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Abstract 

A new application for the Tile Calorimeter (TileCal) beam test simulation 
has been developed in GEANT4 within the FADS/Goofy framework. The 
geometry and readout systems for all the different TileCal modules have 
been implemented in a quite detailed way. This application allows to 
simulate all the TileCal beam test setup configurations existing so far. 
Details of the development as well as instructions to install and run the 
program are presented. The first tests have been performed for a beam test 
setup consisting of five prototype modules using negative pions with 
different energies and results of comparison to the experimental data from 
TileCal TDR are presented as well. 
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1. Introduction  

Up to the year 2000, GEANT3 was the main environment used by the TileCal collaboration to develop 
its simulation applications. This was true also for other subsystems of the ATLAS detector. In 1999 the 
ATLAS collaboration decided to start using GEANT4 [1] as a new tool for detector simulations, since 
GEANT4 should satisfy the new physics requirements at the LHC energy scale. Therefore, we started to 
develop a new simulation application using the GEANT4 toolkit. 

In 2001 the ATLAS group produced a common framework for the ATLAS detector simulation in 
GEANT4, namely FADS/Goofy [2,3]. This framework extends the GEANT4 toolkit functionality and 
provides possibility to develop the simulation applications of the various ATLAS subsystems in a 
coherent way. The TileCal collaboration decided to develop a new code within the FADS/Goofy 
framework at the end of 2001. As a result we have now an application that can simulate all the TileCal 
beam test setup configurations realized so far: 

• Beam Test 1995 (5 prototypes) 
• Beam Test 1997 (5 prototypes + 2 extended barrel modules) 
• Beam Test 1998 (5 prototypes + module 0) 
• Beam Test 2000 (module 0 + central barrel module + 2 extended barrel modules)  

Section 2 of this note describes some details of the new application, with particular emphasis on the 
geometry and readout system description, on the hits processing, on the user actions, on the event 
generator and physics lists. Section 3 gives instructions to install and run the application. Section 4 
presents the first results obtained with our application for the 1995 beam test setup. Energy resolutions 
for negative pions are compared to beam test results from the TileCal TDR [4]. 

2. Application details  

2.1 General structure 

The FADS/Goofy environment provides users with a set of specific tools for different detector 
simulation domains: geometry management, sensitive detectors, user actions, physics lists etc. It 
includes also one simulation program (Goofy), which has no predefined detector geometry, no user 
actions and no physics lists. All the information needed to build a detector-specific application and to 
perform a simulation is interactively supplied by the user via commands typed in the Goofy prompt or 
via macro files in batch mode. Therefore, a typical FADS application should consist of one or more 
shared libraries used by Goofy at run time. 

The TileCal beam test simulation application includes a few shared libraries:  
• libTileTB.so – realization of the geometry, sensitive detectors and user actions;  
• libTileGenerator.so – realization of specific event generator;  
• libTileTBPhysics*.so – set of physics libraries developed using different hadronic 

physics lists provided by the GEANT4 experts [6];  
• libTilePackaging.so  - includes physics lists for General Physics, Electromagnetic 

Physics, Muon Physics and Ion Physics, developed by the GEANT4 experts [6]. 
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2.2 Geometry 

 The XML language is used to describe the geometry of all the TileCal modules used in different beam 
test setup configurations: central barrel modules, extended barrel modules, module 0 and prototype 
modules. The XML code, which describes all the modules, is contained in just one file: 
modules.xml. Module geometry is described using XML elements of special types: TileSection, 
TilePeriod, TileScintillator etc. The primary numbers for the geometry description are identical to those 
used for the TileCal simulation in GEANT3 [5].  

Additionally, for each particular beam test setup, we provide a dedicated XML file (for example: 
tb00.xml for the 2000 beam test). This file holds the information needed to build the setup geometry, 
namely the number and type of the modules presented and their relative position. 

We use the FADS mechanisms to parse the XML code at run time and keep the geometry descriptions 
into the hierarchy of the FADS specific DetectorDescription objects (Fig.1). The following UI 
commands are used for this purpose: 

/DetDescription/ReadFile modules.xml 
/DetDescription/ReadFile tb00.xml 

 

FADS provides a mechanism to build the detector geometry at run time using specific DetectorFacility 
objects. The FADS application developers have to realize an abstract DetectorFacility interface in the 
number of concrete classes of their choice. The singleton objects of the user classes are instantiated and 
registered into a specific DetectorFacilityCatalog. FADS provides UI commands to choose the 

Figure 1. Hierarchy of the DetectorDescription 
objects that hold at run time the geometry and 
readout system description (gray area) of the 
TileCal beam test setup. The number of 
TileSectionDescription objects corresponds to 
the number of various module types used in that 
particular beam test setup. 
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necessary facility objects from the catalog, build the mother-child relationships between them, position 
and rotate child objects inside mothers, set one facility as World Volume (top level mother volume). 

For the TileCal beam test simulation application we have developed two DetectorFacility objects: 
• TileTB. Object representing the whole beam test setup. The real geometry is built using the 

information from the DetectorDescription hierarchy. 
• TBMother. Large box that acts as World Volume in the TileCal beam test simulation. 

The following commands get the facility objects from the catalog and position the TileTB inside the 
TBMother: 

/Geometry/GetFacility TBMother TBMother 
/Geometry/GetFacility TileTB TileTB 
/TBMother/AddDetector TileTB 

 

 

Figure 2. The TileCal 2000 beam test setup. There are: module0 at the bottom, a central 
barrel module in the middle and two extended barrel modules on top. 
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The center of the coordinate system corresponds to the geometrical center of the TBMother. We also 
consider the geometrical center of the central module as the center of the whole beam test setup (for 
example: in the 2000 beam test setup the barrel module is the central one).  The execution of the above 
commands makes the beam test setup center coincident with the coordinate system center. The position 
of the TileTB inside the TBMother can be changed later using standard FADS UI commands: 
RotateX, RotateY, RotateZ and MoveTo.  

Figure 2 shows the initial position of the 2000 beam test setup visualized using the VRML viewer. The 
coordinate axes are shown as well. 

2.3 Readout system 

We also use the XML language to describe the readout system of the TileCal modules (definition of 
Cells and Samples). The readout system of each particular module type is described in a dedicated XML 
file (for example: barrel_readout.xml includes the readout geometry description for a central 
barrel module). We provide specific types of XML elements: TileSample and TileCell. Each XML 
element has an identifier, which consists of 6 fields separated by a colon. The field values have the 
following meaning: 

TileID/SampleID – “subsystem:detector:side:module:tower:sample”. 
• subsystem: 5 – TileCal; 
• detector: 0 – module 0, 1 – central barrel, 2 – extended barrel, 3 – ITC, 4 – prototype; 
• side: 1 – positive, -1 – negative; 
• module: 0-63 (granularity in 1.0, =∆ϕϕ ); 
• tower: 0-15 (granularity in 1.0, =∆ηη ); 
• sample: 0 – A; 1 – B, C, BC; 2 – D.  

Note: For each field an ‘X’ indicates all or undefined. 

The TileCell elements also have special attributes indicating the number of the corresponding photo-
multipliers (PMTs) and their positions (hole numbers).  

The readout system description is kept at run time in special DetectorDescription objects that form an 
additional branch in the whole detector description tree (Fig.1). 

2.4 Hits processing and User Actions 

In the TileCal beam test simulation application we use the TileTBHit class derived from G4Vhit. The 
TileTBHit objects hold the energy deposited in one PMT during one event and also the identifier of the 
corresponding cell. The hit objects are created only for those cells, which contain some energy 
deposition. Since for every cell there are two corresponding PMTs (called “Up” and “Down” here), we 
have implemented a simple energy distribution into PMTs, which depends on the Y coordinate of the 
energy deposition. The Birk’s saturation law for organic scintillators has also been implemented. 

At the end of each event the information from hit objects is stored into an ntuple and hits are deleted. 
Therefore, no persistency mechanism has been implemented for hits so far. 
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The operations with ntuples are realized with the use of standard HBOOK routines in special User 
Action classes. We have developed one parent class, TileTBUserAction, which provides common 
methods to open, fill and save HBOOK files and also two child classes that realize different concepts for 
ntuple structures. All produced ntuples have a common GENERAL block and also for each module used 
in that particular beam test setup the dedicated block of ntuple variables is presented. The difference in 
ntuple production lies in the different structure of the module blocks. 

• TileTBUASamples. Provides a structure similar to the one existent for the 2000 beam test 
simulation in GEANT3 [5]; 

• TileTBUADrawers. Provides a structure similar to the one existent for the Beam Test ntuples 
[7]. 

We present a more detailed description of the ntuple variables in Section 3.4. 

The concrete User Action class for a particular simulation is chosen at run time using the following 
FADS commands (TileTBUASamples is taken  as an example): 

/Actions/RegisterForAction TileTBUASamples BeginOfRun 
/Actions/RegisterForAction TileTBUASamples EndOfRun 
/Actions/RegisterForAction TileTBUASamples BeginOfEvent 
/Actions/RegisterForAction TileTBUASamples EndOfEvent 
/Actions/RegisterForAction TileTBUASamples Step 

 

2.5 Physics lists 

We provide a set of different physics lists for TileCal beam test simulations, which are based on 
different versions of the hadronic physics lists provided by the GEANT4 experts [6]. We have 
performed several tests to choose the best physics list but a final decision has not been made yet. Tests 
are still undergoing and the following packages are provided:  

• libTileTBPhysicsLHEP_1.so, libTileTBPhysicsQGSP_1.so. We have developed 
these libraries in August 2002 using the current LHEP and QGSP lists for hadronic physics. Ion 
and muon physics from novice example N04 and electromagnetic physics from extended 
example TestEm3 are used. 

• libTileTBPhysicsLHEP_2.so, libTileTBPhysicsQGSP_2.so. We have developed 
these libraries in the beginning of October 2002. They have to be used together with the 
libTilePackaging.so library, which includes GEANT4 EM, general, muon and ion 
physics. The code for the packaging library has been developed by the GEANT4 experts [6]. 

The users can choose a particular physics list at run time using the following commands: 
/load TileTBPhysicsLHEP_1 
/Physics/GetPhysicsList TileTBPhysics 

2.6 Event generator 

We have slightly modified the FADS SingleParticle generator and developed a TileTBGenerator that 
has some specific features for the beam test simulations. 



 7

• The initial direction of the particle momentum is always (1,0,0). So the beam is ‘parallel’, 
particles do not have a η /ϕ distribution. 

• The initial positions of the particles can be distributed either along the Z-axis (‘flat’ distribution) 
or in the YZ plane (‘uniform’ distribution). 

• All generated particles have the same initial energy; 

The following commands configure the TileTBGenerator to generate negative pions with initial energy 
of 20GeV, a flat beam distribution of 10mm size along the Z-axis, with center in the initial point (-
1500,0,0): 

/Generator/Select TileTBGenerator 
/Generator/TileTB/ParticleName pi- 
/Generator/TileTB/momentum 20 
/Generator/TileTB/spotType flat 
/Generator/TileTB/spotSize 10. mm 
/Generator/TileTB/initialPos –1500. 0. 0. mm 

3. Installation and running 

The TileCal beam test simulation application has been built on the LXPLUS cluster, but it can run on 
any machine where GEANT4 and FADS 1.1.0 are installed. In the following we will assume that 
GEANT4 and FADS 1.1.0 are already installed and properly configured on your system. This means in 
particular that you have two scripts prepared to set up the environment for FADS: 
AtlasEnvironment.sh(csh) and FADSsetup.sh(csh). 

The sources are available on LXPLUS under the directory ~tilecal/FADS/TestBeam. Some 
additional information and news are ale permanently placed on the TileCal simulation web site: 
http://tilecal.web.cern.ch/tilecal/Simulation/TileSoftwareSim.html. 

Note: Due to some backward incompatibility introduced in the latest release of FADS the presented 
code will not work with FADS 1.1.1 and later. The new code is currently under development and will be 
available in the near future. 

3.1 Installation 

It is necessary to perform the following steps to install the TileCal beam test simulation application: 
• Get the file ~tilecal/FADS/TestBeam/Download/tiletb.tar.gz; 
• Extract the archive in any directory of your choice (we will refer to this directory as $TILETB). 

You will have in $TILETB the same directory structure as in ~tilecal/FADS/TestBeam; 
• Source AtlasEnvironment.sh(csh) and FADSsetup.sh(csh) scripts to set up the 

environment for FADS; 
• Go to $TILETB/TileTB and type: gmake. That builds the library libTileTB.so and 

places it under ${FADS_WORKLIB}; 
• Doing gmake in other subdirectories of $TILETB (./Generator, ./Packaging, 

./TBPhysics*) also results in the creation of the corresponding shared libraries under 
${FADS_WORKLIB}. 
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Note: At the moment of writing, the application in ~tilecal/FADS/TestBeam is built for RedHat 
6.1 with egcs-1.1.2. If you have the same system, you can avoid the steps needed to build the libraries 
and simply copy the contents of  $TILETB/lib to ${FADS_WORKLIB}. 

3.2 Running in interactive mode 

There are two ways to run the simulations interactively: 
• By using macro files; 
• By typing command by command in the Goofy prompt. 

We provide several macro files for the simulation of different beam test setups. There are four 
subdirectories of $TILETB/TileTB/macros, each one corresponding to one beam test setup. For 
example, in subdirectory tb00, which corresponds to the 2000 beam test, you will find the following 
macro files: 

• tb00_geo.mac   builds the geometry of the setup and visualizes it using the VRML file 
driver; 

• tb00_visevent.mac   allows the event visualization using the VRML file driver. The 
number of visualized events and the type of initial particles can be changed inside the macro; 

• tb00_samples.mac   performs sample simulation with negative pions using 
TileTBUASamples as user action; 

• tb00_nosamples.mac performs sample simulations with negative pions but uses 
TileTBUADrawers. 

In order to use any of the macro files listed above, you should follow these steps:  
• Source AtlasEnvironment.sh(csh) and FADSsetup.sh(csh) scripts to set up the 

environment for FADS; 
• Go to $TILETB/TileTB/macros/tb00 and type goofy. You will get the Goofy logo and 

prompt; 
• In the Goofy prompt type /control/execute <macro_file_name>. 
• After the macro finishes and you get back the prompt, type exit.  

You can also run the simulation interactively by typing the macro file commands one by one. The 
commands in macro files are accompanied by comments, helping to understand the command meaning. 

3.3 Running in batch mode 

Batch scripts can be found under the directory $TILETB/run/batch. For example, for the 2000 
beam test setup, there is a subdirectory tb00 with a file tb00_samples.bat. This batch file allows 
performing several simulations using the macro file tb00_samples.mac, just by changing the initial 
energy of the generated pions. 

To submit a batch on LXPLUS, go to: $TILETB/run/batch/tb00 and type, for example, the 
following command: 

bsub –q 1nd tb00_samples.bat 
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When the batch finishes, the produced ntuples will be in the directory 
$TILETB/run/output/tb00. The names of the ntuple files indicate the energy, in GeV, of the 
generated pions. 

3.4 Ntuple variables 

There is a block of ntuple variables called ‘GENERAL’ that is common for all the ntuples produced by 
the TileCal beam test simulation application. This block consists of the following variables: 

• EventNo. Event number; 
• Vertex(3). Particle initial vertex; 
• Momentum(3). Particle initial momentum; 
• ESci. Total energy deposited in all the setup scintillators; 
• LSci. Total track length in all the setup scintillators; 
• EInner. Total energy deposited in the inner iron (masters, spacers, front/end plates); 
• LInner. Total track length in the inner iron; 
• EOuter. Total energy deposited in the girders; 
• LOuter. Total track length in the girders. 

The remaining part of the ntuple depends on the beam test setup configuration and on the  particular 
User Action chosen for  that particular simulation. 

3.4.1 Ntuples produced using TileTBUASamples 

For each module used in a particular beam test setup, we provide a separate block of ntuple variables. 
The names of these blocks are made of two parts: the first one specifies the module type, the second one 
is an integer uniquely identifying a certain module within its type. The following names are used to 
distinguish different types of modules: 

• BARREL – central barrel; 
• EXT – positive extended barrel; 
• EXTN – negative extended barrel; 
• MOD0 – module0; 
• PROTO – prototype module; 

For example, the ntuple produced for the 2000 beam test has the following blocks: BARREL1, EXT1, 
EXTN1 and MOD01. For the 1998 beam test setup, which consisted of 5 prototypes and the module 0, 
the following blocks are present: MOD01, PROTO1, PROTO2, PROTO3, PROTO4 and PROTO5. 

In order to explain the variable names inside the blocks, let us consider the BARREL1 block. The 
following variables are included: 

• EneB1 – total energy deposited in all the module scintillators; 
• EneB1S1T – total energy deposited in all the scintillators of the first sample (A) of the module; 
• EneB1S1U(20) – energies in the Up PMTs of the cells of sample A; 
• EneB1S1D(20) – energies in the Down PMTs of the cells of sample A;  
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• EneB1S2T – total energy deposited in all the cintillators of the second sample  (BC) of the 
module; 

• EneB1S2U(18) – energies in the Up PMTs of the cells of sample BC; 
• EneB1S2D(18) – energies in the Down PMTs of the cells of sample BC; 
• EneB1S3T – total energy deposited in all the scintillators of the third sample (D) of the module; 
• EneB1S3U(7) – energies in the Up PMTs of the cells of sample D; 
• EneB1S3D(7) – energies in the Down PMTs of the cells of sample D; 

3.4.2 Ntuples produced using TileTBUADrawers 

The ntuples of this structure have blocks of variables similar to the ones described in Section 3.4.1. The 
only exception is that all the variables corresponding to positive and negative extended barrel modules 
are grouped in one block called EXT. Each block consists of one or two variables that represent arrays of 
energies deposited in photomultipliers of the positive and negative side of the module. The PMTs are 
indexed by the corresponding hole number in the drawer. Table 1 lists all possible variables (1 is taken 
as module number for all the blocks) 

Block Variable Comment 

EneB1P(48) Energies in PMTs of positive side in central barrel module 1 
BARREL1 

EneB1N(48) Energies in PMTs of negative side in central barrel module 1 

EneEB1P(48) Energies in PMTs of positive side in extended barrel module 1 
EXT1 

EneEB1N(48) Energies in PMTs of negative side in extended barrel module 1 

EneM01P(48) Energies in PMTs of positive side in module 0 
MOD01 

EneM01N(48) Energies in PMTs of negative side in module 0 

PROTO1 EnePr1P(40) Energies in PMTs of prototype module 1 

Table 1. Variables in ntuples produced using TileTBUADrawers 

Note: We put –999.9 for unused holes. 

4. Test with negative pions 

We have tested the application using a beam test setup consisting of 5 prototype modules. For the tests 
we have used negative pions with different energies in the range 20-300 GeV, entering the central 
module at angles: o20=ϑ , 0=ϕ  (Fig.3). 
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Figure 3. Beam test setup consisting of 5 prototype modules used 
for the tests with negative pions. 

Figure 4 presents the resulting Eσ  as a function of beamE1 for the QGSP_1 and QGSP_2 physics 
lists. We have obtained the values for E and σ  for the total energy deposited in all the scintillators by 
performing a Gaussian fits over a σ2± region from the mean. The points are fitted with the following 
function: 

 b
E
a

E beam

+=
σ

 (1) 

The results from this simulation have been compared to the energy resolution plot for the same beam 
test setup as presented in the TileCal TDR [4]. In Figure 4 one can see that the simulation results 
obtained using two different hadronic physics lists are considerably different. The comparison to 
experimental results shows also that the QGSP_1 physics list approaches better the real data. 

Simulations using the application presented in this note just started. We continue to participate in the 
GEANT4 physics validation process performing several tests with different beam test setups and 
different hadronic physics packages.  
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Figure 4. Comparison of the pion energy 
resolution obtained using the QGSP_1 and 
QGSP_2 physics lists, with the experimental 
results described in the TileCal TDR. 


