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Di�usion of Impurities in the MDT Gas System

N.P. Hessey and M. Deile, LMU-Munich

Abstract

The gas in the MDT chambers will contain impurities from out-

gassing, inward leaks, action of radiation and other sources. An un-

derstanding of how these impurities spread through di�usion can help

with certain design choices: gas 
ow rate, connecting tube diameter,

how many tubes to connect in series and maybe others. This note

gives the basic equation that governs di�usion in a 
owing gas, and

solves some representive cases to give a feel for how important the

e�ects are in speci�c circumstances.
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1 Steady state di�erential equation for di�u-

sion in a 
owing gas

Consider an impurity in the MDT gas. We treat the problem in 1 dimension,
ignoring e�ects across the tube. We want to know the density of the impurity,
n(x), along the tube.

The current jd due to di�usion is related to the impurity density from
Fick's law by

jd = �D
@n

@x

where D is the di�usion coe�cient.
The current jv due to the MDT gas 
ow velocity v (taken to be in the

positive x direction) is
jv = vn

The total current is the sum of these two:

j = �D
@n

@x
+ nv (1)

Consider a cylinder of length dx and cross-sectional area S, with incoming
current j and outgoing current j + dj. The accumulation of impurity in the
cylinder is

�djS = �
@j

@x
Sdx:

But this accumulation rate plus any net rate of production of impurity Q(x)
is the same as the rate of change of impurity in the volume element, i.e.

@n

@t
Sdx = �

@j

@x
Sdx +QSdx

Substituting for j from (1) and cancelling the common volume element Sdx
gives

@n

@t
= D

@2n

@x2
� v

@n

@x
+Q

This is the equation of motion for the impurity. It is time dependent; we
look for the steady state solution @n=@t = 0, giving

@

@x
(D

@n

@x
� vn) +Q = 0
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Integrating from some convenient point x = a gives

D
@n

@x
� vn+

Z x

a

Q(x0)dx0 = const

Conservation of impurity implies

j(x)� j(a) =

Z x

a

Q(x0)dx0;

i.e. what goes in at a plus production upto x comes out at x. Comparison
with equation (1) then shows the constant is �j(a).

Hence, at the steady state, we have to solve the equation

D
@n(x)

@x
� vn(x) +

Z x

a

Q(x0)dx0 = �j(a) (2)

2 Application Examples

2.1 Case 1: Leak at inlet end

Consider a tube starting at x = 0 and ending at x = L, with clean gas
coming in at x = 0. Suppose the endplug at the inlet has a leak rate q with
no other sources of impurity. Then Q(x)dx = q for x = 0 and 0 elsewhere,

Z x

0

Q(x0)dx0 = q for x � 0

Furthermore, suppose the inlet tube is so narrow that no impurity can back-
di�use up it, i.e. j(0) = 0. Then equation (2) becomes

D
@n(x)

@x
� vn(x) + q = 0

with solution
n(x) = Ae

v

D
x +

q

v

We use the boundary condition that all q comes out the far end, so that
j(L) = vn(L) = q or

vAevL=D + q = q
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so A = 0 and the solution is
n(x) =

q

v

One sees the tube �lls up with an equal concentration of impurity along
its length, independantly of the di�usion coe�cient. Higher leak rates give
higher impurity levels; higher 
ows give lower impurity levels.

The steady-state level is proportional to the leak rate and inversely pro-
portional to the 
ow rate.

2.2 Case 2: Leak at outlet end

Suppose we have no leak at the inlet, but a leak at the outlet end, all other
things remaining the same. Now

Z x

0

Q(x0)dx0 = 0 for 0 � x < L

and Z x

0

Q(x0)dx0 = q for x = L

So (2) reduces to

D
@n

@x
= vn(x)

with solution
n(x) = Ae

v

D
x

The boundary condition is vn(L) = q hence

A =
q

v
e�

v

D
L

So the solution is
n(x) =

q

v
e
v

D
(x�L)

One sees that for very high di�usion, this reduces to the same solution as
case 1: the tube �lls up with a constant level of impurity. At low di�usion,
the level of impurity is a maximum at L and falls exponentially towards the
inlet end of the tube, to a level

q

v
e�

v

D
L

4



Now one sees what is meant by \low" or \high" di�usion in the case of
drift tubes: Low di�usion is when vL=D is large, so that the concentration
is very low at the inlet end; high di�usion is when D is large compared
to vL, so that the concentration at the inlet end is almost the same as at
the leaking outlet end. For example, we have L = 4 m tubes with one
volume exchange a day giving vL = 1:9 cm2=s. This can be compared to the
di�usion coe�cient for water in air of 0:238 cm2=s at 1 atmosphere pressure
and 8o C. D / T=P so for our tubes D = 293=281 � 1=3 � 0:238 = 0:083
cm2/s. In other words, at the planned ATLAS 
ow rate, our di�usion is
a negligibly small e�ect inside tubes. The impurity concentration at the
inlet end will be down a factor e1:9=0:083 � 1010 on that at the leaking outlet
end. (Note: at such high reductions other e�ects would dominate, such as
impurity creeping along the walls where the gas velocity is very low { this
would require modelling the problem in 2D, which could be done in cylindrical
coordinates with Bessel functions for the radial part of the solution). This
factor is extremely sensitive to 
ow rate: if we reduced our exchange rate
to once per ten days (proposed as an alternative to puri�cation of the gas)
di�usion starts to become signi�cant: this factor reduces to 10.

2.3 Case 3: Production of impurities along the wire

Some impurities (e.g. ethene in DATCHA gas) are produced along the wire
by irradiation. Suppose that instead of leaks we have a constant rate of
production of impurity per unit length of wire q̂ so that

Z x

0

Q(x0)dx0 = q̂x

and equation (2) becomes

D
@n(x)

@x
� vn(x) + q̂x = 0 (3)

with solution

n(x) =
q̂

v
x+

Dq̂

v2
+ Ae

v

D
x

The boundary condition is vn(L) = q̂L (all that goes in comes out) giving

A = �
Dq̂

v2
e�

v

D
L
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and so the solution is

n(x) =
q̂

v
x +

Dq̂

v2
(1� e

v

D
(x�L))

For high di�usion (vL=D � 1) we can expand the exponent to �rst order
and the solution reduces to

n(x) = q̂L=v

i.e. the tube �lls with a constant level of impurity.
For low di�usion, n(x) = q̂x=v (e.g. by setting D to zero in equation (3)),

i.e. the impurity builds up linearly along the tube. At intermediate rates of
di�usion, the level starts o� non-zero at x = 0 and rises to q̂L=v at the exit
end.

It is interesting to consider what happens when several tubes are con-
nected in series, which has been suggested to make mechanical assembly
easier. The e�ective tube length L increases, but, if we maintain one volume
exchange per day, so does the gas velocity; the result is that the impurity
at the exit of the last tube remains the same, independantly of the num-
ber of tubes in series, and independantly of the di�usion coe�cient. This is
interesting for aging considerations.

If the impurities a�ect r(t) and di�usion is such that the �rst tube in the
chain has a much lower concentration of impurities than the last, then putting
tubes in series would be a very bad way of assembling chambers: tubes in
the same autocalibration zone would have di�erent r(t) relationships, making
autocalibration practically impossible. Leaks and outgassing (especially of
water) would also be bad for autocalibration. Most regimes of di�usion would
give problems, e.g. (i) with low di�usion (vL=D � 1) the concentration of
impurities increases approximately linearly along the whole chain; (ii) with
high di�usion in the drift tubes (vL=D� 1) but low di�usion in the narrow
connecting tubes, the concentration increases in steps at each connector-tube
in the chain.

2.4 Case 4: Inter-connecting tubes

We see from case 2 that a tube with a concentration n(L) at its exit due to
a leak there has n(x) decreasing exponentially towards the inlet, with decay
constant v=D per unit length. In the connecting tubes, v is much higher (by
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the ratio of the tube areas), but the length is much lower, say 40 mm instead
of 4 m. So a connecting tube of 3 mm diameter and 40 mm long would
have the same reduction in n as a 4 m long, 30 mm diameter tube. This is a
considerable reduction, and suggests that for \normal" leaks, outgassing, and
radiation production of impurities, back-di�usion is not a problem and there
is no need to put special e�ort into making the connecting tubes especially
small; probably they will be about 1 mm inner diameter for convenience
and this should be small enough from the point of view of back di�usion and
large enough to not give a signi�cant pressure drop. Still, there may be other
reasons to go smaller, e.g. to ensure equal 
ows in all tubes in an MDT.

We now see the justi�cation for the assumption in cases 1 to 3 that
nothing di�uses out the inlet end (j(0) = 0). Nonetheless, we can calculate
the back di�usion easily enough by not making this assumption. Imagine
one tube in an MDT has a large leak and therefore a high concentration
of impurities. Suppose the impurity concentration in the gas distributor
remains at 0 because whatever back-di�uses into the distributor is rapidly
swept away through the other tubes. We consider the gas connector between
the tube and distributor to start at 0 and end at L; n(0) = 0. Q(x) = 0 and
equation 2 reduces to

D
@n(x)

@x
� vn(x) = �j(0)

with solution
n(x) = Ae(

v

D
x) + j(0)=v

The boundary condition n(0) = 0 gives A = �j(0)=v. Considering the point
x = L gives

j(0)

v
= �

n(L)

e
v

D
L
� 1

Hence

n(x) = n(L)
e
v

D
x � 1

e
v

D
L
� 1

To put some numbers in, consider 1 mm diammeter connecting tubes 40
mm long, with 1 % O2 at the drift tube end: this is n(L) = 6�1015 molecules
per cm of connector-tube at 3 bar. The velocity at 1 exchange per day of a
4 m tube is 400=(24� 60� 60)� 302 = 4 cm/s. The di�usion coe�cient of
oxygen in air is about 0.2 cm2/s, so we take D = 0:2=3 cm2/s for argon at 3
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bar. This gives

j(0) = �vn(L)=(e
v

D
L
� 1) � �10�88molecules per s

i.e. back di�usion is totally negligible (the minus sign indicates the net 
ow
is up-stream).

Take care though; note the extremely strong dependence (exponential) of
this rate on the connecting tube diameter: if we used 6 mm tube, the gas
velocity is 36 times slower and the 
ow rate of oxygen becomes greater than
1015 molecules per second: a change of over 100 orders of magnitude for a
factor 6 change in the tube diameter.

3 Summary

The basic equation for di�usion has been solved for various cases, under
certain speci�c conditions.

The e�ect of an inward leak at the outlet end was considered in Case 2,
and it was shown that the impurity hardly spreads upstream along the tube
at all.

Production of impurity along the wire was discussed in Case 3. It was
shown (Case 2) that di�usion is small, so that for MDTs the concentration
builds up steadily along the tube. Hence putting several tubes in series
will mean tubes in the same autocalibration zone will have very di�erent
levels of impurities. If the impurity a�ects the r(t) relationship this would
raise problems for autocalibration. If the di�usion had been high, then the
concentration of impurity would have tended to equalise within a tube but
increase at each tube boundary along the chain of tubes.

For aging, the concentration of impurity at the exit of the last tube is
independant of the number of tubes in series. One can speculate about what
e�ect this has: with all tubes in parallel, they all have a high concentration
at their end and are therefore equally likely to die. With tubes in series, only
the last tubes in the chain would see the highest concentration of impurity,
and so only they would die (but would be more thoroughly dead!).

Back di�usion along the interconnecting tubes was considered in Case 4.
With 1 mm inner diameter connectors 4 cm long, back di�usion into the inlet
distributor is totally negligible. But this parameter must be kept small, say
less than 2 mm, or back-di�usion could become a problem.
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It would be interesting to check this model with an oxygen meter at
various 
ow rates of argon along a tube with di�erent leaks. Note that other
e�ects such as creeping of molecules along the tube walls can become much
more important than back-di�usion in the bulk of the gas.
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