%%”; ATLAS

o

HEF

DAQ/EF Prototype -1 Project
Back-end DAQ

Back-End Summary Document

Document Version: 1.2

Document Issue: Alpha

Document Edition: English

Document Status: Draft

Document ID: ATLAS Internal Note DAQ-NO0-xxx
Document Date: 16 December 1999

@ European Laboratory for Particle Physics
) Laboratoire Européen pour la Physique des Particules

CH-1211 Geneéve 23 - Suisse

A

DAQ/EF Prototype -1 Project Back-End Summary Document
16 December 1999 Version/Issue: 1.2/Alpha

This document has been prepared using the Software Documentation Layout Templates that have been
prepared by the IPT Group (Information, Process and Technology), IT Division, CERN (The European
Laboratory for Particle Physics). For more information, go to http://framemaker.cern.ch/.

page ii Draft 7

DAQ/EF Prototype -1 Project Back-End Summary Document
Abstract Version/Issue: 1.2/Alpha

Abstract

This document provides a summary of the ATLAS DAQ Back-end software sub-system which
is part of the DAQ/Event Filter Prototype “-1” project for the ATLAS experiment. The
back-end software encompasses all the software to do with configuring, controlling and
monitoring the DAQ but specifically excludes the management, processing or transportation
of physics data. The software described in this document is the work of the ATLAS back-end
DAQ sub-group including the following people:

CERN: D.Burckhart, M.Caprini (on leave from Institute of Atomic Physics, Bucharest),
R.Jones, S.Kolos (on leave from PNPI, St Petersburg), L.Mapelli, D. Schweiger, 1.Soloviev (on
leave from PNPI, St Petersburg)

CPPM, IN2P3-CNRS, Marseille: L.Cohen, P.Y.Duval, D. Laugier, R.Nacasch, Z.Qian
Institute of Atomic Physics, Bucharest: E.Badescu

JINR, Dubna: I.Alexandrov, V.Kotov, V. Roumiantsev

University of Geneva, Geneva: L.Moneta

LIP, Lisbon: V. Amaral, A.Amorim, C. Ribeiro

NIKHEF, Amsterdam: R.Hart

PNPI, Gatchina, St. Petersburg: A. Kazarov, Y.Ryabov

Document Control Sheet

Table 1 Document Control Sheet

Document | Title: DAQ/EF Prototype -1 Project Back-End Summary Document
Version: 1.2
Issue: Alpha
Edition: English
ID: ATLAS Internal Note DAQ-No0-xxx
Status: Draft
Created: 11 October 1999
Date: 16 December 1999

T Draft page iii

DAQ/EF Prototype -1 Project Back-End Summary Document
Document Control Sheet Version/Issue: 1.2/Alpha

Table 1 Document Control Sheet

Keywords: Back-end DAQ Prototype -1 Software ATLAS
Tools DTP System: Adobe FrameMaker Version: 55
Layout Software Documentation Version: V2.0 - 5July 1999
Template: Layout Templates
Content -- Version: --
Template:
Authorship |Coordinator: Bob Jones
Written by: ATLAS Back-end DAQ group

page iv Draft 7

DAQ/EF Prototype -1 Project Back-End Summary Document
Table of Contents Version/Issue: 1.0/Alpha

Table of Contents

Abstract L L Lo
Document Control Sheeto i
Table of ContentsV
Chapter 1

Introduction

1.1 Overview . Coe
1.2 Operational environment .

Chapter 2
Components
2.1 The software componentmodel1
22Corecomponents
221Runcontrol01
2.2.2 Configuration database12
2.2.3 Message reporting system12
2.24 Processmanager 12
2.2.5 Information service12
2.3 Trigger / DAQ and detector integration components 12
2.3.1 Partition and resource manager12
2.3.2 Integrated Graphical User Interface 13
2.3.3 Online bookkeeper .13
234Eventdump .13
235Testmanager .13
2.3.6 Diagnosticspackage .13
Chapter 3 Performance and Scalability . 15
3.1ComponentUnitTests .15
3.2 IntegrationTests .15
3.21play dagqscript .. .16
3.2.2 Timing measurements .1

| Draft page v

DAQ/EF Prototype -1 Project
Table of Contents

Back-End Summary Document
Version/Issue: 1.0/Alpha

3.2.3 Back-end servers .
3.3 Overview of Scenarios Tested
3.3.1 run control .
3.3.2 LDAQ emulator
3.3.3 Process Management
3.4 Test results .
3.5 Discussion of the Tests .

Chapter 4
Summary

4.1 Integration Tests
4.2 Future Work .
4.3 Back-end Software Summary

Appendix A
Documentation

Appendix B
Software Releases

B.1 Packages . .o
B.2 Package dependencies .
B.3 Releases

Appendix C
Software Process

Appendix D
References

18
19
19
20
21
23
24

25
25
26
26

29

31
31
32
34

37

39

page Vi

Draft

DAQ/EF Prototype -1 Project Back-End Summary Document
Chapter 1 Introduction Version/Issue: 1.0/Alpha

Chapter 1
Introduction

This document provides a summary of the back-end DAQ software.

1.1 Overview

This document provides a summary of the ATLAS DAQ Back-end software sub-system which
is part of the DAQ/Event Filter Prototype “-1” project [2] for the ATLAS experiment. The
back-end software encompasses all the software to do with configuring, controlling and
monitoring the DAQ but specifically excludes the management, processing or transportation
of physics data. Figure 1 is a basic context diagram for the back-end software showing the
exchanges of information with the other sub-systems. This context diagram is very general
and some of the connections to the other sub-systems have not been implemented in the
prototype DAQ/Event Filter Prototype *“-1-" project.

The Back-end software described in this document is implemented according to a design [4]
intended to satisfy the requirements defined in the User Requirements Document [3]. The
intended audience are project reviewers and developers of the back-end software. It is the
product of a ATLAS DAQ Back-end software group and is drawn from the more detailed
individual component documents.

| Draft page 7

DAQ/EF Prototype -1 Project Back-End Summary Document

Chapter 1 Introduction Version/Issue: 1.0/Alpha
data-flow Event Event
LDAQ Builder Filter
A info
msgs
status p%rr?rlﬁs
info .
cmds msgs data info
params status cmds msgs
data p%rq[ms status
ata

info omds ni]r;fgs info
msgs msgs
St params status Sttt
data

cmds

params

data
Level 2 Level 1
Trigger Trigger DCs

Figure 1 Back-End DAQ software context diagram showing exchanges with other sub-systems

Figure 2 shows on which processors the back-end software is expected to run. Note that the
back-end software is not the only software that will be run on such processors. A set of
operator workstations, situated after the event filter processor farm, dedicated to providing
the man-machine interface and hosting many of the control functions for the DAQ system will
also run back-end software. The back-end software is essentially the “glue” that holds the
various sub-systems together. It does not contain any elements that are detector specific as it is
to be used by all possible configurations of the DAQ and detector instrumentation.

page 8 Draft 7

DAQ/EF Prototype -1 Project Back-End Summary Document
Chapter 1 Introduction Version/Issue: 1.0/Alpha

The back-end software is but one sub-system of the whole DAQ system and it must co-exist
and co-operate with the other sub-systems.

Detectors

Read-Out Drivers

N
R/O Buffers

C o

T
R
G

Switching Matrix |

— [He

ARZ— N~
AZ—

+

Processo|
Farm

QOP0T TUOzZmMmXRXO>W

R
=

-
"
=

Data Storage |'>

*

oeeios L L 1 [
workstations

Figure 2 ATLAS DAQ/Event Filter Prototype “-1” architecture

1.2 Operational environment

It is expected that this environment will be a heterogeneous collection of workstations, PCs
running Windows NT or Linux and embedded systems (known as LDAQ processors) running
various flavours of real-time UNIX operating systems (e.g. LynxOS) connected via a Local
Area Network (LAN).

A great number of hardware components have to be used to provide the necessary computing
power. These will be back-end and LDAQ processors loosely coupled by local networks and
data flow channels. We assume that network connections (e.g. ethernet or replacements)
running the most popular protocols (e.g. tcp/Zip) are available to all the target platforms for
exchanging control information and that its use will not interfere with the physics data
transportation performance of the DAQ.

The ATLAS prototype DAQ system will need to be able to run using all or only a part of its
sub-systems. It will be assembled in a step by step manner, according to financial and
technical dependencies and constraints. A high degree of modularity is needed to connect,
disconnect or add new components at will.

[~J Draft page 9

DAQ/EF Prototype -1 Project

Chapter 1

Back-End Summary Document

Introduction Version/Issue: 1.0/Alpha

Many groups of people will interact at the various hardware and software levels, and so we
have to foresee a significant level of sub-system unavailability and that this shall be detected
and tolerated during DAQ system startup. Hence checking procedures shall be a concern to
detect such configuration problems. The failure of an individual component should not affect

the operation of other components.

page 10

Draft 7

DAQ/EF Prototype -1 Project Back-End Summary Document
Chapter 2 Components Version/Issue: 1.0/Alpha

Chapter 2
Components

2.1 The software component model

The user requirements gathered for the back-end sub-system have been divided into groups
related to activities providing similar functionality. The groups have been further developed
into components of the back-end with a well defined purpose and boundaries. The

components have interfaces with components and external systems, specific functionality and
their own architecture.

From analysis of the components, it was shown that several domains recur across all the
components including data storage, inter-object communication and graphical user interfaces.

2.2 Core components

The following components are considered to be the core of the back-end sub-system. The core
components constitute the essential functionality of the back-end sub-system and have been
given priority in terms of time-scale for development in order to have a baseline sub-system
that can be used for integration tests with the data-flow sub-system and event filter.

2.2.1 Run control

The run control component controls the data taking activities by coordinating the operations
of the DAQ sub-systems, back-end software components and external systems. It has user
interfaces for the shift operators to control and supervise the data taking session and software
interfaces with the DAQ sub-systems and other back-end software components. Through
these interfaces the run control can exchange commands, status and information used to
control the DAQ activities.

| Draft page 11

DAQ/EF Prototype -1 Project

Back-End Summary Document
Chapter 2 Components

Version/Issue: 1.0/Alpha

2.2.2 Configuration database

A data acquisition system needs a large number of parameters to describe its system
architecture, hardware and software components, running modes and the system running
status. One of the major design issues of Atlas DAQ is to be as flexible as possible,
parameterized by the contents of databases.

2.2.3 Message reporting system

The aim of the Message Reporting System (MRS) is to provide a facility which allows all
software components in the ATLAS DAQ system and related sub-systems to report error
messages to other components of the distributed DAQ system. The MRS performs the
transport, filtering and routing of messages. It provides a facility for users to define unique
error messages which will be used in the application programs.

2.2.4 Process manager

The purpose of the process manager is to perform basic job control of software components of
the DAQ. It is capable of starting, stopping and monitoring the basic status (e.g. running or
exited) of software components on the DAQ workstations and LDAQ processors independent

of the underlying operating system. In this component the terms process and job are
considered equivalent.

2.2.5 Information service

The Information Service (IS) provides an information exchange facility for software
components of the DAQ. Information (defined by the supplier) from many sources can be
categorised and made available to requesting applications asynchronously or on demand.

2.3 Trigger / DAQ and detector integration components

Given that the core components described above exist, the following components are required
to integrate the back-end with other on-line sub-systems and detectors.

2.3.1 Partition and resource manager

The DAQ contains many resources (both hardware and software) which cannot be shared and
so their usage must be controlled to avoid conflicts. The purpose of the Resource Manager is
to formalise the allocation of DAQ resources and allow groups to work in parallel without
interference. The Partition manager is intended to extend this functionality to whole
partitions.

page 12 Draft 7

DAQ/EF Prototype -1 Project Back-End Summary Document
Chapter 2 Components Version/Issue: 1.0/Alpha

2.3.2 Integrated Graphical User Interface

The integrated graphical user interface (IGUI) allows the operator to control and monitor the
status of the current data taking run in terms of its main run parameters, detector
configuration, trigger rate, buffer occupancy and state of the sub-systems.

2.3.3 Online bookkeeper

The purpose of the online bookkeeper is to archive information about the data recorded to
permanent storage by the DAQ system. It records information on a per-run basis and
provides a number of interfaces for retrieving and updating the information.

2.3.4 Event dump

The event dump is a monitoring program with a graphical user interface that samples events
from the data-flow and presents them to the user in order to verify event integrity and
structure.

2.3.5 Test manager

The purpose of the test manager is to organise individual tests for hardware and software
components. The individual tests themselves are not the responsibility of the test manager
which simply assures their execution and verifies their output. The individual tests are
intended to verify the functionality of a given component. They will not be used to modify the
state of a component or to retrieve status information. Tests are not optimized for speed or use
of resources and are not a suitable basis for other components such as monitoring or status
display.

2.3.6 Diagnostics package

The diagnostics package uses a knowledge base [22] and the tests held in the test manager to
diagnose problems with the DAQ and verify its functioning status. By grouping tests into
logical sequences, the diagnostic framework can examine any single component of the system
(hardware or software) at different levels of detail in order to determine as accurately as
possible the functional state of components or the entire system. In case any faults are found,
it reports the diagnosis and suggests actions necessary to restore the affected component.

| Draft page 13

DAQ/EF Prototype -1 Project Back-End Summary Document
Chapter 2 Components Version/Issue: 1.0/Alpha

page 14 Draft 7

DAQ/EF Prototype -1 Project Back-End Summary Document
Chapter 3 Performance and Scalability Version/Issue: 1.0/Alpha

chapter3 Performance and Scalability

This chapter describes the measured performance and scalability for the back-end
components and the overall back-end software suite.

3.1 Component Unit Tests

For all core components an implementation exists and functionality and performance tests
have been performed. For most detector integration components an implementation is
available and testing has started and is expected to be completed soon. Each component is
subjected to unit tests to assess its functionality, performance, scalability and reliability. For
each component a test plan has been prepared and the test results have been reported [6], [10],
[13], [14]. The integration of the core components was made in a step-wise manner, according
to the dependencies between components and the underlying external packages (both
commercial and shareware) see Appendix B.1. Integration and scalability tests are based on
the two most relevant scenarios for an integrated DAQ system representing the likely
configurations for the DAQ/EF Prototype - 1 project and the final ATLAS DAQ/EF system.

For further information on the results of the unit tests for back-end components refer to [24].

3.2 Integration Tests

The integration tests bring together all the core components and several
Trigger/DAQ/Detector integration components to simulate the control and configuration of
data taking sessions. The steps involved in performing integration tests are:

= Complete the content of the configuration database to define all the necessary
software elements.

= Execute a script (called play_daq) which is responsible for starting and shutting
down the DAQ. The script can operate in two modes:

operator: = script initialises back-end and then displays IGUI to allow the operator to
exercise the partition. On exiting the IGUI the script closes down all
back-end services.

| Draft page 15

DAQ/EF Prototype -1 Project Back-End Summary Document
Chapter 3 Performance and Scalability Version/Issue: 1.0/Alpha

automatic: =~ = same as normal mode but rather than allowing the operator to exercise the

partition, commands are send directly from the script to take the partition to
the Running state, perform some run cycles then shut it down. The script
keeps track of the time needed to execute the various phases of the operation
and outputs them when it exits. The values represent the basic measured
points for the back-end scalability and performance tests.

3.2.1 play_daq script

The detailed steps performed by the script in automatic mode are shown in Figure 3 and
described below:

Start the back-end server processes (e.g. MRS server, IPC server etc.) required for any
partition.

Launch configuration specific processes using the DAQ supervisor (via the process
manager).

Marshal the hierarchy of run control controllers from their Initial to Running state by
sending commands to the Root controller.

The steps upto this point represent the actions required to star a data-taking session
and bring the DAQ into the Running state.

Marshal the hierarchy of run control controllers back to the Configured state. This
represents stopping a data taking run.

Marshal the hierarchy of run control controllers back to the Running state. This
represents re-starting a data taking run for the same configuration.

Marshal the hierarchy of run control controllers back to the Initial state.

Stop the configuration specific processes using the DAQ supervisor (via the process
manager).

Stop the back-end server processes.

page 16

Draft 7

DAQ/EF Prototype -1 Project Back-End Summary Document
Chapter 3 Performance and Scalability Version/Issue: 1.0/Alpha

warm
[Root stop
‘ Configured]
arm
Start
art
[Root Running]
Root
[luke

Configured] warm

(Unconfig) stop

[Root Loaded]

[Root Initial]

cold

C Shutdown) stop

[supervisor Idle]

Stop
servers

[servers dead]

close

Legend

[syncycond.]
@ stop

Figure 3 UML Activity diagram showing the actions performed by the play_daq script

3.2.2 Timing measurements

Set-up start back-end servers

When all machines are booted, measure the time it takes to start the back-end
servers (MRS, Information Service etc.). This test corresponds to the actions
needed at the start of a data taking session.

Close stop back-end

Measure time taken to do the reverse of the Set-up test. This test corresponds to
the actions needed at the end of a data taking session.

[~J Draft page 17

DAQ/EF Prototype -1 Project Back-End Summary Document
Chapter 3 Performance and Scalability Version/Issue: 1.0/Alpha

Cold start start a configuration

When all back-end servers and a Process Manager agent is running on each
machine, measure the time it takes to start the configuration specific processes
including all controllers with their associated LDAQ emulators, then do all
necessary transitions to get to the Running state. This test corresponds to the
actions needed to start of a configuration.

Cold stop stop a configuration

Measure time taken to do the reverse of the cold start test. This test corresponds to
the actions needed stop a configuration.

Lukewarm start restart a configuration

When all necessary processes are started and the controllers are in the Initial state,
measure the time taken to get to the Running state. This test corresponds to the
actions needed when re-starting a configuration, such as after a Reset command
has been given to the run control.

Lukewarm stop reset a configuration

Measure time taken to do the reverse of the lukewarm start test. This test
correspond to the actions needed when stopping a configuration.

Warm start start a single run

When all processes are alive and all controllers in the Configured state, measure
the time taken to get to the Running state. This test corresponds to the actions
needed when starting a new run with the same configuration.

Warm stop stop a single run

Measure time taken to do the reverse of the warm start test. This test corresponds
to the actions needed to stop a run.

3.2.3 Back-end servers

The set of back-end servers started by the script for each configuration on the operator works
tat ion includes:

= global IPC server

= partition IPC server

= RM server (resource manager)

= RDB server (remote database access)

= MRS server (Message Reporting System server)

= RC IS server (Information Service server for run control)

= PMG IS server (Information Service server for process manager)
= DF IS server (Information Service server for data-flow statistics)
= |GUI (integrated Graphical user Interface for the operator)

< MRS receiver (Message Reporting System receiver: writes all messages to a log file)
< DAQ Supervisor

page 18

Draft 7

Back-End Summary Document

DAQ/EF Prototype -1 Project
Version/Issue: 1.0/Alpha

Chapter 3 Performance and Scalability

< PMG agent (daemon for creating and stopping processes on a machine)

3.3 Overview of Scenarios Tested

The procedure described above has been followed for all the configuration show in Table 2.
Configurations named NxN (i.e. 2x2, 6x6) represent the data-flow organisation of the DAQ
VME crates, i.e. Read-Out Crates x SubFarm Crates + Event Builder. Details of the
characteristics of the configurations are given below.

3.3.1 run control

Configurations were run with the controllers in various locations:
centralised all the controllers were run on the operator works tat ion (Figure 4)

distributed the controllers associated with ldaq emulators were run on the same machine as
the ldag emulators (Figure 5)

Legend

ReadOut Crate 1 ReadOut Crate N
Operator Interface
<<network>>
Node|/ —————— Notel Root Controller o0 o

DFM Controller VME procespor VME processor|

SFC Controllers DFM: Event Builder
Crate

ROC Controllers

workstation/PC VME proressor
workstation etk

back-end servefs

all controllers SubFarm Crate 1 ® © o swramcrateN
crate processors

PMG agent

LDAQ emulator VME processor TE roceser

Figure 4 UML deployment diagram showing centralised controller organisation for 2x2 configuration

| Draft page 19

DAQ/EF Prototype -1 Project Back-End Summary Document

Chapter 3 Performance and Scalability Version/Issue: 1.0/Alpha
Legend Operator Interface ReadOut Crate 1 ReadOut Crate N
<<network>> |— Root Controller ROC1 Controller ROCN Controller
e 6 o
Node : Note
Object workstation/PC VME processpr VME processor
DFM: Event Builder
Crate
Workstation: DEM Controller _
back-end serverg
Root controller oo PO
crate processors: SubFarm Crate 1
PMG agent ® @ @ | SubFarmCrateN
LDAQ emulator SEC1 Controller
SECN Controller
controller
VME processor

VME processor

Figure 5 UML deployment diagram showing distributed controller organisation for 2x2 configuration

The number of controllers increases with the size of the configuration tested. All
configurations used a 2-tier hierarchy with a single Root controller controlling a set of
sub-controllers. For example, the controller hierarchy for the single host and 2x2
configurations is shown in Figure 6.

ROC1
controller

root ROC1 root

controller controller

controller

) controller
single Host 2x2

controller

SFC1

controller

controller

Figure 6 Controller hierarchies for single host and 2x2 configurations

3.3.2 LDAQ emulator

To simulate the interface with the data-flow part of the DAQ, an LDAQ emulator has been
developed. The LDAQ emulator allows testing of the back-end software sub-system
independently of the data-flow software. The LDAQ emulator:

page 20 Draft 7

DAQ/EF Prototype -1 Project Back-End Summary Document
Chapter 3 Performance and Scalability Version/Issue: 1.0/Alpha

= exchanges run control messages with an associated controller via a tcp/Zip link [25],
= sends MRS messages,

= sends IS information to simulate data-flow statistics information about crate
modules,

= performs no VME access,

= contains no data-flow software.

3.3.3 Process Management

Two forms of process management were used for the various configurations:
LynxOS based configurations the PMG agents were started by the script

The script calls an expect script to make a remote login into the ldaq processor
and start the agent. The list of machines on which to start the agents is retrieved
from the configuration database.

Linux based configurations ~ the PMG agents were started by hand
The agents were started from an X terminal logged into the remote machine
during the set-up phase of the script

During test-beam or final experiment usage, it is envisaged to start the PMG agents during
the boot sequence of the processors. This is not possible during development since many
agents are started for testing purposes. In this case, the set-up phase of the script will be much
quicker because the starting of the agents represents the largest fraction of the elapsed time.

Table 2 Back-end integrated configuration scenarios

Configuration number of controllers platform and releases

Single Host 2: Root + ROC12

2x2 centralised 6: Root, DFMC, 3 ROCs, 3 SFCsd

2x2 distributed 6 LynxOSb (+ 1 Solaris work-
station)

6x6 centralised 14: Root, DFM, 6 ROCs, 6 SFCs | back-end release 0.0.6

6x6 distributed 14

10x10 centralised 22: Root, DFM, 10 ROCs, SFCs

| Draft page 21

DAQ/EF Prototype -1 Project
Chapter 3 Performance and Scalability

Back-End Summary Document

Version/Issue: 1.0/Alpha

Table 2 Back-end integrated configuration scenarios

Configuration number of controllers platform and releases
1PC 2: Root + 1 crate
2PCs 3: Root + 2 crates
3PCs 4: Root + 3 crates Linux®
back-end release 0.0.7
4 PCs 5: Root + 4 crates
5PCs 6: Root + 5 crates
6 PCs 7: Root + 6 crates
7PCs 8: Root + 7 crates
8 PCs 9: Root + 8 crates

a. Read Out Crate

b. LynxOS 2.5.1 running on RIOs VME single board computers (PPC 100MHz 32MB
and PPC 200MHz 64MB)

c. Data Flow Manager (i.e. event builder)

d. SubFarm Crate

e. RedHat 6.0 running on PCs (Intel Pentium 111 450MHz 128MB)

Operator Interface

ReadOut Crate 1

Legend
<<network>> |—
Node) Note \
Workstation:

Root Controller ROCI1 Controller
o 0 o
workstgtion/PC VME processpr

ReadOut Crate N

ROCN Controller

VME processor

DFM: Event Builder
Crate

DFEM Controller

back-end serverp
Root controller

Crate processors:
PMG agent
LDAQ emulator
controller

VME procpssor
<gnetwork>>

SubFarm Crate 1

SEC1 Controller

VME processor

SubFarm Crate N

SECN Controller

VME processor

Figure 7 UML deployment diagram showing distributed controller organisation for 2x2 configuration

page 22

Draft

DAQ/EF Prototype -1 Project Back-End Summary Document
Chapter 3 Performance and Scalability Version/Issue: 1.0/Alpha

3.4 Test results

The results from running the tests described in Section 3.2 on the configurations described in
Section 3.3 are presented in Figure 8 and Figure 9.

LynxOS VME processors

175
~~ 150
S
c 125 [Warm Start
o
o 1001 B Warm stop
0 75 [Cold start
0 B Setup
g 50

™
< oon

1 5 13 21

number of processors/crates
RIO1/2 100/200 MHz 32/64 MB

Figure 8 Integrated test results for LynxOS based configurations

Linux PCs (PMG agents started by hand)

70
o 60
2 50
g [Warm Start
8 40 B Warm stop
0 39 B Cold start
@ B Setup

20
E
—

—_
=

=]

1 2 3 4 5 6 7 8

number of processors/crates
Pentium Ill 450Mhz 128MB

Figure 9 Integrated test results for LynxOS based configurations

Draft page 23

DAQ/EF Prototype -1 Project Back-End Summary Document
Chapter 3 Performance and Scalability Version/Issue: 1.0/Alpha

3.5 Discussion of the Tests

The tests described above represent a first attempt at quantifying the performance and
scalability of the integrated back-end software using an official release of the software [27].

From the results of the integrated tests on various configurations, the following insights can
be obtained:

The machines used for the tests were not dedicated to the task and were being used
by other developers at the same time to run other jobs.

The time taken to start and stop processes is dependent on the operating system,
machine specification and system load. The times recorded were far shorter on Linux
PCs that LynxOS VME processors.

Once all the processes have been started, the time taken to exercise the finite state
machines of the controllers remains constant. This indicates that the mechanism used
for the distributed control scales well with the size of the configuration used.

The use of the Information Service, Message Reporting System and Configuration
Database has a negligible effect on the performance of the DAQ.

The means used to start the Process Manager agents remotely from the test script is a
temporary solution. Currently an expect script is called for each agent that logs into
the target host and starts the agent process. This is necessary during development
because multiple agents are being started on each machine for testing purposes. In
test-beam and production use, only one agent will be started on each machine and its
initialization could be put in the boot sequence of the host. The result of the current
situation is that the times recorded for set-up action depict a worse-case scenario.

The times recorded for stopping processes (i.e. luke warm stop and cold stop) are
sometimes longer than the times needed to start processes. This result is unexpected
and requires further investigation.

The test results in Figure 9 show, that even for the largest configuration tested the
execution time of the initialisation, operation and shutdown is in an acceptable range
(maximum 1 minute for a Linux based 8 processor system).

For the true setup (i.e including data-flow software and hardware) the
communication time with the controlled components and their execution time will be
in addition to this value.

page 24

Draft 7

DAQ/EF Prototype -1 Project Back-End Summary Document
Chapter 4 Summary Version/Issue: 1.0/Alpha

Chapter 4
Summary

4.1 Integration Tests

Following individual component unit tests, integrated tests have been performed employing
the majority of the components developed in the back-end DAQ. Such integration tests have
been performed with the goal of verifying the correct inter-operation of the components, the
ability to operate in a distributed, heterogeneous multi-platform environment and gather
performance measurements relevant to the operation of the DAQ in a production
environment. The test configurations have included workstations, PCs and VME based
processors. The operating systems involved were Solaris, LynxOS and Linux. Configurations
using up to 21 processors have been tested.

Further testing is required to:

= gather more statistics on the time measurements for the various configurations;

< determine more precisely the reasons for the inferior performance of LynxOS
compared to Linux;

< determine the reasons why stopping processes sometimes takes longer than starting
processes;

= perform tests on larger configurations if access to suitable hardware is possible.

Future work to further improve the performance of the back-end will concentrate around the
play_dag script, daq supervisor and start-up of pmg agents to make more use of available
synchronization techniques and not rely on delay timeouts.

An obvious improvement would be to combine the LDAQ and associated controller into a
single process. This would reduce the number of processes that need to be started, reduce the
number of network messages required to pass commands, simplify synchronization and
reduce the amount of software employed.

| Draft page 25

DAQ/EF Prototype -1 Project Back-End Summary Document
Chapter 4 Summary Version/Issue: 1.0/Alpha

4.2 Future Work

Development will continue on the individual components of the back-end DAQ software,
notably in the area of the Trigger/DAQ and Detector integration components. The
developments will be included in the iterative releases of the software which have been
produced on a monthly basis and distributed on CD-ROMs.

In the near future, we anticipate closer interaction and integration with other sub-systems of
the ATLAS Trigger/DAQ/DCS project. The status of integration to date can be summarised as
follows:

Level-1 Trigger Members of the Level-1 community have used release 0.0.5 of the back-end
software distributed on CD-ROM to evaluate it applicability in their domain.
They have produced very useful feedback which has been used to influence the
development of subsequent releases.

Level-2 Trigger Some elements of the Reference Software are based on the back-end core
component designs. This will simplify future integration and discussions have
been held on how they can make use of the core components though more work
is required to understand the use of databases.

Event Filter Integration with MRS, IS and the run control components has been made with
Marseille prototype system but more work is required on databases. The
approach to be taken in the future will depend on how the 3 event filter prototype
systems will develop and the interaction with the common software set that is
being produced.

DCS A document describing the interaction between the DCS SCADA commercial
software package and the back-end components has been written and published
[26]. The approach described in the document needs to be validated via actual
implementation and usage.

The strategy for integration suggested for the future is similar to that already employed with
the Level-1 Trigger group. Releases of the back-end software will be distributed on CD-ROM
to representatives from each sub-system to evaluate the software at their own institutes, at
their own pace on their own machines. Their feedback should be channelled through a
sub-system contact person. This feedback will be used to influence the development of future
releases of the software to accommodate common sub-system functionality.

4.3 Back-end Software Summary

The integration tests described in the previous chapter are intended to provide a version of
the back-end system for use within the DAQ/EF Prototype -1 project. The results on
performances and scalability are in accordance with the DAQ/EF prototype requirements.
Work will continue to cover a wider spectrum of configurations to produce information about
eventual limits and boundaries.

The software component model has helped to sub-divide the project into more manageable
development tasks and encouraged the study of interactions between different elements of
the system. The use of common software technologies [16] for data persistence,

page 26

Draft 7

DAQ/EF Prototype -1 Project Back-End Summary Document
Chapter 4 Summary Version/Issue: 1.0/Alpha

communication etc. has reduced the total programming effort, made the developers aware of
the structure of all the components and allowed them to share softwatre.

It is expected that integration with other sub-systems will lead to the identification of possible
improvements which, coupled to evolving underlying technologies, will form the basis of
further developments of the back-end components. Currently, the ILU CORBA based
communication package is used in the project [17] but alternative implementations have
recently become available and layered services have also been defined. Some activities to
investigate such packages have already started and will continue. We would like to extend the
DAQ supervisors capacity for decision making and believe expert systems to be a good
candidate technology for implementing the logic of such an intelligent supervisor.

Use of the ATLAS prototype DAQ/EF project with prototype detectors in a test-beam
environment will provide the opportunity to determine if the back-end sub-system
requirements are relevant, its architecture suitable and the adopted software standards, tools
and techniques applicable. Given the longevity of the ATLAS experiment, emphasis has been
put on analysis and design of the sub-system since it is these aspects (rather than the actual
code itself) which will remain relevant up to and beyond the experiments start-up (2005).

| Draft page 27

DAQ/EF Prototype -1 Project Back-End Summary Document
Chapter 4 Summary Version/Issue: 1.0/Alpha

page 28 Draft 7

DAQ/EF Prototype -1 Project
Appendix A Documentation

Back-End Summary Document

Version/Issue: 1.0/Alpha

Appendix A
Documentation

Table A.1 shows the document produced at each phase of the software process for every

back-end component. Technical Notes are available on the web at

http://atddoc.cern.ch/Atlas/Notes/Welcome.html

Table A.1 Back-end published technical notes

Test Test
Component Require. Evaluat. Design Implement Plan Report
run control URD? 134 7,12,13,24 29 105,107 94 113
config. databases URD 9 30,54 33,122,135 99 114
Msg. Report. System URD 32 59 96 121
Information Service 31 31 37 95 118
Process Manager URD 8 28 81 100
Inter-Process Comm. URD 3,11 75 103 123
Resource Manager 52 52 130 131 137
Integrated GUI URD 4,10
Online Book-keeper URD 49 117
Test Manager URD 66 111,112
Diagnostics 106 108 106
Event Dump URD

a. General Back-end User Requirements Document [3]

| Draft

page 29

DAQ/EF Prototype -1 Project Back-End Summary Document
Appendix A Documentation Version/Issue: 1.0/Alpha

page 30 Draft 7

DAQ/EF Prototype -1 Project Back-End Summary Document
Appendix B Software Releases Version/Issue: 1.0/Alpha

Appendix B
Software Releases

This appendix documents the release structure and history of the back-end DAQ software.

B.1 Packages

The back-end DAQ software is held in a CVS repository organised as a number of packages
and managed by the ATLAS configuration management system, called SRT [15]. Below is the
list of packages held in CVS:

ace operating system independent interface to basic services (process creation, tcp/Zip
sockets, threads, etc.) (external) [21]

be_integ_test back-end component integration tests

chsm Harel state chart code generator (external) [20]

clips expert system (external) [22]

cmdl command line parameter handler (external)[23]
confdb configuration database access libraries and utilities
dvs verification module of diagnostics component

dsa supervision module of diagnostics component

hello example package showing how to use SRT

igui integrated graphical user interface for DAQ operator
ilu Corba implementation (external) [19]

ipc high-level interface to ilu and partitioning

is information service

mrs message reporting system

obk online book-keeper

oks persistent object manager used as the basis for the configuration databases
pmg process manager

rc run control

rdb remote database access via Corba

| Draft page 31

DAQ/EF Prototype -1 Project Back-End Summary Document
Appendix B Software Releases Version/Issue: 1.0/Alpha

rm resource manager
tmgr test manager

tools_h++ general purpose C++ library(similar to STL) (external) [18]

xmext A collection of freeware Motif widgets from various sources (external)

B.2 Package dependencies

Figure B.1 shows a simplified view the dependencies between the back-end packages.

page 32

Draft 7

Back-End Summary Document

DAQ/EF Prototype -1 Project

Version/Issue: 1.0/Alpha

Appendix B Software Releases

solsoubel

cou_.umu_) Lw.m S1s8l aoelI91uUl J1asn

oA uoneibajul Jusuodwod pajelbajul
P 1591 bajul aq ale]]

wia)sAs Jabeuew

yadxa s8] |011U0D uny sanijioey

SdIo 16wy o1 Mmo/wo

Jebeuel\ ssadsoid
Buwd 1aBeuep
92In0say anm_v“wwoon
wi 50
Jojessuab 99INIBS waisAs Bunioday sauelqi]
aulyoew arels uoneuwoU| abessa SS820y asegeleq
WSHO Sl siw gpjuod
uonedIuNWWod
wmmown_a_.@c_ - J9|pury JaBeuew 1938(qo
Jo1owesed Klowsw-ul
aurpw) SYMO
salouapuadag \
uauodwo) pu3-yoe L
' O pua-ped uonejuswa|dwi Kreiqy s19bpIMm aseqelep
©QglI0) ++0 [eJauab INON 981} Ainnaslgo
Nl ++U's|ooL XWX Algo

Figure B.1 Back-end DAQ software package depencies

page 33

Draft

DAQ/EF Prototype -1 Project Back-End Summary Document
Appendix B Software Releases Version/Issue: 1.0/Alpha

B.3 Releases

Table B.1 shows the platforms supported for each of the public releases.

Table B.1 Back-end public release platforms

00-00-00 |0.0.0 0.0.1 0.0.2 0.0.3 0.0.4 0.0.5 0.0.6 0.0.7
Platform Sep’98 Jan’99 | Feb'99 | Mar'99 | Apr'99 |Jun’99 |Aug99 |Oct'99 | Dec'99

hpux10.20/ O d
g++2.7.2

winnt4.0/ O a
msvc++-5.0

lynxos2.4.0/ O
g++2.6-9502

lynxos2.5.1/ O O O d O d O ad O
g++2.6-97qg1

solaris2.5.1/ 0 a 0 a O O O a O
g++2.7.2

solaris2.6/ 0 a ad O ad O ad
SunPro-4.2

linux RedHat 5.1/ ad 0 a ad
egcs 1.0

linux RedHat 6.0/ a O a O
egcs 1.0

Table B.2 shows which packages are included in each of the public releases

Table B.2 Components included in Back-end public releases

Package 00-00-00 |0.0.0 0.0.1 0.0.2 0.0.3 0.0.4 0.0.5 0.0.6 0.0.7
ace U U | a u U U g |
be_integ_test ad O O O O
chsm O g g g g | 0 g a
clips ad O O O O
cmdl | U |] u u U | |
confdb O g g g g | 0 g a
dsa O
dvs 0 O
hello U g g]] u 0 g |
igui g 0 O
ilu g O g d d g g g g

page 34 Draft 7

DAQ/EF Prototype -1 Project Back-End Summary Document
Appendix B Software Releases Version/Issue: 1.0/Alpha

Table B.2 Components included in Back-end public releases

Package 00-00-00 |0.0.0 0.0.1 0.0.2 0.0.3 0.0.4 0.0.5 0.0.6 0.0.7
ipc O g g g g | 0 g g
is O g O O O O O O O
mrs O d O O O O O O O
obk]] | 0 g g
oks O g g g g | 0 g g
pmg O g O O O O O O O
rc U U | a u U U g |
rdb O g g g g | 0 g g
rm g g g g | 0 g g
tmgr d O O O O O | O
tools_h++ U U | a u U U g |
xmext 0 g a g g g g a

| Draft page 35

DAQ/EF Prototype -1 Project Back-End Summary Document
Appendix B Software Releases Version/Issue: 1.0/Alpha

page 36 Draft 7

DAQ/EF Prototype -1 Project Back-End Summary Document
Appendix C Software Process Version/Issue: 1.0/Alpha

Appendix C
Software Process

This appendix describes the software process employed for the development of the back-end
DAQ software.

The development has been divided into a number of sequential phases intended to help pace
and organise the work. Each phase has been defined to produce an obvious deliverable (i.e.
document and/or code) which is reviewed before progressing to the next phase. The phases
are: collect requirements; identify and evaluate candidate technologies and techniques
capable of addressing the common issues identified from the requirements; produce a design
for each component covering the most important aspects; refine the design to add more detail,
implement and unit test according to the design; integrate with other components. Figure C.1
shows the phases of this software process and the artifacts produced by each phase including
documents used during development, code and user documentation. The deliverables from
each phase have been reviewed. initially, reviews took the form of presentations followed by
discussions during open meeting with all developers involved in the project. Later more
formal inspections were introduced using a system of peer review supported by guidelines
and checklists for documentation and code.

The people involved in the back-end DAQ come from many institutes and have not, in
general, been able to work full-time on the project. Faced with this situation, we have tried to
organise the work along the component structure. Typically, a single institute has taken
responsibility for developing a component there by simplifying communication and reducing
travel. Such component groups are small (up to a maximum of 5 individuals). The same
individuals have tended to follow a single component through the various phases and hence
ensured the continuity of the work.

| Draft page 37

DAQ/EF Prototype -1 Project Back-End Summary Document
Appendix C Software Process Version/Issue: 1.0/Alpha

Phases Reviewed Deliverables

CO_”eCt . requirements
requirements %

identify needs & common issues
define priorities and work-plan

* Pre deSi n evaluation
. -u * report(s)
4| Investigations

perform pre-design investigations into
candidate technologies/techniques

High-level * high-level
B BE— esign % design

develop high-level design

detailed-desigf
< P & implement.

implement. note

[
% users guide
-

test plan

¥

refine design
implement code

< > tlﬁ?etlgnr% tfcon L test programs

- test results
unit test components
integrate with dataflow

Figure C.1 Software process employed for the development of the Back-End DAQ

page 38

Draft 7

DAQ/EF Prototype -1 Project Back-End Summary Document

Appendix D References Version/Issue: 1.0/Alpha
Appendix D

1 ATLAS Technical Proposal, CERN/LHCC/94-43 (ISBN 92-9083-067-0).

2 G. Ambrosini et al.,, The ATLAS DAQ and Event Filter prototype -1 project”,
Computer Physics Communications, vol. 110, pp. 95-102, May 1998.

3 ATLAS DAQ Back-end Software User Requirements Document, ATLAS Internal
Note DAQ-N0-90, http://atddoc.cern.ch/Atlas/DaqSoft/document/
draft_1.html.

4 High-Level Design of the ATLAS DAQ Back-end software. ATLAS Internal Note

DAQ-No0-87, http://atlasinfo.cern.ch/ Atlas/documentation/notes/
DAQTRIG/ note87/DAQ_NOTE_87.ps.gz.

5 P. Croll et al., Use of Statecharts in the Modelling the Dynamic Behaviour of the
ATLAS DAQ Prototype-1, IEEE Transactions on Nuclear Science, vol. 45, no. 4,
pp. 1983-1988, August 1998.

6 P.Y. Duval et al., Test Report of the Run Control for the Atlas DAQ Prototype-1,
ATLAS DAQ Prototype -1 Technical Note 113,
http://atddoc.cern.ch/Atlas/Notes/ 113/Notel13- 1.html.

7 R. Jones, I. Soloviev, Configuration Databases in the ATLAS Prototype DAQ,
CHEP98, Chicago USA, September 1998,
http://www.hep.net/chep98/PDF/66.pdf.

8 R. Jones et al., The OKS Persistent In-memory Object Manager, IEEE Transactions
on Nuclear Science, vol. 45, pp. 1958-1964, August 1998.

9 S. Kolos, I. Soloviev, Remote Database Access library: Users Guide, ATLAS DAQ
Prototype -1 Technical Note 122, http://atddoc.cern.ch/Atlas/Notes/122/Note
122-1.html.

10 I. Soloviev, Test Report of the Configuration Databases for the Atlas DAQ

Prototype-1, ATLAS DAQ Prototype -1 Technical Note 114,
http://atddoc.cern.ch/ Atlas/Notes /114/Notell4-1.html.

11 M.J. Carey et al., A Status Report on the OO7 OODBMS Benchmark Effort,
Proceedings of OOPSLA94.
12 S. Kolos et al., Applications of CORBA in the ATLAS prototype DAQ,

Proceedings of the IEEE Real Time Conference, Santa Fe, USA, June 1999.

| Draft page 39

DAQ/EF Prototype -1 Project
Appendix D References

Back-End Summary Document
Version/Issue: 1.0/Alpha

13

14

15

16

17

18

19

20

21
22
23

24

25

26

27

D. Burckhart et al., Unit Test Report of the Message Reporting System for the
Atlas DAQ Prototype-1, ATLAS DAQ Prototype -1 Technical Note 121,
http://atddoc.cern.ch/ Atlas/Notes/121/Notel21-1.html.

E. Badescu et al., Test Report of the Information Service for the Atlas DAQ
Prototype -1, ATLAS DAQ Prototype -1 Technical Note 118,
http://atddoc.cern.ch/ Atlas/Notes /118/Notel18-1.html.

L. Tuura, Overview of ATLAS Software Release Tools, CHEP98, Chicago, USA,
http://home.cern.ch /~lat/slides/98-36/.

D. Burckhart et al., Software technologies for a prototype ATLAS DAQ,
Computer Physics Communications, vol. 110, pp. 113-119, May 1998.

A. Amorim et al., Use of Corba in the ATLAS Prototype DAQ, IEEE Transactions
on Nuclear Science, vol. 45, no. 4, pp. 1978-1982, August 1998.

Tools.h++ Introduction and Reference Manual Version 6. Thomas Keffer, Rogue
Wave Software Inc. 1994,

ILU documentation. Copyright (c) 1991-1999 Xerox Corporation.
ftp:/ /ftp.parc.xerox.com/pub/ilu/ilu.html.

CHSM: A Language System Extending C++ for Implementing Reactive Systems.
P.J. Lucas, F. Riccardi. http://www.best.com/~pjl/software.html.

ACE. Douglas C. Schmidt. http://www.cs.wustl.edu/~schmidt.
CLIPS Basic Programming Guide, NASA JSC-25012

CmdLine:a C++ option-parsing framework,Brad Appleton
http://enteract.com/~bradapp/ftp/src/libs/C++/CmdLine.html

I.Alexandrov et al., Performance and Scalability of the Back-end sub-system in
the ATLAS DAQ/EF Prototype, Proceedings of the IEEE Real Time Conference,
Santa Fe, USA, June 1999.

PY. Duval, R.Jones, K.Rybaltchenko, D. Schweiger, L.Tremblet, G.Unel,
RCLDAQ: interface to the run control component, ATLAS DAQ Prototype -1
Technical Note 105, http://atddoc.cern.ch/Atlas/Notes/105/Notel05-1.html.

H.J.Burckhart, M.Caprini and R.Jones, Connection DCS <==> DAQ in ATLAS,
DCS-IWNS8, 12 Nov 1999,
http://atlasinfo.cern.ch/ATLAS/GROUPS/DAQTRIG/DCS/dcs_daq_0.6.pdf

E. Badescu et al., Component Integration Test Plan for the Back-end sub-system
of the Atlas DAQ Prototype-1, ATLAS DAQ Prototype -1 Technical Note 127,
http://atddoc.cern.ch/Atlas/Notes/127/Notel27-1.html.

page 40

Draft 7

