

R
R
 =

 x
) 

(%
)

Windows NT

100 200 300 400 500 600
TRR (µs)

10-4

10-3

10-2

10-1

100

101

102

P
ro

b 
(T

R
R
 =

 x
) 

(%
)

LynxOS

Library

Driver

.256 1 4 16 64.256 1 4 16 64
Message Size (Kbytes)

10

100

B
an

dw
id

th
 (

M
bi

t/s
)

Message Size (Kbytes)

0.1

1

10

100

R
at

e 
(k

H
z)

a) Rate b) Bandwidth



5

XI. REFERENCES

[1] ATLAS collaboration, “Technical Proposal for a General-
Purpose pp Experiment at the Large Hadron Collider at
CERN”, CERN/LHCC/94-43, December 1994.

[2] CMS collaboration, “The Compact Muon Solenoid
Technical Proposal”, CERN/LHCC/94-39, December 1994.

[3] ALICE Collaboration, “Technical Proposal for A Large Ion
Collider Experiment at the CERN LHC”, CERN/LHCC/95-
71, December 1995.

[4] M. Costa et al., “NEBULAS - A high performance data-
dr iven event  bu i ld ing arch i tecture based on an
asynchronous self-routing packet-switching network”,
CERN / LHCC/95-14.

[5] L. G. Cuthbert, J-C. Sapanel, ATM - the Broadband
Telecommunications Solution, IEE Telecommunications
Series 29, ISBN 0 85296 815 9, London, 1993.

[6] M. Costa et al., “Results from an ATM-based Event Builder
Demonstrator”, IEEE Trans. on Nuclear Science, vol. 43,
No 4, June 1996, pp. 1814-1820.

[7] D. Calvet et al., “A Study of Performance Issues of the
ATLAS Event Selection System Based on an ATM
Switching Network”, IEEE Transactions on Nuclear
Science, Vol. 43. No. 1 February 1996, pp. 90-98.

[8] “Draft Standard Physical and Environmental Layers for
PCI Mezzanine Cards: PMC”, Standard IEEE 1386.1.

[9] “IDT 77201 NicStar”, User Manual, IDT Inc., Santa Clara,
November 1995.

[10] “SARE PXB 4110”, IC for Communications Data Book,
Siemens, August 1995.

[11] “PM 7375 Lazar 155”, Programmer’s guide, PMC-Sierra
Inc., March 1996.

[12] “ATM 8468 PCI-ATM Mezzanine Card”, Programming
Guide Version 1.0, DOC 8468/PG, Part Number 085. 434,
Creative Electronic Systems S.A., May 1996.

[13] D. Calvet, F. Servaz, ”Design of a PMC/ATM Interface”,
in Proc. Second International Data Acquisition Workshop
on Networked Data Acquisition Systems, RCNP, Osaka,
13-15 November 1996.

[14] “PowerPC Single Board Computer RTPC 8067LK”,
Technical manual Version 1.0, DOC 8067LK/UM,
Creative Electronic Systems SA Geneva, Switzerland,
December 1995.

[15] C. Batt ista et  al . ,  “Permanent Vir tual  Circui ts
Configuration and TCP-UDP/IP Performance in a Local
ATM Network”,.

[16] H. Custer, “Inside WindowsNT”, Microsoft Press, 1993.

[17] T. von Eicken et al., “U-NET: A user Level Network
Interface for Parallel and Distributed Computing”, Proc. of
the 15th ACM Symposium on Operat ing System
Principles, Copper Mountain, Colorado, December 3-6
1995.


