
A
T

L
-M

U
O

N
-2

00
1-

00
9

07
/

05
/

20
01

ATLAS CERN-ATLAS, MUON NO-XXX, 2000
Muon Spectrometer 01/11/2000
__

1

Data Base for the X-ray
Tomograph

Yu. Sedykh, Yu. Smirnov

Abstract

We describe the Objectivity C++ data base of the X-ray tomograph
which was developed to store the scan parameters and the scan analysis
results.

1. Introduction

The X-ray tomograph ([1], [2]) has been created to measure the MDT chambers of the
ATLAS Muon Spectrometer ([3]) in order to certify and control the chamber production lines.
A measuring rate of the automated tomograph is estimated to be 2 chambers per week, that is
about 10 scans per week. During 4 years of chamber production and measurements about 2000
scans will be done. Evidently the scan parameters and results of scan analysis must be put in the
data base to provide a standard mechanism to store and retrieve the data.

Amongst the possible choices we considered well known relational data bases (Oracle,
MySQL, Access, etc.) and the Object Oriented (OO) Objectivity/C++ data base ([4]). The PC
oriented ones (like Access) were rejected because of bad compatibility with UNIX operating
system where the X-ray tomograph DAQ system running, and because of instability of the
Windows 95 or 98 systems. Comparing other relational data bases and the Objectivity/C++ one
we have chosen the latter. The main reasons of this decision are the following.

1. Objectivity/C++ has all main features of the relational data bases. But it has some
essential benefits over them.

2. The structure of the data is flexible, that is we can create a data tree with arbitrary
number of branches (including empty). It is very convenient because we can not predict how
many parameters we will have to put into the data base. It strongly depends on the certification

A
T

L
-M

U
O

N
-2

00
1-

00
9

M
ay

 2
00

1

ATLAS CERN-ATLAS, MUON NO-XXX, 2000
Muon Spectrometer 01/11/2000
__

2

procedure which has not been designed yet. So, we are able to reprocess any scan, calculating
new parameters (decided to be calculated after the data base has been created), put the results
into the data base not changing its common structure, for example, searching procedure where
the new parameters may be searched for as well as for any old one.

3. Objectivity/C++ provides a natural interface for programmers. We can use data
structures similar to the C++ language ones.

The computer code based on C++ language has been developed to write data into the data
base. The data flow is organised in the following way. Data acquisition system makes a scan,
puts common scan parameters (like scan date and time, chamber name, type, scan section, etc.)
into the header file, the slow control parameters (temperature of the air and the chamber in some
points, pressure, humidity, high tension of the X-ray sources, etc.) into the corresponding file,
starts the “scana” program for data reconstruction ([5]), which will put the results (wire
coordinates, standard deviations of the grid fits and many others) into the results data file. After
any of these three files has been created the corresponding “DB write” program starts to read
the file and puts the data into the data base. If the data base server is not reachable the program
is postponed and starts again later for every file which must be put into the data base. As soon
as data have been put into the data base successfully the original files are destroyed (more
precisely they are copied to some scratch area to keep them for some time for the case of
unrecognised problems with the data base) to indicate the success.

2. Structure of the Data Base

As it was mentioned already the structure of the data base must allow to add new
parameters not changing the DB structure itself. Another thing is the necessity to reserve a
possibility to add additional fields to the structure describing the wire position in space and in
chamber for future development of the X-tomograph system. To provide these features the
following structure of the Objectivity/C++ data base has been created.

Generally the structure of the data base is present in Fig. 2.1. The data for every scan are
put in independent structures. Also there exists a table of names described later. It is also
independent on other classes.

The structure of individual scan is shown in Fig. 2.2.

The data base consists of the 9 classes: Scan_Links, Headers, SC_Records, Scan_Results,
Wires, Reserv_Wire, Mytable, SC_Parameter and Scan_Wire.

Results and other parameters of the X-Ray Tomograph measurements are presented in the
Headers, SC_Records, Scan_Results and Wires classes. The Headers class contains the general
parameters of the scan like date, time, scan number, production site name, chamber name,
operator name, etc. The Headers parameters are written only once per scan. The SC_Records
class contains slow control parameters like temperature, humidity and pressure in the clean
room, chamber temperature in some points, electrical parameters of different devices (X-ray
tubes, power supply of photo multipliers, power supply for Front End Electronics), gas supply
parameters, etc. Those parameters are measured periodically during the scan (1 time per 100

ATLAS CERN-ATLAS, MUON NO-XXX, 2000
Muon Spectrometer 01/11/2000
__

3

events, i.e. 1 time in 4 seconds) and must be put in the data base after scan finishes. The Wires
class contains the parameters of the wires, calculated by “scana” program for every scan. The
Class_Results class contains general geometrical parameters of the measured chamber like
standard deviation of the wire coordinates relative to the ideal grid corresponding to the nominal
values, distances between layers, multilayers, many other parameters. Usually the Wires and
Class_Results classes are written one time per scan but there is a possibility to have more
versions of the same parameters. This feature has been foreseen for the case if some essential
improvement of the “scana” program is made and it is necessary to reanalyse some or all scans
with the new version of the program. So, a few versions of the analysis results may be put in the
data base. The last one is default.

Figure 2.1General organization of data

Physically every parameter is put in a separate object. Those objects are connected
together and associated with a certain scan via the Scan_Links class which contains the
association links to the Header, Result and Wire parameter objects directly. The Slow Control
parameters are put in the SC_Parameter objects which are combined via VArray Objectivity/
C++ construction into the SC_Records objects and the Scan_Links class has association links
to the SC_Records objects.

TABLE OF NAMES

STRUCTURE

OF SCAN 1

STRUCTURE

OF SCAN 2

STRUCTURE

OF SCAN M
.

ATLAS CERN-ATLAS, MUON NO-XXX, 2000
Muon Spectrometer 01/11/2000
__

4

Figure 2.2Structure of scan

It is evident that at the lower level of work with the data base a use of the numbers is better
than the use of parameter names (character strings) from point of view of disk space and data
access time (for example, for search purposes). Class Mytable is used to give the
correspondence between each parameter name and number. So, at the lower level only numbers
of the parameters are used.

The Reserv_Wire class is an auxiliary class which is not used at the moment, but may be
used in the future if some additional information must be added for individual wire parameters.

Let us shortly describe the detailed structure of the data base.

SCAN_LINKS

HEADERS SC_Records Scan_Results Wires

Param1 Record1 Param1 Wire1

.

.

.

. .

. .
.
.

.
.
.
.

Param2

ParamM1

Record2

RecordM2

Param2

ParamM3

Wire2

WireM4

.Param1 Param2 ParamM5

ATLAS CERN-ATLAS, MUON NO-XXX, 2000
Muon Spectrometer 01/11/2000
__

5

To develop the computer code to create and support such a data base we used Objectivity
5.1 and C++ compiler working on SUN stations under Solaris 2.5.1. The ATLOBJ01 node has
been used as the lock server, the application programs were compiled and run on nodes
ATLAS50 and SUNEPEOS01.

A federated data base named XTOMODB has been created. It contains a data base
XTOMO1_db. To store the objects of corresponding classes several containers have been used.

We keep the objects of Mytable class in the container named MytableContainer. Class
Mytable consists of three members. For every scan each parameter of measurements has a
unique name which is stored in the string “Name” of variable length. The second member of
Mytable class is the integer variable “Name_Number”. These two fields establish a
correspondence between parameter name and number of the parameter. We will use
Name_Number instead of Name of parameter to navigate and organize searching procedure
faster and simpler. It is naturally to deal with integers instead of strings, and so we can simplify
and accelerate the search of parameters in Mytable, which can be loaded into RAM directly
when an application program is working. The third member of that class is the integer “Type”.
This is a flag equalled 1 for the Headers class parameter, 2 for parameter of the SC_Records
class and 3 for the parameters of Scan_Results or Wires class.

Container ScanLinksContainer is used to store all necessary association links to objects
of classes Headers, SC_Records, Scan_Results, and Wires, which are described below (see Fig.
2.3). In this container we keep the class Scan_Links, which consists of 5 members: integer
Scan_Number, which is a main input parameter and is an identifier of the current scan, and four
association links to objects of Headers, SC_Records, Scan_Results and Wires classes. Here we
create a key object and deal with the key search using the field Scan_Number as a key for the
class Scanl_Links.

Container HeadersContainer is used to store the objects of Headers class. Headers class
consists of the following members: integer Name_Number, the string of variable length Value
and the many-to-one association link to an object of the control class Scan_Links. Many-to-one
association is used here to link all header parameters within one scan. In the same container we
keep an index with two key fields: Name_Number and Value. So we can realise a search within
Headers class using both key fields.

Container SlowControlContainer is used to store the records of slow control parameters.
The corresponding class SC_Records includes as a member the variable-size array Parameter.
Each element of this array belongs to the structure SC_Parameter, which consists of integer
Name_Number and float Value and represents one slow control parameter. We use the variable-
size array here because the number of parameters in the slow control records may be different
in general case. And the second member of the SC_Records class is a many-to-one association
link to an object of the control class Scan_Links. Such an association is needed to connect all
slow control records obtained within one scan.

ATLAS CERN-ATLAS, MUON NO-XXX, 2000
Muon Spectrometer 01/11/2000
__

6

Figure 2.3Detailed description of classes.

In the ScanResultsContainer we keep objects of both Scan_Results and Wires classes.
Class Scan_Results is used to store results of data processing and has the following members:
integer Name_Number, float Value and integer LastVersion. Data can be processed using
different techniques, methods, tools etc. So it is possible for user to have several versions of
results. LastVersion equals to 1 if it represents the last default version of results, for all previous
versions this parameter is equal to 0, and it is the user responsibility to differ from such a
versions of results, obtained before (for example one can use a parameter
ResultsVersionNumber to get a number of corresponding version of results). And as before the
last member of class Scan_Results is an association link to the object of the class Scan_Links,
representing the given scan. The Wires class is used to store results of measurements of wire

Class Headers
{
int32 Name_Number;
ooVString Value;
ooRef(Scan_Links)ScanLink1-Header[];
};

Class SC_Records
{
ooVArray(SC_Parameter)Parameter;
ooRef(Scan_Links)ScanLink2-ScRecord[];
};

Class Scan_Links
{
int32 Scan_Number;
ooRef(Headers) Header[]ScanLink1;
ooRef(SC_Records)ScRecord[]-ScanLink2;
ooRef(Scan_Results)ScResult[]-ScanLink3;
ooRef(Wires)ScanWire[]-ScanLink4;
};

Class Scan_Results
{
int LastVersion;
int32 Name_Number;
float64 Value;
ooRef(Scan_Links)ScanLink3-ScResult[];
};

Class Wires
{
int LastVersion;
Scan_Wire Wire;
ooRef(Scan_Links)ScanLink4-ScanWire[];
ooRef(Reserv_Wire)ReservFileds[]-ScanWire1[];
};

Class Reserv_Wire
{
int LastVersion;
ooVArray(float64) reserv;
ooRef(Wires)ScanWire1-ReservFields[];
};

struct SC_Parameter;
{
int32 Name_Number;
float64 Value;
};

Struct Scan_Wire
{
float64 x, y, z, dx, dy, dz;
int32 ny, nz;
}

Class Mytable
{
int32 Name_Number;
ooVString Name;
int32 Type;
};

ATLAS CERN-ATLAS, MUON NO-XXX, 2000
Muon Spectrometer 01/11/2000
__

7

positions and consists of integer LastVersion (having the same meaning as for Scan_Results
class) and the second member of class Wires is Wire, which has type of structure Scan_Wire,
consists of float variables x, y, z, dx, dy, dz, which represent coordinates and errors of
measurements of wire positions, ny - number of layer and nz - number of wire within the layer.
The third member of the Wires class is an association link to the object of the class Scan_Links,
and the last one is an association link to the object of class Reserv_Wire. Class Reserv_Wire
can be used to store some additional information about wires in the future. Members of this class
are integer LastVersion, variable-size array of float reserv, in which necessary parameter values
may be written, and an association link to the object of class Wires. One can recommend to store
the objects of the Reserv_wire class in the same container as Wires, i.e. ScanResultsContainer
for the easy navigation. In the ScanResults container we store also the index, which helps us to
realise the faster access to the objects of Scan_Results class. As the key fields for the index for
the Scan_Results we use both Name_Number and Value.

3. Application programs for writing into data base and
for formatting of the input data

To write into data base three application programs have been developed. First one called
Headerswr.cc is used to write the information about header’s parameters for current scan into
the data base. The input file has the following format. Comments (they begin with the #
character) are ignored. Each Value of header parameter can occupy a number of lines in the
input file. Integer value representing a number of lines for the Value of the parameter is coming
first, then the Name of current parameter is read. We use the following conventions: the Name
can consist of from one up to 20 words separated by one or several blanks each from another.
The program will write into the data base the Name, in which the parts (if there is a number of
parts) are separated by one blank, automatically deleting all others. After that the Value of the
parameter is read from the following one or several lines in accordance with the number of lines
have been read before. The program writes Name and its corresponding Name_Number into the
MytableContainer if it is not there yet and Value will be stored in the HeadersContainer. This
procedure will be continued till EOF is reached.

To read the information about slow control parameters from the SCParameters.dat file
and to write it into the data base the SCrecordswr.cc computer code has been developed. A
positive integer number of parameters in the current record is read from the first line of
SCParameters.dat file. Then the Value and the Name of parameters has to be read for every
parameter in the record and written into corresponding container. The process stops when
negative or zero number of parameters in the record is read.

The last application program named Resultswr.cc has been created to read the information
about scan results and measurements of wires from the Results.dat file and put it into the data
base. Positive integer number of result parameters is read first. The next line of Results.dat file
consists of the Value and Name of result parameter, which are read and stored in the
corresponding containers. After a cycle for result parameters is over, positive integer number of
wires has to be read and the cycle for wires begins. Parameters x, y, z, dx, dy, dz, ny, nz for
every wire are read from the input file and are written into the data base consequently.

ATLAS CERN-ATLAS, MUON NO-XXX, 2000
Muon Spectrometer 01/11/2000
__

8

4. Acknowledgements

We would like to thank N. Smirnov and RD Schaffer for very efficient consultations on
using Objectivity/C++, S. Goldfarb and D. Lellouch, K. Safarik for fruitful discussions. We are
grateful to C. Fabjan and F. Rohrbach for strong support of this activity.

5. Bibliography

[1] J. Berbier et al. X-ray Tomograph Prototype for MDT Quality Control Status of the X-QC
project, ATLAS Internal Note MUON-NO-174 (1997)

[2] X_Tomo WWW reference address: http://wwwinfo.cern.ch/~xtomo

[3] ATLAS Muon Spectrometer Technical Design Report, CERN/LHCC/97-22 (1997)

[4] Using Objectivity/C++. Version 4, Release 4.0, 1996. Objectivity, Inc.

[5] E. Gschwendtner, F. Rohrbach, Y. Sedykh. Analysis and Results from Measurements on an
X-ray Tomograph of Large Full-Scale MDT Prototypes, ATLAS Internal Note MUON-
NO-175 (1997)

