
 CHEP 2003, La Jolla, California, USA, March 24-28, 2003 1

THGT003

Online Monitoring software framework in the ATLAS experiment
M.Barczyk, D.Burckhart-Chromek1, M.Caprini2, J.Da Silva Conceicao, M.Dobson, J.Flammer,
R.Jones, A.Kazarov3, S.Kolos3,4, D.Liko, L.Lucio, L.Mapelli, I.Soloviev3
CERN, Geneva, Switzerland
R.Hart
NIKHEF, Amsterdam, Nederland
A.Amorim, D.Klose, J.Lima, L.Pedro
FCUL, Lisbon, Portugal
H.Wolters
UCP, Figueira da Foz, Portugal
E.Badescu
NIPNE, Bucharest, Romania
I.Alexandrov, V.Kotov, M.Mineev
JINR, Dubna, Russia
Yu.Ryabov
PNPI, Gatchina, St. Petersburg, Russia
1presenter at the conference
2on leave from NIPNE, Bucharest, Romania
3on leave from PNPI, St. Petersburg, Russia
4paper editor

A fast, efficient and comprehensive monitoring system is a vital part of any HEP experiment. This paper describes the software
framework that will be used during ATLAS data taking to monitor the state of the data acquisition and the quality of physics
data in the experiment. The framework has been implemented by the Online Software group of the ATLAS Trigger&Data
Acquisition (TDAQ) project and has already been used for several years in the ATLAS test beams at CERN. The inter-process
communication in the framework is implemented via CORBA, which provides portability between different operating systems
and programming languages. This paper will describe the design and the most important aspects of the online monitoring
framework implementation. It will also show some test results, which indicate the performance and scalability of the current
implementation.

1. INTRODUCTION
ATLAS [1] is one of the four experiments in the Large

Hadron Collider (LHC) [2] accelerator at CERN. The
ATLAS detector consists of several sub-detectors, which
in turn are subdivided into a number of partitions, which
can be operated in parallel and fully independently one
from another.

The data rate from the whole detector after Level 1
Trigger rejection is about 150 Gbyte per second. These
data are spread amongst 1600 read-out links, with each of
them running at a possible maximum rate of 160 Mbyte
per second. The ATLAS Trigger and Data Acquisition
(TDAQ) [3] system consists of the High Level Trigger
(HLT), which performs event selection reducing data by a
factor of 300, and the Data Acquisition system (DAQ),
which transports event data from the detector readout to
the HLT system and selected events to mass storage.

In order to provide the required functionality and to
handle the physics data rate, the TDAQ system will use
several thousand processors connected altogether over a
high-speed network with each of them running several
TDAQ software applications. Monitoring of such a large
and complicated system is a vital task during the data
taking periods as well as during the commissioning of the
detector.

2. THE ONLINE SOFTWARE
The Online Software [4] is a sub-system of the TDAQ,

which encompasses the software to configure, control and
monitor the TDAQ and detectors. It is a customizable
framework, which provides essentially the ‘glue’ that
holds the various sub-systems together. It does not contain
any elements that are detector specific as it is used by all
the various configurations of the TDAQ and detector
instrumentation.
The Online Software consists of three main parts
responsible for a clearly defined functional aspect of the
whole system:

• Control framework - supports TDAQ system
initialization and shutdown, provides control
command distribution and synchronization, error
handling and system verification.

• Databases framework – responsible for
configuration of the TDAQ system and detectors.

• Monitoring framework - provides software for the
TDAQ system and detector monitoring.

3. MONITORING FRAMEWORK
There are many essential parameters in the TDAQ

system, which must be continuously monitored during data
taking: physics data quality and integrity, consistency of
the trigger information, correlation between sub-detectors,

 CHEP 2003, La Jolla, California, USA, March 24-28, 2003 2

Table 1 shows the main monitoring data types along with
their most important characteristics.

status of the hardware and software system elements, etc.
This information can be taken from different places in the
data flow chain between detectors and the mass storage.

Another important aspect of the monitoring is error
reporting. Any malfunctioning part of the experiment must
be identified and signaled as soon as possible so that it can
be cured.

3.3. Monitoring Architecture
In order to optimize the performance of the monitoring

in a large and highly distributed TDAQ system a separate
service for each major class of the monitoring information
is provided. Each service offers the most appropriate and
efficient functionality for given information type and
provides specific interfaces for both Monitoring Providers
and Consumers. Figure 2 shows the architecture of the
Monitoring framework.

3.1. Monitoring framework model
In the large highly distributed system it must be possible

to transport the monitoring information from the places
where it is produced to the places where it can be
processed. The Monitoring framework, provided by the
Online Software, performs this task as it is shown in
Figure 1. In this figure the application which produce the
monitoring information are called the Monitoring
Providers, and the Monitoring Consumers are the
applications, which can process this information.

Histogramming

Service

Information
Service

Event
Monitoring

Service

Message
Reporting
Service

Inter Process Communication (IPC)

CORBA broker

Monitoring
Framework

Monitoring
Provider

command

data

Monitoring
Consumer

command

data

Figure 2: Monitoring framework architecture

The Inter Process Communication (IPC) [5] is a basic
communication service, which is common for all the
Online Software services. It defines a high-level API for
the distributed object implementation and for remote
object location. The IPC provides a common basic set of
remote methods for all the remote objects in the Online
Software. In addition the IPC implements partitioning,
which allows to run several instances of the Online
Software services in different detector partitions
concurrently and fully independently.

Figure 1: Monitoring framework model.

In addition to the transportation of the monitoring data,
the Monitoring framework provides a possibility to
transport the monitoring data requests (commands) from
the Consumers to Providers.

3.2. Monitoring data types The IPC itself is built on top of the Common Object
Request Broker Architecture (CORBA) [6] broker, which
provides the actual inter-object communication. CORBA
is a vendor-independent industry standard defined by the
Object Management Group (OMG) [7] for an architecture
and infrastructure that computer applications use to work
together over networks. The most important features of
CORBA are: object oriented communication, inter-
operability between different programming languages and
different operating systems, object location transparency.

There are different types of information, which can be
used to understand the state and correct functioning of the
TDAQ system and detector. This can be events or event
fragments sampled from well-defined points in the data
flow chain, various status and statistics information, which
reflect the operation of the hardware elements and
software processes in the system, and errors which can be
detected at different levels of the system. These types are
significantly different in terms of data size, update
frequency, type of access, number of Providers and
Consumers, etc. 3.4. Monitoring Services
Table 1: Monitoring data types 3.4.1. Event Monitoring Service

Type Format Production Access
Samples of
physics
events

Vector of
4-byte
integers

On request On request

Errors ID +
Severity +
Text

In case of faults Via subscription

Histograms Standard
histogram
formats

Periodically or
whenever it is
changed

On request and
via subscription

Other
information

User-
defined

Periodically or
whenever it is
changed

On request and
via subscription

The Event Monitoring Service (EMS) is responsible for
transportation of physics events or event fragments
sampled from well-defined points in the data flow chain to
the software applications, which can analyze them in order
to monitor the state of the data acquisition and the quality
of physics data of the experiment. An event is transported
as a sequence of bytes, so the EMS is neutral to the event
format. Figure 3 shows the main interfaces provided by the
EMS.

THGT003

 CHEP 2003, La Jolla, California, USA, March 24-28, 2003 3

Event
Monitoring

Service
Event

Provider

Event
Sampler

Event
ConsumerEvent

Accumulator

Event
Distributor

Event
Iterato

start_sampling

stop_sampling

add_event

select

next_event

Figure 3: Event Monitoring Service interfaces

r

THGT003

The Event Provider which is able to sample events from

a certain point of the data flow has to implement the Event
Sampler interface. When the Event Consumer requests
samples of events from that point via the select method of
the Event Distributor interface, the EMS system asks this
Event Provider to start a sampling process by sending it
the start_sampling message via the Event Sampler
interface. The Event Provider samples events and provides
them to the EMS via the Event Accumulator interface. The
Event Consumer can get these events via the Event
Iterator interface.

When there are no more Event Consumers interested in
event samples from a particular point of the data flow
chain, the EMS sends the stop_sampling message to the
appropriate Event Provider via the Event Sampler interface
to stop the sampling process.

The monitoring framework provides also a graphical
user interface application, which is an example of the
Event Consumer. The application is written in Java and is
called Event Dump. It uses the Event Distributor and the
Event Iterator interfaces to get an event from the place
specified by the user and displays the event content.

Figure 4: Event Dump application

Figure 4 shows the main window of the Event Dump
(the bigger one), which displays the event data, and the
selection window (the smaller one) in which the user can
define the detector, crate, and module from which the
event is to be taken and also can specify some keyword
values, which will be used to select the interesting events.

3.4.2. Message Reporting Service
The Message Reporting Service (MRS) transports the

error messages from the software applications, which
detect the errors to the applications, which are responsible
for the error handling. The MRSStream interface can be

used by any application, which wants to report an error as
it is shown in Figure 5. In order to receive the error
messages an Error Consumer has to subscribe via the
MRSReceiver interface for the messages it wants to
receive. The MRS will forward the appropriate messages
to the interested subscribers via the MRSCallback
interface.

Message
Reporting
Service

Error
Provider

Error
Consumer

MRSStream

MRSReceiver

MRSCallback

send_error
subscribe

notify

Figure 5: Message Reporting Service interfaces

An example of the Error Consumer is shown in Figure
6. This is the main user control interface application of the
TDAQ system, which contains the message display at the
bottom.

Figure 6: Main TDAQ user interface

This message display shows the error messages coming
from the TDAQ applications and detectors. A user can
specify the appropriate parameters for the subscribe
method of the MRSReceiver interface via the MRS panel
in the right part of the user control window to define the
messages to be shown.

3.4.3. Information Service
The Information Service (IS) allows TDAQ applications

to exchange user-defined information during a run. A user
can define the structure of his specific information in
XML. Then, he can produce C++ or Java classes using the
generator application provided by the IS. The instances of
these classes can be shared by the applications. The
information structure description is also available at run
time.

 CHEP 2003, La Jolla, California, USA, March 24-28, 2003 4

3.4.4. Histogramming Service Figure 7 shows the main interfaces provided by the IS.
Any Information Provider can make his own information
publicly available by using the insert method of the
InfoDictionary interface and notify the IS about changes of
the published information via the update method. The
remove method of the InfoDictionary interface can be used
to delete the information from the IS.

The Histogramming Service (HS) allows applications to
exchange histograms. From the implementation point of
view it is a specialization of the Information Service. The
HS defines several information types which are used to
transport histograms via the IS.

The HS has an extendable API in terms of the formats of
the histograms, which may be used. The HS defines two
abstract interfaces: HistoProvider and HistoReceiver. In
order to support a particular histogram format one has to
provide an appropriate implementation of those interfaces.

Information
Service

Info
Provider

Info
Consumer

InfoDictionary

InfoReceiver

InfoCallback
insert
update
remove

subscribe

notify

get_value

Figure 7: Information Service interfaces

Histogram
Provider

Histogram
Consumer

RootHistoReceiver

Histogramming
Service

RawHistoReceiver

HistoReceiver

RootHistoProvider

RawHistoProvider

HistoProvider IS

Figure 9: Histogramming Service interfaces

The IS supports two types of information access. It is

possible to get the information value directly on request
via the get_value method of the InfoDictionary interface.
On the other hand, any Information Consumer can
subscribe for a particular information or set of information
via the InfoReceiver interface, in which case it will be
informed about changes of the information for which it
subscribed.

Currently the HS supports two types of histograms as it

is shown in Figure 9:
• ROOT histograms – histograms in the format

proposed by the ROOT framework [9].
• Raw histograms - histograms represented by arrays

of a fundamental data type, i.e. integer, float,
double, etc.

There is a graphical user interface which allows to
browse the content of the IS. Figure 8 shows the main
window of this application (smaller one), which displays
all the instances of the IS for a specific detector partition.
The partition can be chosen from the list of active
partitions in the drop down control at the top-right corner
of this window.

Figure 10 shows the Histogram Display application
implemented on top of the ROOT Object Browser. This
application is an example of the Histogram Consumer,
which uses the RootHistoReceiver interface to get
histograms from the HS.

 Figure 8: IS Monitor application

 Figure 10: Histogram display
Another window in Figure 8 (bigger one) shows the list of
information items available at the selected instance of the
Information Service. For any item in this list one can see
the current value of the information as well as the
description of the information item. The content of this
window is synchronized with the selected IS instance and
is updated automatically whenever the information is
changed in the IS.

In the left part of the main window (at the background)
one can see a list of histogram providers for each detector
partition. The right panel shows the list of available
histograms for selected provider. Each histogram can be
viewed in a separate window, which is an instance of the
standard ROOT histogram viewer. This viewer gives

THGT003

 CHEP 2003, La Jolla, California, USA, March 24-28, 2003 5

200 400 600 800 1000
0

1

2

3

4

5

6

7

8

1 Consumer
5 Consumers
10 Consumers
15 Consumers

Number of Information Providers

tim
e

(m
s)

Figure 11: IS test results

access to the complete histogram viewing functionality
provided by ROOT.

4. PROTOTYPE IMPLEMENTATION
Prototype implementations exist for all the Monitoring

services. These prototypes are aiming to verify the
feasibility of the chosen design and the choice of
implementation technology for the final TDAQ system,
and are used in the ATLAS test beam operations.

Each service is implemented as a separate software
package with both C++ and Java interfaces. All the
services are partitionable in the sense that it is possible to
have several instances of each service running
concurrently and fully independently in different detector
partitions.

The results of the tests show that a single instance of the

Information Service is able to handle one thousand
Information Providers and about 15 Information
Consumers at the same time. In larger configurations the
design of the IS allows to distribute the total load among a
number of the IS instances, which can run fully
independently. Thus, it will be necessary to run only a few
(less then 10) IS instances in order to provide the required
performance for the final ATLAS TDAQ.

As it has been mentioned already the services
implementation is based on the CORBA. Currently the
open source implementation of CORBA provided by
Xerox Company is used. It is called Inter Language
Unification (ILU) [9]. Several other CORBA
implementations are currently being evaluated. They are
namely: TAO [10], MICO [11], omniORB [12] and
ORBacus [13]. They provide interesting features, which
are missing in ILU, i.e. advanced thread management in
multy-threaded applications, advanced connection
management, CORBA objects persistence, etc. Another
CORBA broker can replace ILU without affecting the
implementation of the Monitoring services.

5. SUMMARY
Monitoring in the ATLAS experiment is a complex and

demanding task. The Online Software of the ATLAS
TDAQ system implements a software framework, which
can be used for information exchange between the
monitoring data providers and consumers. The monitoring
framework consists of four services, implemented on top
of CORBA. Each service provides the most appropriate
and efficient solution for a specific type of the monitoring
information. Prototype implementations exist for all the
monitoring services and have been successfully used for
several years in the ATLAS test beams [4]. The tests,
which have been recently performed, show that the
services satisfy the requirements of the ATLAS
experiment.

4.1. Performance and scalability of the
current implementation

Among the Monitoring services, the most extensive tests
have been performed for the Information Service. The
other services are implemented on the same technology
and offer the same level of performance and scalability as
the IS.

The test bed for the IS tests consisted of 216 dual-
Pentium PCs with processor frequency from 600 to 1000
MHz. A single instance of the IS was set up on one
dedicated machine. The other 200 machines were used to
run from one to five Information Providers on each of
them simultaneously. Each Information Provider published
one information object in the IS at start up and then
updated it once per second. The last 15 machines were
used to run 1, 5, 10 or 15 Information Consumers which
subscribe for all the information in the IS. Whenever an
Information Provider updated his information, this new
information was distributed to all the Information
Consumers.

References
[1] ATLAS Technical Proposal, CERN/LHCC/94-43

ISBN 92-9083-067-0.
[2] Status of the LHC / R.Schmidt, CERN-LHC-Project-

Report-569, 02 Jul 2002.
[3] ATLAS High-Level Triggers, DAQ and DCS:

Technical Proposal - ATLAS Collaboration.
CERN-LHCC-2000-017.

[4] Online Software for the ATLAS Test Beam Data
Acquisition System, 2003 IEEE Real Time
Conference Figure 11 shows the average time for transporting

information from one Information Provider to all the
subscribed Information Consumers as a function of the
number of Information Providers working concurrently.

[5] Use of CORBA in the ATLAS prototype DAQ,
A.Amorim et al., IEEE transactions on Nuclear
Science, Vol. 45, No. 4, August 1998

[6] CORBA home page, http://www.omg.org/corba/
[7] OMG home page, http://www.omg.org/
[8] ROOT home page, http://root.cern.org/

THGT003

 CHEP 2003, La Jolla, California, USA, March 24-28, 2003 6

THGT003

[9] ILU home page,
ftp://ftp.parc.xerox.com/pub/ilu/ilu.html

[10] TAO home page,
http://www.cs.wustl.edu/~schmidt/TAO.html

[11] MICO home page, http://www.mico.org/

[12] omniORB home page, http://omniorb.sourceforge.net/
[13] ORBacus home page,

http://www.iona.com/products/orbacus_home.htm

	INTRODUCTION
	THE ONLINE SOFTWARE
	MONITORING FRAMEWORK
	Monitoring framework model
	Monitoring data types
	Monitoring Architecture
	Monitoring Services
	Event Monitoring Service
	Message Reporting Service
	Information Service
	Histogramming Service

	PROTOTYPE IMPLEMENTATION
	Performance and scalability of the current implementation

	SUMMARY

