Atlas DAQ Communication 14 February 2001

PC-based Event Filter Supervisor:
Design and Implementation

06/03/2001

ATL-DAQ-2001-002

Z. Qian, C. Bee, E. Fede, C. Meessen, F. Touchard
CPPM Marseille

Abstract

This document presents a PC-Based Event Filter Supervisor design and implementation, based
on Java and Java Mobile Agent technology. The supervisor has been in use for two years and
has been tested in various configurations and on different platforms. Full integration with the
ATLAS DAQ/EF prototype has been performed and is described in detail

Keywords : ATLAS, Event filter,Supervisor, Monitoring, Mobile Agent, Java
Document version: 1.3
Reference : http://atddoc.cern.ch/Atlas/EventFilter/documents/spv/spv.html

Table of Contents

R 11 o o 18 [1[0 o 3
2 Technology CROICES.........uuiiiii e s
2.1 What a Java Mobile Agent system l00KS lIKe............coooiiiiiiii e, 4
2.2 What is Voyager and why Voyager Was CNOSEN............cuuuuiiiiiiiieiiiiii e e 5
3 SUPEIVISON AESIGN. ..ttt ettt ettt ettt e e e et et e bt e e et e ee e et e e e e e e e s s 5.
3.1 DESIGN SCNEMIE. ... ittt et e e e e e e eaeees Deeenn.
T U ST g [0] (=] o =Tt PP G...
3.2.1 Online Graphical User INTEIfaCE...........uuuiiiiiiiiiieiei e 6
2 I I 1Y = 1 VAT T o PP 7
3.2.1.2 ACHVILY VIBWE ...ttt ettt ettt e e e e et e e e e enes 8
T NG B O] o (o T I =T TSP PP PPUPPPPPTTN 9
3.2.2 GUI for configuration deSCIPLION.couuuuiiieiiiiiiie et eeneanae 10
3.2.3 Offline ANAIYSE TOOL. .. ccuiiieiiie et e e e eaen e 11
4 USING SUPETVISOI 8S ENUTUSENuieeiiiitii e eee e ettt e e ettt e e e e e e eesb e e e e e eeaai e e e eeeeen 12.........

4.1 Start the whole System from SCratCh...........cc.uiiiiiiiii e 12

4.2 CoNnfigure the SPV.NI.. ..o 12.........

4.3 EXErCISE the GUI.....iieiiie et e e e 13.....

5 Using the SUupervisor as @ deVEIOPET..........oii i T 1

5.1 Package deSCIIPLION.ccouuieiiiiee ettt e e e e e e et e e e eaan e eeees 13.......
5.1.1 SPV PACKAGE. ... ettt et e e e e aee 4.

SN I O I g P T (=l o = od 1= T = 14
SN O 1 o = Tox 1= o TR 15
SR G B To (= oL A o = Tod &= T = PRSP 15
5.1.0.4 EVENE PACKAGE. ... ceee et 17
5.1.0.5 ULIl PACKAGE. ... et 17
5.1.2 XML PACKAGE. ...ttt et e e et e e e e e ee e 17.........
5.1.3 def PACKAGE. i 17.........
5.1.4 DE PACKAGE.unieiiii e 17.........

5.2 Supervisor component synchronisation : EVENt—DIriVeN..........ccccoooeiiiiiiiiiiiieeii e 17

5.3 PrOXY QENEIALION.uiiiiiii et e et e e e et e e e e et e e e eaan e e 19......

5.4 Implementation ENVIFONMENT.ui it e e e e e et eeeea e eera e e 19

6 Online software / EF INtegrationoooieuiiiiiii e 20........

6.1 OVEervieW Of OrganiSAtiON.coiiuuiiiiiii et e e e e et e e e e e e eeaa e 20

6.2 1teMS fOr @XCNANGE ... e ea o 21........

OGN 1] o] (=10 0 T=T 01 c= 11 o] o FO PRSPPI 21......

6.4 RUN EF With DAQ. .. oot e e e e e eee 22
6.4.1 Start EF frOM SCIIPt. ... et e e e et e e et e e e eaa e e e eann s 22
6.4.2 Dedicated tools for iNntegration teSt...........viiiiiiii e 23
.. 24
R B A O 1 o7= 1 o To [] £ PPt 25.......

FARS) (=] L o] o] 01T g (=SSP 25.
8 REIBIBICE. ... ettt et e et —— 27
Appendix 1 : Configuration fil€ ... 21......

3 I 2]S 27

XML configuration file (an @Xample)........c. i 28

1 Introduction

The Event Filter (EF) is the last element in the DAQ chain before events are sent to permanent
storage. The design of this element is described in a paper presented at RT99 conference [1]. The
hardware configuration and the implementation of event data flow are shown in Figure 1 and
Figure 2.

—

Event Flter
Supsrvizor

I

?i_ @Frosia

node:

Figure 1: Hardware configuration

Everd type saring

Distributor /@/E‘b ks 1@ e———
?

v Loeal osllsstion ol

E}f Eulactad oo

F Ghodal collsstizn ol
ol valeciwd svantx

- fa difsren! nodes

@ @ Distribuien o dilleren
L g 5 PreCsning moke

Preciing ej) fiy

Tasks Q)

Collactor

Figure 2: Event data flow implementation

This document describes the design and implementation of the supervision of a PC-based EF.
The Supervisor must fulfil the following requirements :

Operation of the dataflow and the supervision must be totally independent, i.e. a crash of the
supervisor should not affect the dataflow, and conversely.

Platform, operating system independence, to cope with Event Filter’s heterogeneity
Event data flow independence for new technology and future development

Scalability, which means that the Supervisor must be capable of handling different sized
configurations, from one PC to several hundred PCs

High degree of flexibility, to adapt to different architectures and implementation.
Easy maintenance
Robustness
Remote control and monitoring
Provide archiving means via access to a database.
The main functionality of EF Supervision is described in [2].

2 Technology Choices

The Java Mobile Agent technology has been chosen to implement the above requirements. The
Supervisor is built on top of the ObjectSpace Voyager Core Technology, a Java Object Request
Broker. All control functions and monitoring functions are performed by different types of Java
Agents.

We summarise here some interesting features of Java Mobile Agents and of Voyager. A complete
evaluation report can be found in [3].

2.1 What a Java Mobile Agent system looks like

The Java Virtual Machine and Java’s class loading model, coupled with several of the Java
features, among which serialisation, remote method invocation, multithreading, and reflection are
the most pertinent, have made building mobile agent systems a fairly simple task.

Java Mobile Agent systems have a number of key characteristics :

All Java Mobile Agent systems provide an agent server, which is a contact point on a given
machine (see Figure 3). Those server objects act as warehouses, or workplaces into which
agents move, and in which agents act. A server provides a means of hosting and managing its
own agent in an environment that is secure from malicious agents.

Agents can migrate from server to server, carrying their state with them. After moving into a
server, an agent becomes a local user, and it can do everything that a local user can do, e.g.
get system resource information (process, disk, memory, CPU, network...), create/ delete
processes, make local communication with process ...

Agents can load their code from a variety of sources. In general, since all the agent systems
use a specialised version of the Java classloader, they can load Java class files from the local
file system, the Web, and ftp servers.

They are 100% pure Java. This means that they should run on any computer with a compatible
Java runtime

o 2
@)

v

MAS:- Mobile Agent Server -

Figure 3: Mobile agent principle

2.2 What is Voyager and why Voyager was chosen

“ObjectSpace Voyager Core Technology” [4] is an advanced, 100% Java Object Request Broker
(ORB), based on the Java language object model. Voyager 3.0 contains the following features :
remote—enabling a class; remote create instance of any class and obtain his proxy; dynamic class
loading; , remote message (one—-way, sync, future); multicast; remote exception handling;
distributed garbage collection; dynamic aggregation; support for IDL, IIOP and RMI; mobility —
move any serializable object at runtime from one virtual machine to another; support autonomous
mobile agents; activation of objects persisted in any kind of database; applets and servlets;
universal naming service; publish—subscribe; thread pooling; enhanced security manager;
possible for installing custom socket such as SSL; J2EE JMS compliance.

We decided to evaluate this framework for the following reasons:

Three things in one, Voyager supports three types of communication : point-to—point,
client/server, agent—based

Easy of use

Good performance

Very good scalability

Small (Voyager core classes are only 763Kk)

Many facilities correspond to the requirement of the supervisor : space scalable group
communication, publish/subscribe, event & listener, object persistence, integration with
CORBA.

possible use as internal message server
3 Supervisor design

3.1 Design scheme

The design scheme is shown in Figure 4. There are 3 levels of monitoring : PC tool for system
level supervision, Mobile Agent for event data flow control and monitoring, offline analyse tools
for monitoring data archived in a database

e]
Liwwnow

=]

|

1 " R A ¥, -

Event

5

Figure 4 : Design scheme

3.2 User Interface

3.2.1 Online Graphical User Interface

A Graphical User Interface (GUI) was implemented in such a way that it can run in application
mode (with a direct access to the agent server) or applet mode (via the Web); the same GUI can
be used for monitoring and control and can run either in standalone mode or over the Web.
Several copies of the interface can run at the same time, but only one is allowed to perform the
control task. The agent server notifies all running interfaces when the EF status changes. Figure 5
illustrates how commands and status requests can be sent from the Control Interface to remote
nodes by mobile agents and how status data is collected and returned to any monitoring interface.

[T eou fwa

Figure 5 : Control flow

The GUI has multiple functionality, including : online histogramming and plotting; different
viewers to display the entire EF hardware configuration and event data flow structure; control of
usage of archiving database; possibility to switch on/off the database and change the rate of
monitoring data collection; possibility of add/delete process at runtime; modification of some
dataflow parameters; display an agent’s travelling status via an agent itinerary window.

A working GUI is shown in Figure 6 which contains 3 basic windows : the Main Window
(Supervisor), the Activity Viewer, and the Config Tree. The detailed functionality of each
window is described below.

B Acthiy Vieser -2 X

Bapin) pdareMaads Hasngs ramheleo
Toial Frocaunss 1S
ralinked FiDogd e
Salutidd Fidceskin @ B
Cmiey Tirms ; B85
oAt Fracees_ i BET cpul rthroaghpeoin L30e] inCeanze OCCEpRNCE EEFINEET
elfary Fabl L P11l I 1] 4 1495 = 1 =
effarL L aTl1.2 InG] 4 13 1 |
atfdmd Fbllm ST0 0.1 |10 1] ri] 13t o 1 I
135 1
135 1} 1
Pansifnds Ve [CossreiTosiy SpecisiToole O ODesfiomge BnosusiSixie 135 1 =
LN Fafins ”MII:I -
ELi> == mamng - EE [origyraion Tres =
TT A HOAL O _COMIG_CHE TR a PRRTEY] Srar Un et
= Y = b 8 Hirde Trachinis FapT s Frakigin
. m 73 ™
infect in =] sl FLAET E
L S L 2 1
injeet Off ¥ mengg i L]
e aubfa 1
Shuidaws T
auhf
shundews Clack ik
- ubfl
Hun Stal aubil
Coaflg slaiua ulbfl
Farn I #r
Coailig hEsE | 48 - L P " 3
an :.|: hoar - 4l 1 :l:':" = e
g ety S P L T ofios AL
conlig bmk ukFo
[T L T auhf
aubf
b
&= siva: a
=] pTEEE i
=] T
= cifgia]
= pffa3a 2
o — Ll -

Figure 6 : Supervisor GUI

3.2.1.1 Main Window
TheMain Window (Figure 7)consists of three parts:

Control panel (top right): this panel allows to send commands to the Farm (partition) in
standalone mode

Run status panel(top left): the status of execution of a command is displayed in this window.
As an example, when “Start Up Check” button is pressed, an agent goes into EF, checks all
components and shows the result in this panel:

“<STANDALONE_CONFIG_CHECK> ==> over (194/195)"

This means that there are 195 processes in the config file, and 194 are presently running

Config status panel(bottom left): this panel displays the summary of config status, including

the number of hosts and tasks in the configuration, the number of running hosts and tasks, bad
task name if any. In Figure 7 the panel shows one bad task named subfO_pt_034_0_2 at host
eff034.

Menu bar of the window provides extra functionality, e.g.

PanelModeallows to select the mode of the main window : Standalone, Combine, Combine
be, Combine df. The differences between those modes are described in section 6.4.2.

FromControlTools, the user can pop up secondary windo@snfig file selector,
Dataflow param viewer, Partial reset panel ... When the user activateSf§ autotest”, the
Supervisor sends ping agents at an adjustable time intervalgekclean command Kills all

7

components of EF dataflow.

« SpecialToolsused for supervisor functionality control, includes : internal message dump,
native command panel, activate/deactivate supervisor debugging, reload supervisor init
parameter, reconnect master ...

- DataStorageallows to connect/disconnect with persistent data storage

. BeTools allows to make test with Online Software, include : send status, send EF info,
change patrtition, set shutdown option ... see section 6.4.2 for detail.

PanelMode View [|ControlTools SpecialTools [DataStorage BeTools

Control
i | Load Config |
<KILL> == starting ...

<STANDALOME_CONFIG_CHECK> ==3 oyer (194;135) Start Up

| Start Up Check |

Inject On
Inject Off

| Shutdown |

Run status

[»

| Shutdown Check |

1

Run Stat
Config status

config host : 48 Rum & 1
running hast : 48
__________________________ cf'g @ cfgexml
config task : 195

running task : 195

[»

config host : 48
running host : 48
config task : 195
running task : 194
bad task name : [subfO_pt_034_0_2@eff034]

Figure 7 : Main Window

3.2.1.2 Activity Viewer
The Activity Viewer (Figure 8) displays monitoring data given by each dataflow component in

the system. Typical monitoring data is the total number of events having passed through the
component, input/output FIFO occupancy, etc. ... Data is displayed in form of a swing table. The
following facilities are available from the menu bar :

« Get all value (manual operation)

- Get all value (automatic operation with an adjustable time intervals)
« Get value for selected components (manual/automatic operation)

- Display histogram built from the current values.

Basic [|UpdateMode HistogramSelect

Total Processes : 195
Unlinked Processes: 1
Selected Processes: 0
Delta Time : 185

Host [Process | reject [cpu [throughputin...] inEvents | occupancy | connect |
effo7l subfl_pt_071.../100 4] 24 105 4] 1 1=
eff071 subfl_pt_071... /100 4] 24 107 4] 1
effO70 subfl_pt_070... | 100 o] 25 106 O 1
effO70 subfl_pt_O7C... 100 o} 21 105 a 1
eff07 0 subfl_pt_O7C... 100 o] 25 105 Q 1
effo7o subfl_pt_07C... 100 4] 25 105 O 1
meonare0l subfO_dl O 8] 2076 12238 17 1
meonarc0l subfo_dz_0 o} o] 1036 6119 E7 1
monarcOl subfo_dz_1 o} o] 1040 61139 65 1
maonare0l subfo_cz o] o] o] o] o} 1 [
maonaredl subfl_dl o) o] 2155 9752 15 1
monarchl subfl_dz_0 O 8] 1076 4876 68 1
meonarc0l subfl_dz_1 o} o] 1080 4576 B& 1
monarc0l subfl_c2 o} o] o] o} o} 1
effoz9 subfO_pt_039... /100 o] 23 128 Q 1
eff039 subfO_pt_039... /100 o] 23 127 Q 1
eff0329 subfOo_pt_039... /100 4] 15 129 4] 1
eff039 subfO_pt_039... /100 4] 19 131 4] 1
eff038& subfO_pt_03&... 100 o] 12 128 O 1
eff038 subfO_pt_03&... /100 o} 23 127 a 1
effose subfO_pt_03&... /100 o] 12 131 Q 1
effo38 subfO_pt_03&.../100 4] 15 128 4] 1
eff0629 subfl_pt_069.. 100 4] 20 1086 4] 1
eff0E2 subfl_pt_069.. 100 o] 25 107 O 1
eff0Ga subfl_pt_069.. /100 o} 20 107 a 1
eff0Ea subfl_pt_069.. /100 o] 25 1a7 Q 1
effos 7 subfO_pt_037.../100 4] 23 128 4] 1 -
eff037 uhfd nt 037 100 L] 23 128 0 1 bt

Figure 8 : Activity viewer

3.2.1.3 Config Tree

The Config Tree (Figure 9) gives a global view of the farm configuration based on the config
file. Configuration description is described more precisely below.

This window displays the tree structure of configuration (sub—farimost — process) and their

status. When the supervisor detects a dead process, the appearance of the corresponding line (the
line subfO_pt 034 _0_2 in fig 9) is modified, several parts of the line are changed in value and in
colour. To highlight the problem, the parent lines of the dead process (eff034, subfO, EFroot) is
also modified. the column “SubTree” shows that eff034 machine has 4 processes in config and 3

are still running, subfO has 25 hosts in config and 24 have normal status, EF has 2 sub—farms in
config and only one is working perfectly.

To each line is associated a pop—up menu which allows the user to start/stop any part of farm
during run time.

Masg Trachigis sabTree Frakli e

P R T

TR Y
bR xaai

DGOO0LOLOOOCLOODGOO0DN

TIFRFERTIREEARIRETTRRERY
E R

Figure 9:Configuration tree

3.2.2 GUI for configuration description

The configuration of the Farm is described in a XML file following the DTD (Document Type
Definition) file displayed in Appendix 1

This XML file describes all the details of the farm, giving for every sub—farm its name, the hosts
for the SFI and SFO components, the executable to be run by these components and the list of
nodes involved for processing. For every node, the paths to the directories containing the binary
files and the required information for the EF naming service are given. Finally, every component
running on the node is described. The parameters of the different components are given in the
“‘command line” given by the “Exec” attribute.

An user interface written in Tcl/Tk conveniently allows the generation of the XML file. It has

been separated in two different processes. The first one (Figure 10 :)allows to modify all the
basic parameters of the farm. It is intended to be an "expert" interface. The second one (Figure
11:), more dedicated to the end users, allows to modify only parameters relevant of the
application, such as the full path of the processing tasks to be executed for the filtering operation.

10

= | Farm parameters % 1.0 {.configaml) E=E=1ES
View Load
Mame server |effd01:7200 haster machine |effo0 Gl machine |eff001
of subfarms |1
Geometry file |GeomRun.cz © Log level Holog | Retl og level Nulug_: [WetLog host |maracuja
Skl exe |sfi SFO exe (sfo
O1exe [D1dZ2 D1 depth |15 D2 depth 5 LUse DGE n Use D321 yes
CZexe |Fifo CZ depth |5
FIFC exe [Fifo PT input depth 5 PT oufput depth &
Sub-farm 0
Processing nodes
Generic name e # digits for node numbering |3 PMode enumeration [3-10
EF path |‘hamesefuser/dataflow
Other machines m
Effl]l]1_ effi02 |
SF| effool | SFC effoot | Disiributor ffoo1 | Collector effon1 | Allon same

Figure 10 : User interface for basic farm parameters

=| config.ml

File Load

View

General Information {Read only)
eff001:7200 Rkdaster machine

eventtype |2

rejection (35] |0

MName server effont = G machine eff001

Run number @l 1

Exec event type £0 |PTD # iter min |1 # iter max |1 seed |1

Exec eventtype #1 FT1 rejection (35] |0 # iter min - |1 # iter max |1 seed |1

Sub—farm 0

Hachines (Read only)
SF| effoo1] SFO effool| Distributor effool| Collector effoo1]

Processing Tasks

W effd03 =2 PT for type #0 1
W eff00d 2 PT for type #0 1
W effd0s 7 PT for type #0 il
W efflDb 2 PT for type #0 a
® effd07 7 PT for type #0 i
W effl0g 2 PT for type #0 1]
o eff00g 2 PT for type #0 1]
_effild 2 PT for type #0 Z

PT for type #1
PT for type #1
PT for type #1
PT for type #1
PT for type #1
PT for type #1
PT for type #1
PT for type #1

Figure 11: User interface for farm applications

3.2.3 Offline Analyse Tool

An histogram package and a plot facility have been developed in parallel for online plotting and

11

offline analysis. The histogram package contains 1D and 2D histogram creation and filling
functions. The plot facility gives the possibility to display histograms in several manners :
histogram with/ without statistics, runtime plot, slide. The data source can be an XML file, a flat
file , a histogram saving file or a database (see Figure 12).

Cin_k80 | [+ maim § Lo | (3K |l A e wru T
B e [T [2 i
WIEI_‘ I ko] - i
&0 0p [+ cenc [+ o —— ¥
_____________ _ Mkl Tk FH e 4
e ey |
i
o Jys e T 128 o
1 [T 1T] T E T
LT Fewr] Taws cE i .
Ol EE = | Py | Pe— =
[slfren Sf—eed s | 7
D = Disly =g et — T - T <
[T [Fow i eors TR e 3 = T Bm mse pew @sa aef . = o
Ham - F—_— e . B [fask [i [MdE Fediees W [ey 10 2
= I LT {Toan B L BT BN e B PR S O Y ey
BT s F T LEEHN (Aera e il - Ol 2 T ana
el E ST O T I fasiwen [F2 S iis [cu
dghorm Fricpees Tawis s
LI 1T | | . =
§owr o T e T
i 5 el T T | LRS-
r
v i
|
1. i .} i i, g i iE N |)
I-l-il'\- it | e | P cfewress parin 0 [JacCtd - Bic & Do
r 1 '
i o i [i e Bl [sromon |Gl (oo Bl | L o emn oam TR 1
B ¢

Figure 12 : Online analysis package

4 Using supervisor as end-user

For end-users, it is important that on one hand the agent framework should be as transparent as
possible, and on the other hand that it is still possible to act upon it if desired. We try to follow
this principle in the current implementation.

4.1 Start the whole system from scratch

Starting the system step by step :
startVoyager for each host : done by scriptartVoyager
startSupervisor Master: done by scripgPVmaster andSPVstart
startGUI : done by scripgPVshow

Typically, GUI andMaster are running on different hosts.

4.2 Configure the SPV.ini

The Supervisor has a property file. Several parameters are predefined in this file, some of them
can be changed at run—time, e.g. :

* hostsPerAgent : defines the degree of parallelism of the supervisor. It will play a role in
farm start phase, and in dataflow data collection phase.

» poolingTimer : gives the pooling timeout

12

The most often used properties are described in Section 7.

4.3 Exercise the GUI
See above description about GUI.

5 Using the Supervisor as a developer

5.1 Package description
The system hierarchy is shown in Figure 13. The package is composed of 4 parts :

- bridge for Atlas online software (so—callbe sub—package) : implemented, see below for
detail.

- xml parser (so—calledml| sub—package) : implemented, see below for description.
« core supervision (so—callegdv sub—package) : implemented, see below for detail.
- Constant definition (so—calledef sub—package)

Figure 14 shows the implementation view of the system.

Figure 13: Package hierarchy

13

Package | Content {classes)
I
ef
—— §pV— |
— agent | agents
— masier
config, | configuration management
—— rc | run control
ho stel agent and user interface control
status | supervisor status
——db database connection
—— msg | internal messaging
L dfstatus | dataflow status
i I
— tc main window
—— table | data flow info display
—— tree config tree display
— ancillary .- | ancillary frames
|—— hbuilder hplot | online histog ramming /plotting
L util util classes for this level
I
—def constant definitions
I
— event | internal event and listener
— util | util classes for this level
—— xaml | clazzes for XML parser
—— be | clazzes for backend integration

= " hostel @

Y

GU

- =
[
L=
- [
» uw
msg
/to Online
Online Software
agent communication

Figure 14: Implementation view

5.1.1 spv package

Spv contains many components, each of them doing a well defined, limited job.
The package is also composed of 3 sub—packages :

« agent contains all agent classes

« master contains all master service classes

« ui contains all user interface classes

5.1.1.1 master package
master is the core component of the supervisor.

This package must provide the following functions : management of different kinds of agent;
define the task and itinerary for each agent; retrieval of the results after having finished the job;
management of abnormal behaviour of agent; management of different copies of GUI, each of
them being able to perform separate monitoring or control; basic functionality of a control
system (run control, process manager, message handling, monitoring ...); provision for future,
possibly unplanned, system extensions.

In the current implementatiomaster is divided into 7 sub—packages :

- hostel : receives commands from various GUIs, sends dedicated agents to the Farm; retrieves
information from agents when they have finished the job; sends information back to GUIs.

- config : for farm online configuration storage.
« datus: is a set of classes for keeping various status of system
« rc:is the “run control” of farm. It receives the command from local control panel in case of

14

standalone operation and from higher level control process in case of integrated operation;
sends dedicated agents to the farm; reports command execution status to command sender.

dfstatus : performs acquisition of dataflow status

db : an add-in package, run as bridge between hostel and a persistent database for monitoring
data storage. Data connection is taken in charge by the agent, The persistent data will be used
for further "offline" analysis.

msg : receive message from various senders. The message can be then filtered and analysed by
different tools.
5.1.1.2 ui package

All classes concerning graphic user interface are put into this package. The most often used
classes are:

SVpanel : main window

CfgSelector : config file selection

ActivityViewer : dataflow activity data display

ConfigTree : farm configuration status

Reset : start/stop any part of farm

DataflowParam : dataflow component parameter display/update
NativeCmd : use native command for different platform

5.1.1.3 agent package

This package contains all implemented agents classes in supervisor. Figure 15 shows the class
hierarchy of the package.

GenericMonfgent

L CmdAgent
L UDBAgent

Generichgent

|— RCconfigureigent
|— RCinjecthgent

Figure 15: Class hierarchy

15

There are two distinct agents : monitor—agent inherited fB@mericMonAgent , and control-
agent inherited fronGenericRcAgent . The function of each agentis :

- CmdAgent : carry users’ command to target machine, execute the command, carry back the
result if necessary.

UDPAgent : go to target machine, send a UDP request message to dataflow component, go
back with query result.

RCconfigureAgent : start process on a remote machine.

RCinjectAgent : perform injectOn, injectOff command, which corresponds to SFI start/
stop.

RCshutdownAgent : stop process on a remote machine.

UDPRcAgent : go to target machine, send a UDP request to dataflow component, go back
with query result.

In the Voyager toolkit, any object can become an agent at condition of
1. it implementgava.io.Serializable interface;
2. it usesAgent.of(this) statement.

In our case, these two conditions are seGbypericMonAgent andGenericRcAgent
Only one method has to be written for the final class¢Brogram() . We take
CmdAgent.java (see below) as an example to show how agents work.

The job ofCmdAgent is to carry users’ command to the remote location, perform the action (via
exec()), get result of execution and finally go to next location. dtRrogram() method
defines what to do at each remote location when the agent moves into that node. The first thing
the agent has to do is to determine what type of OS is actually runningeXi(e call at the
end of the method lets agent go to the next location defined in the agent’s itinerary list.
public void atProgram() {
/I get local information
try {
Runtime runtime = Runtime.getRuntime();
String osname = System.getProperty('os.name");
Process proc = null;
if ((osname.equals("Solaris")) || (osname.equals("Linux")))
proc = runtime.exec(unixCmd);
if (osname.equals("Windows NT"))
proc = runtime.exec(winCmd);
I/ waiting for result
InputStream input = proc.getlinputStream();

BufferedReader in = new BufferedReader()
new InputStreamReader(input));

String s;
while ((s = in.readLine()) != null) {
// do something

}

} catch(java.io.lIOException e) {

16

System.err.printin(e);

next();

5.1.1.4 event package
Internal events are defined here. See Section 5.2 for event—driven description.

5.1.1.5 util package
All util classes used in this level are put in the package.

5.1.2 xml package

As we have described before, EF configuration file is in XML format. To read the file into the
supervisor, we uséoyager dxml facility andIBM xml4j parser .

dxml is a toolkit used to create a set of Java classes based at a DTD file. The classes can then be
used to get data from a XML file. This package actually contains the classes created from
cfg.dtd

5.1.3 def package
This package contains definitions of constant used by the Supervisor

5.1.4 be package

This package contains bridge—classes for Online Software / EF supervisor integration,. It is
described in more details in section 6.

5.2 Supervisor component synchronisation : Event—Driven

Like other control and monitoring systems, we had to decide how to put components together.
There are different methods to synchronise components in general : method call, messaging,
event, ... On can choose one or another, or combine, depending on the system complexity. In the
spv, the relationship between components is complex. All relations need to be implemented
correctly, and documented clearly for maintaining the current system and for future extension.

We decided to use "Java event" in most of cesgent—driven synchronisation gives the system
an extra flexibility to arrange components’ dependency, to ease unplanned extension which is a
very important feature for a prototype with which one has little experience.

To make the components work together, we have defined several events. The components use the
events to communicate with each other. Each component can be the sender of some events, the
receiver of other events. We present the inter—-component relationship by a matrix (Figure 16 and
Figure 17) which determines the component dependency in the initial design. Because of the Java
event-listener mechanism, adding new components and new events, re—arranging their
dependencies becomes a simple game. The matrix gives the developer a global view of the
system dependency, allowing to make more easily extensions.

17

Event Config' Rc | Db | Moni |Anomaly | Spv | Internal | Ctrl | Run | RunCmd
Components | &l | Step Stat| Stat Info, Msg |Mode Cmd Ack
S S S S S
hostel
R R R | R R
: S S
config
R R
S
status
R R R R R
S S S S
rc
R R R R
S S S
db
R
S S
ms
J R
S S
be
R R R R

Figure 16: Component-Event matrix foraster andbe

Figure 16 describes Component—Event pairsriaster package antle package, shows how
components communicate with each other. As an example, componégt Sends the
ConfigStat event, which will beReceived by componentstatus , rc andhostel

The same mechanism is also implementedifggackage (see fig 16). As an other example ,
when user changes Ul from control mode to monitoring mode&SRpanel componentends a
PanelModeChangeevent which will beReceived byCfgSelector , DataflowParam and
Reset . WhenSVpanel Receives a new report from an agenf§ahdsNewReport event to the
other windows Dataflow Param , ActivityViewer andConfigTree

18

Events| New | PanelMode | ConfigTree | DataReady
Components Report| Change Select
SV S S S
panel R
Cfg S
Selector R R
Dataflow S
Param R R R
S
Reset
R R
Activity S S
Viewer R R R
_ S S
ConfigTree
R R
_ S
Hbuilder
R R

Figure 17: Component-Event matrix for GUI

5.3 Proxy generation

To build a distributed system, each class which will be contacted by a remote process has its
representative in the remote system, callpdoay. Depending on the communication tools used
by components (CORBA, rmi, Voyager ...), the way to construct proxies is different. Voyager
provides two methods to construct a proxy :

static : througipgentool
dynamic : through dynamic proxy generation system to generate proxy classes at runtime.

By default, Voyager creates proxy classes based on the interfaces the class implements, i.e. a
remote deployment clags<X.java must have its interface class call¥XX.java which

will be used for dynamic proxy generation. The advantage of interface—based proxies is that
when using dynamic proxy class generation, Voyager will not require the implementation class to
be present. This can be desirable for security reasons, to reduce remote classloading, or to be
able to deploy a smallgar file on the client.

5.4 Implementation environment
Platforms : Sun Solaris 2.7, Windows NT 4.0, Linux RedHat 6.2, TruUnix64 4.0F (Alpha)

19

Packages :
Java : jdk 1.3
Mobile agent system : Voyager 3.3

6 Online software / EF Integration
The proposal of the integration has been published in [5].

6.1 Overview of organisation

A "2 component bridge" was inserted between Online Software (OS) and Event Filter Supervisor
(EFS). Figure 18 shows the overall organisation in the case of a single farm.

Online Software " Bridge - Event Filter

Dedicated interface software Lcln;:FaI
publish —— subscribe **
root [glempty EF » [Communicatio -)
ctrl ctrl ™ o - | server | Supervisor
F'l subscribe publish
— 1S |le—
— MRS =
| DB
| 1Gul
use Online Software packages

F Y
Y.

Figure 18 : Integration overall scheme

The first component iEFctrl, which uses the Controller skeleton of the Run Control. It provides

the essential functionality of the Online Software: the standard RC Finite State Machine,
Database access, the publish/subscribe mechanism of IS and MRS which are needed by the EF
Supervisor to synchronise with the Online Software. It communicates witRRd¢loe Controller

via the so—calleémpty Controlleiin charge of building the EF state.

20

The second component is a communication server which provides a bidirectional transfer
mechanism for data exchange between OS and EFS via a publish/subscribe message model. It
can be a CORBA server or a Message Oriented Middleware (MOM). The EF Supervisor uses
this component to receive Online Software data (commands, IS information,

data (status, messages, ...). EF monitoring data, even in a complex form such as histograms, can
also be sent to the the Online Software Integrated Graphical User Interface (IGUI) by this means,
provided the latter is able to handle such data. For the phase | integration, we have chosen to use
the Information Service package [6] in order to implement this server.

6.2 Items for exchange

Presently, the following items are exchanged between OS and EFS. Other items can be added at
a later stage :

RunCtrl.EF_Ctrl1_command ——-> contains DAQ rctrl command
RunCitrl.EF_Ctrl1_efstate ———> contains rctrl cmd execution result
RunCtrl.EF_Ctrl1_dbname —-—-> contains EF configuration file name
RunCtrl.EF_Ctrl1_info ———> contains EF general status

6.3 Implementation

As described in Figure 13, all integration classes are grouped intaethackage. This piece of
code listens to events sent by the other component and sends events to the related component.

Currently the following 5 events are used :
RunCmdAckEvent
ConfigStatEvent
CtriModeEvent
InfoEvent
RunCmdEvent

The event relationship is described in Figure 16, except for InfoEvent which is sent by Online
Software class.

Figure 19 shows the interaction sequence related to any of the events :
1. be package subscribes to RunCtrl.EF_Ctrll_command and waits for an event
2. Bridge sends nf oEvent
3. be package getsnf oEvent then send®unamiEvent with parameter
4

. rc package receiverunGrmiEvent , performs the corresponding action then sends
RunCGrdAckEvent .

5. be package geteunCnmdAckEvent andpublishes it tdBridge

21
) and send EF

; EF supervisor

> < i >
\ \
1 \

\ "be" package 1 "rc" package

\
<41 Subscribe Info |
\

InfoEvent Ly—»
| \
| \
i RunCmdEvent —3 L
| \
\ 4% RunCmdAckEvent
\ 1
| . ‘
<——>— publish Info |

Figure 19 : Interaction sequence

6.4 Run EF with DAQ

6.4.1 Start EF from script
The EF processes can be started from outside of its context. The following steps show how to do
it :
1) Install in each EF machine 3 packagdataflows monitoringandscript. These files can be
obtained from the tar file onttp://atddoc.cern.ch/Atlas/EventFilter/activity.html

To avoid unnecessary path and classpath problems, it is better to install them in the user home
directory. On thénxatd24 machine, currently used for EF tests at CERN, the files are in—
stalled in the directorfjhome/effuser . The password of the accoweffuser can be

obtained on request to Z. Qiagign@cppm.in2p3.fr)

2) Choose a host, later referred as the "EF Entry Point (EEP)" which is raisnangl is
reachable from the outside. Do the following two preparation steps sctipedirectory of
this machine

— prepare the EF configuration file using the dedicated user interface
EFDB .tcl ("expert" to prepare the configuration database)
EFConfig.tcl (to finalise the configuration file)
— make EF setup files using the command :
makelist config—file—name
This tools creates a set of files which will be used by the different scripts :
ef_nshost : EF Naming server running machine

22

ef_nsport : port number used by Naming server
ef_master : EF Master running machine
ef_gui : EF supervisor gui running machine
ef slave : EF dataflow machine list
Note : makelist ~ will be executed only if the EF is stopped (stsdte, see below).

3) From any outside machine, start and stop the EF processes using following rsh commands:
— rsh EEP script/play_ef_start partition gui_display_address
— rsh EEP script/play_ef _stop

Figure 20 shows EF start—up sequence ctfagure 21 shows an example of play_ef_start
log screen .

EF has only two statesn andoff , this information is created Ipjay_ef start and
play_ef stop, and stored in thef_stat file.

6.4.2 Dedicated tools for integration test

Some tools have been made available to ease the integration task. They can be used from the
Main window menu (see Figure 7).

PanelModeallows to select the mode of the main window : "Standalone", "Combine", "Combine
be" and "Combine df". The differences between these modes are the following :

. Combine: dismiss all local run control command, dismiss local Sfi/Sfo

. Combine be: dismiss all local run control command, enable local Sfi/Sfo, used for Back-
end integration test.

. Combine df : enable local run control command, dismiss Sfi/Sfo start, used for dataflow
integration test.

BeToolsmenu allows to :
- send individual EF status to Backend
- send EF information to Backend (to be defined)

« change partition without complete stop of EF, can be used when Backend restart or using
different partition for test ...

« switch the shutdown command on or off. When it is switched off, EF ignores "unconfig—
ure" commands sent by Backend and no process will be killed.

23

EF running

Check EF status

EF stoped

Start Naming server

v

Start Master
Start Gui

v

Start Slave
k

Check Slave

All slave running

Has stoped slave

Put badhost into
ef badhost file

%

Exit

Figure 20 : Sequence chart of play_ef_start script

24

[marsol3] play_ef_start my_partition marsol3
do EF start
NServer: no process killed
[1] 8215
marntr2
voyager: no process killed
java: no process killed
[1] 28262
marntrl
voyager: no process killed
java: no process killed
[1] 11506
voyager: no process killed
java: no process killed

[1] 8231

[2] 8272

[2] - Done SPVstart my_partition >& ../script/log_start_master_SPVstart
EF DISPLAY : marsol3:0.0

[1] 8325

start Voyager slave checking ...

check address : marntr2:9100
check address : marntr1:9100
at tcp://marntr2:9100 Linux
at tcp://marntr1:9100 Linux

Running slave number : 2/2

Figure 21 : play_ef_start screen log

6.4.3 Critical points
The following points should be carefully considered :

1) DAQ cosnaming reference IPC_REF_FILE must be correct, this reference is defined in
~/monitoring/envm of the EFS master.

2) The full path to the EF configuration file must be stored into the DAQ configuration database.

7 System properties

Supervisor uses a set of system properties to control itself, including control panel presentation,
agent behaviour, integration parameter, etc... All properties are stored gpthiei file in the
~/monitoring directory. The table below shows the list of properties used to set the
configuration.

25

Property Possible value Description
SPV.master - SPV master address
SPV.defaultControlMode STANDALONE See section 6.4.2 for mode

COMBINE description
COMBINE_BE
COMBINE_DF
SPV.defaultShutdown true See section 6.4.2 for switch
false description

SPV.hostsPerAgent

Any positive number

This parameter defines the
degree of parallelism of the
supervisor.

=1 : fully parallel operation
= 99999 : fully sequencial op

The value will play a role in
farm start phase, and in
dataflow data collection phase.

SPV.poolingTimer

Any positive number (in
second)

When launch parallel agents
for pooling dataflow info,

supervisor set this timeout for
waiting latest agent return

SPV.configureTimeout

Any positive number (in
second)

Timeout for run control
"configure" cmd execution.
Supervisor wait the timeout
before launch check—agent.

SPV.unconfigureTimeout

Any positive number (in
second)

Timeout for run control
"unconfigure" cmd execution

SPV.stopTimeout

Any positive number (in

Timeout for run control "stop?

second) cmd execution.
SPV.dfJavalmp true Define which version of
false dataflow is to be started (Java

or C++)

SPV.javaVM

Java VM path in dataflow
machine. Only used when
SPV.dfJavalmp=true.

SPV.classpath

Java classpath in dataflow
machine. Only used when
SPV.dfJavalmp=true.

BE.partition

9]
o

Default value, can be chang
in the run time

BE.server

Fixed value, can not be
changed

26

8 Reference

[1] The ATLAS Event Filter, C.P. Best al, Real Time 99, Santa Fe, USA, Conference
proceeding#ttp://atddoc.cern.ch/Atlas/EventFilter/documents/rt99-157—-paper.pdf

[2] Event Handler Supervisor High Level Design, ATLAS DAQ-1 Note 92,
http://atddoc.cern.ch/Atlas/Notes/092/Note092-1.html

[3] Java Mobile Agent for monitoring task, ATLAS DAQ-1 Note 78,
http://atddoc.cern.ch/Atlas/Notes/078/Note078-1.html

[4] Voyager —http://www.objectspace.com/voyager
[5] Event Filter / Online software Integration, ATLAS COM-DAQ Note 2000
[6] Online Software Summary Document, ATLAS DAQ Note 2000-

Appendix 1 : Configuration file

DTD file

<IELEMENT Cfg (Generallnfo?,Subfarm+)>
<IELEMENT Generalinfo (NsAddress,MasterHost,GuiHost)>
<IELEMENT NsAddress (#PCDATA)>
<IELEMENT MasterHost (#PCDATA)>
<IELEMENT GuiHost (#PCDATA)>
<IELEMENT Subfarm (Sname,SfiHost?,SfoHost?,SfiCmd?,SfoCmd?,Node+)>
<IELEMENT Sname (#PCDATA)>
<IELEMENT SfiHost (#PCDATA)>
<IELEMENT SfoHost (#PCDATA)>
<IELEMENT SfiCmd (#PCDATA)>
<IELEMENT SfoCmd (#PCDATA)>
<IELEMENT Node (Name,BinDir,lorDir, Task+)>
<IELEMENT Name (#PCDATA)>
<IELEMENT BinDir (#PCDATA)>
<IELEMENT lorDir (#PCDATA)>
<IELEMENT Task EMPTY>
<IATTLIST Task

Id CDATA #REQUIRED

Type CDATA #REQUIRED

Sequence CDATA #REQUIRED

Exec CDATA #REQUIRED>

27

XML configuration file (an example)

The XML file generated by the configuration GUI, which contains 2 sub-farms of 1 node each
running 1 processing task.

<?xml version="1.0" encoding="ASCII"?>
<IDOCTYPE Cfg SYSTEM *“http://atddoc.cern.ch/Atlas?EventFilter/xml/dtd/cfg.dtd">
<Cfg>
<Generallnfo>
<NsAddress>marntr4:7200</NsAddress>
<MasterHost>marntr4</MasterHost>
<GuiHost>marntr4</GuiHost>
</Generallnfo>
<Subfarm>
<Sname>subl</Sname>
<SfiHost>marntrl</SfiHost>
<SfoHost>marntrl</SfoHost>

<SfiCmd>/home/efuser/dataflow/bin/sfi sub1l_d1 marntr4:7200
/home/efuser/dataflow/geo/GeomRun.cz</SfiCmd>

<SfoCmd>/home/efuser/dataflow/bin/sfo subl_c1l marntr4:7200</SfoCmd>
<Node>
<Name>marntrl</Name>
<BinDir>/home/efuser/dataflow/bin/</BinDir>
<lorDir>/home/efuser/dataflow/ior/</lorDir>

<Task Id="subl_d1” Type="fifo:d1d2” Sequence="1" Exec="d1d2 —-id_d1
subl_d1 -id_d2 subl_d2 -nbr_d2 1 -type fifo —ns marntr4:7200 —path
/home/efuser/dataflow”/>

<Task Id="subl_d2_0" Type="fifo:d1d2” Sequence="1" Exec="ps"/>

<Task Id="subl_c1” Type="fifo:c1” Sequence="2" Exec="fifo —id subl_c1l
—depth 1 —type fifo —ns marntr4:7200 —path /home/efuser/dataflow”/>

<Task Id="subl_pt1” Type="pt:01” Sequence="3" Exec="pt —id subl_ptl -type
pt —eventtype 01 —ns marntr4.7200 —path /home/efuser/dataflow-geo GeomRun.cz -PTHi 10
—-reject 50 —src subl_d2_0 -dst subl_c1"/>

</Node>

</Subfarm>

<Subfarm>
<Sname>sub2</Sname>
<SfiHost>marntr2</SfiHost>
<SfoHost>marntr2</SfoHost>

<SfiCmd>/home/efuser/dataflow/bin/sfi sub2_d1 marntr4:7200
/home/efuser/dataflow/geo/GeomRun.cz</SfiCmd>

<SfoCmd>/home/efuser/dataflow/bin/sfo sub2_c1 marntr4:7200</SfoCmd>
<Node>
<Name>marntr2</Name>
<BinDir>/home/efuser/dataflow/bin/</BinDir>
<lorDir>/home/efuser/dataflow/ior/</lorDir>

<Task Id="sub2_d1” Type="fifo:d1d2” Sequence="1" Exec="d1d2 -id_d1
sub2_d1 -id_d2 sub2_d2 —-nbr_d2 1 -type fifo —ns marntr4:7200 —path
/home/efuser/dataflow”/>

<Task Id="sub2_d2_0" Type="fifo:d1d2” Sequence="1" Exec="ps"/>

28

<Task Id="sub2_c1” Type="fifo:c1” Sequence="2" Exec="fifo —id sub2_c1l
—depth 1 -type fifo —ns marntr4:7200 —path /home/efuser/dataflow”/>

<Task Id="sub2_pt1” Type="pt:01" Sequence="3" Exec="pt —id sub2_ptl -type
pt —eventtype 01 —ns marntr4:7200 —path /home/efuser/dataflow—geo GeomRun.cz —PTHi 10
—-reject 50 —src sub2_d2_0 —-dst sub2_c1"/>

</Node>
</Subfarm>
</Cfg>

29

