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Abstract

The purpose of this note is to evaluate the spread of Minimum Bias (MB) currents in
TileCal, when measured using the existing electronics. This information allows to estimate
how many measurements in each cell are needed to obtain a statistical error of 1% of the
mean, which is the goal of the MB monitoring system; in turn, this information will be used
to design the MB data acquisition system.

A reliable estimate of the spread requires the use of signals from several billion bunch
crossings, which is way in excess of the available sample of simulated MB collisions. Therefore
the simulated MB signals in the TileCal readout cells are parametrized and the analytical
forms are used to generate samples of MB signals as large as needed.

It is shown that at design luminosity even in the cells with the smallest currents a few
tens of measurements should achieve the goal of a 1% error in monitoring the MB current.

1 Introduction: Monitoring Minumum Bias currents in
TileCal

Inelastic proton-proton collisions at low momentum transfer, the Minimum Bias (MB) signal, will
produce non-negligible backgrounds in TileCal, despite the shielding provided by Liquid Argon
calorimeters. However, these processes can be used to continuosly monitor the response of all
calorimeter cells during data-taking. Preliminary estimates of average MB energy depositions,
energy spectra and photomultiplier (PMT) currents were given in the Tile calorimeter TDR [1]
and led to the design of the TileCal calibration and monitoring electronics, which is described in
the same TDR.

Let us recall the main features of MB signals given in the TileCal TDR. These results
were obtained then (1995-1996) using pp collision simulation codes such as PYTHIA and full
simulations of the ATLAS detector. Of course mean MB energy depositions per crossing are
proportional to the LHC luminosity and are azimuthally symmetric (in the absence of polarization
of the beams). In addition, the simulations show that they vary at most by a factor of 10 over the
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they amount to roughly 20 MeV per bunch crossing (BX) in the first depth sampling (A-cells) of
the Barrel and Extended Barrel, dropping to a few tenths of an MeV in the last sampling (D-cells).
At the nominal PMT gain and with photoelectron yields of 70/GeV/cell these energy deposition
rates will give average PMT currents ranging from several hundred nA in the A-cells to only a
few nA in some of the D-cells.

Minimum Bias current readout relies on the same electronics used to measure the radioactive
source signals [2][3], but operates over a broader dynamic range in order to accomodate signals
from all cells of the calorimeter. At design luminosity, the occupancies vary from about 1% to
40% and the MB signal energy spectrum has no sharp high-energy cutoff, because soft interactions
smoothly merge into jet physics. Hence energy deposits may vary by orders of magnitude from
bunch to bunch; however the only variable of interest for monitoring purposes is the time-average
of the MB current, which is obtained by the MB monitoring electronics by ”integrating” the
current of each PMT over a time constant of up to 10 ms. More precisely, the MB signals generate
a voltage across an operational amplifier equipped with a low-pass RC filter whose time constant
can be programmed in the range between 0.28 and 10 ms.

The goal of the MB monitoring system is to detect in real time variations of more than 1% in
the response of any channel of TileCal assuming stable luminosity conditions. The purpose of this
study is to find how many MB current readouts are necessary to reach this level of repeatability
considering fluctuations in the deposited energy. Hence, we will simulate MB energy deposits in the
whole calorimeter and over very large numbers of bunch crossings, in order to obtain distributions
of MB current measurements and evaluate their spread in all TileCal cells. These numbers must
be known to specify the rate at which the whole calorimeter’s MB signals (about 10000 PMTs)
must be read out, to be able to see cell response anomalies in real time — which in our case we
take to mean every few minutes.

Due to the (necessarily) very long time constants of the integrators, literally billions of MB
interactions must be simulated in order to obtain distributions with reasonable statistics. Such
numbers of MB events has not been generated to-date. In order to have enough statistics, we had
to generate our own energy deposition spectra, cell by cell, from a parametrized distribution of
the simulated MB energy depositions.

2 MB simulations and parametrization of energy spectra

We started from a data set of 5000 MB collisions, generated using PYTHIA5.7 with the Physics
TDR layout. The full simulation code was GEANT3 with the GCALOR hadronic shower package.
At the time when this study was begun, the much larger samples of MB events generated in 2002 in
Mock Data Challenge 1 were not yet available. However even these much larger samples fall short
of the needs of this simulation by orders of magnitude. Therefore the parametrization of energy
spectra in order to obtain from them sufficient cell energy deposition statistics is still necessary.

For optimal use of the limited available MB event sample, cell energy deposition distributions
were generated taking advantage of the ¢ symmetry of the process and of the symmetry around
the n = 0 plane of the Tilecal cells. Specifically, energy depositions were folded into only one
¢ bin, and negative 7 signals were folded into the corresponding positive n plots. The layout of
Barrel and Extended Barrel cells used in this MB data sample is shown in Fig. 1.
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Figure 1: Cell locations and labels for the TileCal Barrel and Extended Barrels

The parametrization of the spectra required considerable care. First, for the results to be
useful in predicting the spread of the MB measurements, the parametrizations must be reasonably
accurate. We required mean values of the parametrizations to agree with the original distributions
within 20%, and generally obtained better than 20% agreement. Second, to make the simulation
task more manageable it is very desirable to to parametrize the energy deposit distribution in
all cells with the same analytical form, while keeping the specified accuracy. The following
parametrization meets both goals:

Pe PPy Pye™P 4 Py (E+1GeV)™® (1)

This function was fit to the symmetrized MB energy distributions of each cell over the interval
from 1 MeV to 4 GeV. The contribution to MB currents of energy deposits of less than 1 MeV is
negligible; above 4 GeV, there is almost no statistics to guide the fit. The first term dominates in
the 0.001-0.2 GeV region (see Fig. 2), the second term from 0.2 to 0.9 GeV, and the third above
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0.9 GeV. The inverse-power-law form of the third term is motivated by the behavior of QCD-like
distributions; the 1 GeV shift is to keep it from diverging at zero energy.

As shown in Fig. 2, above 1 GeV events are very few and most histogram bins have no contents.
Therefore a binned maximum likelihood fit was made to the cell energy distributions, using bins
of 5 MeV. We checked that the fitted distributions do not overrepresent any region of the energy
spectrum by comparing the mean energy values of the simulated and fit MB energy deposition
spectra in each of the three energy regions mentioned above (0.001-0.2 GeV, 0.2-0.9 GeV, and
above) and found good agreement. The fit results are summarized in Fig. 3, where each point
represents the total energy of the MB simulated events or of the fitted MB energy distribution
for the sum of the all 64x2 cells at a given || for each of the three depth samplings of TileCal.
In most cases, the means of the MB simulated energy depositions agree with the parametrized
energy depositions to better than 10%; the few cells in which a larger discrepancy is seen are those
that detect very small energies because of their location in the calorimeter. Also note that the
parametrized mean energy depositions tend to be a few percent higher than in the MC events, a
slight overestimate that we consider acceptable.

Num. of events

\

PRI Y NI BNVIEN I N
2o 3 3.5 2

o=

.5 1 1.5
Energy per collision (GeV)

Figure 2: MB energy distribution for cells A1 and A-1 — spanning || < 0.1, shown in logarithmic scale in the
region 1MeV — 4GeV

In the Table 1 we present the range of the parameters that appear in equation (1).

3 Distributions of MB energy per bunch crossing

The next task is to generate distributions of MB energy deposits per bunch crossing (BX) for
each cell type. We assume the design luminosity £ = 103*¢m?s™!, the inelastic cross-section

UI’;’;EI = 70mb, and a bunch crossing rate f = 31.6 MHz, which takes into account the fraction of

empty bunches. Then the mean number of collisions per bunch crossing is M = 23.
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Parameter | Range of values
P1 250-16000 GeV~!
P2 250-1300 GeV !
P3 6-1350 GeV !
P4 20-80 GeV !
P5 0.3-64 GeV®

Table 1: Ranges of the parameters in equation (1) for all TileCal cells

The simulated MB events allow to estimate the probability per collision that each cell be hit.
This is

entries
Pcol -
5000 * 64 * 2

where entries is the number of energy deposits greater than 1 MeV in a cell; the denominator
accounts for the 5000 MB collisions and the adding together of the cells with phi and eta symmetry
(the cell DO has been treated differently). Then an estimate of the mean occupancy of each cell
type (the probability that it be hit per bunch crossing) is

Pgx =1- (1 _Pcol)23-

To generate MB energy spectra per bunch crossing, for each cell type, energies were randomly
generated from the parametrizations of Eq. 1. Each energy point is the sum of m terms, with
m randomly extracted from a Poisson distribution of mean M=23, and each term added or not
according to the hit probability P,,. At the same time, the occupancy per individual bunch
crossing is calculated.

The obtained energy distributions in four characteristic cells, that span the eta range and
belong to all three samplings, are shown in Fig. 4. The plots in Fig. 5 are crosschecks on the
procedure just described. The occupancies estimated with the formula given above for Pgx
are compared to the simulation average values of the occupancies per individual bunch crossing
obtained from the parametrized distributions. In the right-hand part of the Fig. 5, the estimates
of the average energies per BX from 5000 MB events are compared to the results from the
parametrizations of the energy spectra. In the two sets of three plots the cells are grouped
according to the samplings A, BC and D (including ITC cells in the latter). In almost all cases
the agreement between estimates based on the MB event sample and the results of the higher-
statistics event generation using the parametrizations is excellent.

It should be pointed out that the mean energies/BX obtained here are roughly 30% lower than
those estimated for the TileCalorimeter TDR (see also [4]). The differences may be associated to
differences in the generation codes (PYTHIA) and interaction codes (GEANT3) used to produce
the two MB event samples. Also note that in the TileCal TDR only 17.5 collisions/BX were
assumed whereas the simulation given here assume 23 collisions/BX.
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Figure 3: Total energy in 64 x 2 cells of same |n| over 5000 MB collisions, compared to the parametrisation of
equation (1). Cells of different depth samplings (Samplings A, BC and D and ITC cells) are shown separately
(energy deposits of less than 1 MeV were excluded from the sums and further analysis)

4 Simulating MB currents

Next, we are going to simulate the formation of the MB signal in the TileCal ”integrators”
mentioned in the Introduction, by generating as many MB energy depositions as necessary to
reach a stable signal on the integrator output. Once a stable signal is reached, distributions of
such signals will be generated in order to evaluate their spread and from that estimate how many
measurements are needed to obtain a statistical error of 1% of the mean.

Let us first review the formulas that tie the MB deposition rate to the integrator output voltage
and the PMT currents. At every bunch crossing, the MB energy deposit in a cell will increase
the output voltage of the integrator, which will then exponentially decrease with a time constant
T = ResyC, where R.¢; and C are the effective resistance and the capacitance in the integrator
feedback loop. Using energy units (independent of conversion factors) for the MB integrator
output, we write

N

E(t]v) = Z Ene

n=0

—(tn—tg)

where FE,, is the MB energy deposit at bunch crossing n and ¢,, — %y is the time since ¢3, when
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Figure 4: Energy spectra (in 5 MeV bins) generated according to the parametrization of Eq.1 (top-left: cells A1;
top-right: cells A16; bottom-left: cells B11; bottom-right: cells DO)

Ey=0. As n = (t, — to) - f, we can rewrite the last expression as:
N n
EN = E(tN) = Z Ene_ﬁ. (2)
n=0

Introducing the average energy deposit per BX (the mean value < E > of the MB energy spectrum
of the cell) we can write for the output signal when N — oo:

Eo =<limy,ooE(ty) >=< E > - ~<E>Tf

1—e s

where 7f >> 1 for all values of 7, as will be shown below. Note that we take f = 31.6
MHz to account for the fact that only 2808 out of 3564 bunches will be “filled” (the effect of the
empty bunches on the signal asymptote stability is negligible, because the proton revolution time
of about 90us << 7).
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parametrized energy spectra.



CELL | 7 = RC (ms)
Al Ty = 2.5
Al12 T = 0.3
A16 ™ = 0.3
BC1 s =93
B11 71=03
B15 76 = 9.9

DO Te = 9.9
D2 Te = 9.9
D5 T4 = 5.3

Table 2: Measured 7 values for different cells

The asymptotic value of the charge on the integrator capacitor is given by

Qoo =k - Eno.

The conversion factor k is given by k = %, where n is the number of photoelectrons per GeV
deposited in a TileCal cell, e is the electron charge, G is the photomultiplier gain, and the factor
of two in the denominator is there because each cell is read out by two photomultipliers (% is set

to 1.2 pC/GeV per channel at the test beam).
Finally, the time-averaged current input from each PMTs is:

Re 1 Ey -k
]: . = 3
C Ry T 3)

and the corresponding average output voltage is V = IR.s;. For the cells exposed to the larger
MB energies, the value of R.sy is chosen to comply with V' < 5V, the input range of the ADC;
for the cells with smaller average signals, R.sy is chosen to be large enough to have a signal well
above noise. The time constants 7 used for a few characteristic cells are given in Table 2. The
values were measured using integrator calibration signals, as reported in the Appendix.

Using the procedure described in the previous sections to generate very large numbers of MB
signals/BX in the Tilecal cells, and the expression (2), we obtain asymptotic signal values as shown
in Fig. 6, in which the signal buildup is calculated over five time constants. The fluctuations in the
MB current when plateau is reached are due to the fluctuations in the primary energy deposits.
We generate 1000 signals for each TileCal cell, always starting from zero energy and accumulating
signals over five time constants. The signal distributions for a few characteristic cells are given in
Fig. 7. The distributions are reasonably symmetric, however moderate tails are visible on the high
side. In the gaussian approximation, we can estimate how many such measurements are needed
for their mean to approximate the true mean with 1% statistical error. Using

RMS
7 _= <1%
<p> <pu>-vN
where <y > stands for the mean value and N is the number of measurements one obtains

RMS
< p>

N> (

)2 . 10%, (4)
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Figure 6: Simulation of signal buildup over five time constants for one PMT in cell Al.

The number of measurements needed to reach 1% precision are given at the end of the next
section.

5 An aside: Can we avoid summing billions of MB
energies?

The procedure of adding up roughly 10° numbers - each of them randomly generated from the
parametrized energy distributions described in Section 2 - for every different TileCal cell is quite
CPU- intensive. This begs the question of whether this large numerical calculation can be entirely
avoided, by applying the Central Limit Theorem (CLT) to the distributions in expression (2). The
question is reinforced by the fact that the distributions of simulated measurements in Fig.7 appear
almost Gaussian. Every entry in these plots is the sum of a large number of random variables,
described by the parametrizations of (1), which do have finite mean and RMS values as required
in order to apply the CLT.

The Central Limit Theorem states that the sum of n random variables, each with mean y;
and variances 0]2-, not necessarily equal, approaches a gaussian distribution with mean 3°; y; and
variance 3, 07. In our case, the n variables are the terms in the sums of equation (2). The mean
and variances of our signal distributions should be given by

J
N
_ —nA 2 __ 2 _—2nA\
p=2_ e o' =2 oue
n=0

where A = 1/7f is the inverse number of bunch crossings per integrator time constant and n runs
over the number of BX considered. For large NV, we can write:

lim = #z@
Noso T T T Ty
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top-right: A16; bottom-left: B11; bottom-right: D0)

11



CELL K (MGV) (%)mrmerv’r (%)(‘LT/ (%)num ZI\)]%}IL:F
Al 9.64 0.0194 0.95 4
Al12 13.55 0.0516 0.96 27
Al6 4.56 0.0936 0.91 88
BC1 4.10 0.0218 0.89 5
B11 11.21 0.0577 0.95 33
B15 1.38 0.0284 0.90 7
DO 0.50 0.0607 0.45 8
D2 0.45 0.0694 0.47 11
D5 4.70 0.0196 0.92 4

Table 3: Number of measurements per PMT needed to achieve 1% accuracy level and comparison between
numerical method and prediction of CLT

1 ol
: 2 _ 2 ~ 20

1\}1—1}300 90 T ex T gy

where 1y = u, and oy = o, for all n. Using this result we proceed to estimate the means
and RMS (labeled here as o) of the distributions in MB measurements from their parametrized
expressions, using for each cell the number of BX per time constant Ng. Then from the CLT we

are led to expect that
o op 1 oo 1 1

=V - -
7 o2 ovNp2
In the table (3) we give the numerical results for o/u calculated from the CLT and numerically
(from the distributions exemplified in Fig. 7), for a few characteristic and a few extreme cells.

Several observations can be made:

(1) regarding the numerical simulations, it can be seen that even in the worst cases - which
correspond to cells that have low occupancy and low signal level, and are therefore exposed to
larger fluctuations - a few tens of MB measurements should allow to reach the desired statistical
error on the mean of 1%. See Fig.5.

(2) the o/ values predicted with the CLT are always smaller than obtained by the numerical
simulation, and the discrepancy is entirely correlated with u, being larger when p is smaller. This
is not altogether a surprise, however its causes are not clear, particularly considering the very
large number of terms in the MB energy measurements performed by the integrators.

6 Conclusions

We have developed a method to simulate Minimum Bias energy measurements with the existing
TileCal electronics. A realistic numerical simulation of signal formation requires billions of bunch
crossings; therefore we have parametrized the simulated energy deposition spectra and generated
large random samples of MB signals extracted from these spectra.

The generated distributions of MB signal measurements are fairly well-behaved, and indicate that

12



with a few tens of measurements one may obtain 1% statistical precision in measuring the MB
response of all cells of TileCal, which we take to be adequate for monitoring the response of the
calorimeter.

This conclusion is subject to the uncertaintes typical of the MB models (and less critically, to the
accuracy of the particle interaction codes). However, the results are encouraging and are being
used by the authors of this Note in specifying the MB data acquisition system.
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Appendix: In situ measurements of the 3inl integration
time constants

Using a JFET input operation amplifier with a low-pass RC filter, the broad spectrum of
pileup signals in the Tile Calorimeter is converted to a quasi-DC voltage. The output voltage
scale is set by remotely selected resistor network which range from R.¢; = 2.8 to R.py = 102 M(.
The integration time constants scale proportionally to the selected gains. The output voltages
are digitized by dedicated ADCs with an adjustable sampling rate. Hereafter we present the
first direct measurements of the integration time constants of the RC filter circuits, based on a
significant sample of 3inl cards.

The data were taken in November 2002 on six production Super-Drawers, altogether equipped
with 244 3inl cards. The data taking included feeding a voltage step into a selected 3inl channel
and sampling the exponentially rising voltage by the ADC. To have more samples of the initial
signal rise, the data were taken at three ADC sampling rates: 110, 100, and 90 Hz. A typical
integrator response to the injected step function is shown in Fig. 8.

After correcting for pedestals the data were fitted to the function:
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Figure 8: Left: Response to injected step voltage; Right: Distribution of the fitted integration time constants

Amp - (1 —exp Dﬁlgt)

where t is time in msec since the first sampling. The parameters of the fit are: Amp - amplitude of
the integrator response (ADC counts), Del - delay between charge injection and the first sampling
(msec), and RC - integration time constant (msec). The data errors to evaluate x? were estimated
from the pedestal fluctuations. The x? was minimized using the MINUIT package.

Based on the quality of the fit several channels were excluded from further analysis. Detailed
studies of these cases traced the data quality problem in these channels down to mis-functioning
of the CANbus communication link. Thus the integration time constants for these cards are not
expected to be any different from the ones of the main sample. The distribution of the integration
time constants for 235 cards and the highest gain (and RC time constant) is shown on Figure 8.
The systematic error on the measurement was estimated from several data runs taken in different
conditions, such as with the photomultiplier HV set ON. Convoluted with systematic error of the
fit it resulted in 3% overall systematic error of the measurement.

The results for the integration time constants and the respective gains, measured
independently, are summarized in the following table, where the time constants corresponding
to the lowest resistor values (Gain 5 and 6) could not be extracted :

Gainl:  (9.90%0.10+0.30) msec  (102.1+ 1.0) MQ
Gain 2:  (7.40 £0.08 £ 0.22) msec  (76.1 £0.8) M
Gain 3 : (5.31 £0.05 £ 0.16) msec  (54.9 £0.8) M
Gain 4 : (2.70 £ 0.03 £ 0.08) msec ~ (29.0 £0.5) M
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Gain 5 - (26.1 4 0.4) MQ
Gain 6 : (2.82£0.03) MQ

Here the first error represents the channel to channel variation in the measured values and the
second one, when given, stands for the systematic uncertainty of the method.
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