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Abstract

The lateral and longitudinal pro�les of the hadronic showers

detected by ATLAS iron-scintillator tile hadron calorimeter with

longitudinal tile con�guration have been investigated. The results

are based on 100 GeV pion beam data. Due to the beam scan

provided many di�erent beam impact locations with cells it is suc-

ceeded to obtain detailed picture of transverse shower behavior.

The underlying radial energy densities for four depthes and for

overall calorimeter have been reconstructed. The three-dimensional

hadronic shower parametrisation have been suggested.



1 Introduction

Hadronic shower is a basic notion of hadron calorimetry. But despite that

hadronic shower characteristics are studied for many years the exhaustive

quantitative understanding of hadronic shower properties is not exist. The

published data are as a rule the energy deposition in calorimeter cells and

therefore are related with speci�c cell dimensions and the acceptance of

cells relative to shower axis. Furthermore, as to the transverse pro�les they

are as usual the energy depositions as a function of transverse coordinates,

not a radius, and integrated over the other coordinate [1]. Meanwhile for

many purposes of experiments a very detailed simulation is not needed and

a three dimensional parameterisation of hadron shower development is to

become very important for fast simulation which signi�cantly (up to 105

times) to speed a detailed GEANT based simulation [2], [3], [5].

In this paper we report on the results of the experimental study of
hadronic shower pro�les detected by prototype of ATLAS tile hadron
calorimeter [6]. This calorimeter has innovative concept of longitudinal

segmentation of active and passive layers (see Fig. 1) and the measurement
of hadron shower pro�les therefore a special interest [7]. This investiga-
tion was performed on the basis of data from 100 GeV pion exposure of

the prototype calorimeter at the CERN SPS at di�erent z impact points
in the range from �36 to 20 cm (z scan) at incident angle � = 10o which

were obtained in May 1995.
Earlier some results related with lateral shower pro�les for this calori-

meter were obtained in [8].

2 The Calorimeter

The prototype the ATLAS hadron tile calorimeter (Fig. 2) is composed of

�ve modules. Each module spans 2�=64 in azimuthal angle, 100 cm in the
z direction, 180 cm in the radial direction (about 9 interaction lengths �I at

� = 0 or to about 80 e�ective radiation length Xo), and has a front face of

100 � 20 cm2 [9]. The iron structure of each module consists of 57 repeated

"periods". Each period is 18 mm thick and consists of four layers. The �rst

and third layers are formed by large trapezoidal steel plates (master plates),

5 mm thick and spanning the full radial dimension of the module. In the
second and fourth layers, smaller trapezoidal steel plates (spacer plates)

and scintillator tiles alternate along the radial direction. These layers
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Figure 1: Principle of the tile hadronic calorimeter.

consist of 18 di�erent trapezoids of steel or scintillator, each spanning

100 mm along x depending on their radial position. The spacer plates
and scintillator tiles are 4 mm and 3 mm thick respectively. The iron to
scintillator ratio is 4:67 : 1 by volume. The calorimeter thickness along

x direction at incidence angle � = 10o corresponds to 1.49 m of iron
equivalent [10].

Radially oriented WLS �bers collect light from the tiles at both of their

open edges and bring it to photo-multipliers (PMTs) at the periphery of
the calorimeter. Each PMT views a speci�c group of tiles, through the

corresponding bundle of �bers. The calorimeter is radially segmented into

four depth segments by grouping �bers from di�erent tiles. As a result of

each module is divided on 5 (along z) � 4 (along x) separate cells.

The readout cells have lateral dimensions of 200 mm (along z) �
(200 � 300) mm (along y, depending from a depth number) and longi-

tudinal dimensions of 300, 400, 500, 600 mm for depths 1-4, corresponding

to 1.5, 2, 2.5 and 3 �I at � = 0. On the output we have for each event 200

values of energies Ei;j;k;l from PMT properly calibrated [9] with pedestal

subtracted. Here indexes i, j, k, l mean: i = 1; : : : ; 5 is the column of cells
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Figure 2: Setup of the tile hadronic calorimeter prototype.

number (tower), j = 1; : : : ; 5 is the row (module) number, k = 1; : : : ; 4 is
the depth number and l = 1; 2 is the PMT number.

The calorimeter has been positioned on a scanning table, able to allow

high precision movements along any direction. Upstream of the calorime-
ter, a trigger counter telescope was installed, de�ning a beam spot of 2 cm
diameter. Two delay-line wire chambers, each with (z; y) readout, allowed

to reconstruct the impact point of beam particles on the calorimeter face
to better than � 1 mm [11]. For the measurements of the hadronic shower

longitudinal and lateral leakages backward (80�80 cm2) and side (40�115
cm2) \muon walls" were placed behind and side the calorimeter modules
[7].

Construction and performance of ATLAS iron-scintillator barrel had-
ron prototype calorimeter is described elsewhere [6], [9], [12], [13].

3 The methods for extracting the underly-

ing radial energy density

The incident particle interacts with the material of calorimeter and a

shower is initiated. In the following the used coordinate system will be

based on the hadron shower direction. The axis of the shower, de�ned

to be a track of a incident particle, forms the x axis with x = 0 at the
calorimeter front face.

We measure the energy depositions in calorimetry cells. In ijk-cell of

the calorimeter with volume Vijk and cell center coordinates (x; y; z) the
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energy deposition Eijk is

Eijk(x; y; z) =
Z Z

Vijk

Z
f(x; y; z)dxdydz; (1)

where f(x,y,z) is the three-dimensional hadron shower energy density func-

tion.

In the following we will consider the various marginal (integrated) den-

sities [14]: longitudinal density f1(x) obtained after integrating f(x; y; z)

over y and z coordinates

f1(x) =
Z ymax

ymin

Z zmax

zmin

f(x; y; z)dydz; (2)

transverse densities f2(y; z) for four depths and overall calorimeter ob-
tained after integrating f(x; y; z) over the various x ranges

f2(y; z) =
Z x2

x1

f(x; y; z)dx; (3)

transverse densities f(z)

f(z) =
Z x2

x1

Z
1

�1

f(x; y; z)dxdy: (4)

Cumulative function is

F (z) =
Z z

�1

Z
1

�1

f2(z; y)dzdy (5)

and related with marginal density f(z) by

f(z) =
dF (z)

dz
: (6)

Due to the azimuthal symmetry densities f2(y; z) are the function only

a radius r =
q
(y2 + z2) from the shower axis, i.e.

f2(y; z) = �(r): (7)

In such case
Eijk =

Z Z
Vijk

�(r)rdrd�; (8)

where � is the azimuthal angle.
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There are some methods for extracting of radial density �(r) from the

measured distributions of energy depositions Eijk.

One method is the unfolding �(r) from (8). This method was used in

the analysis of data from the lead-scintillating �ber Spaghetti Calorimeter

[15]. Several analytic forms of �(r) were tried, but the simplest that

describes the energy deposition in cells was a combination of an exponential

and a Gaussian:

�(r) =
a1

r
e
�

r
�1 +

a2

r
e
�( r

�2
)
2

: (9)

In order to determine the free parameters ai; �i in the expression (9) a �2

minimisation �t have been done.

Another method is using the marginal density function f(z) and its

connection with radial density �(r) [16].

f(z) = 2
Z

1

jzj

�(r)rdrq
(r2 � z2)

: (10)

This method was used [16] for extracting of electron shower transverse pro-
�le on the basis of the data fromGAMS�2000 electromagnetic calorimeter
[17].

Integral equation (10) can be reduced to the Abelian equation by re-
placing of variables [18]. We solved equation (10) (see Appendix 1) and

obtained

�(r) = � 1

�

d

dr2

Z
1

r2

f(z)dz2q
(z2 � r2)

: (11)

The marginal density f(z) also may be determined by various ap-
proaches. One approach is the using of cumulative function f(z) [16] and

di�erentiation of it according to (6). Another approach is to assume some
form of marginal density f(z), to derive a formula for energy deposition in
tower and to determine parameters of f(z) by �tting [19].

If the three exponential distribution for parametrisation of f(z) is used

[20], [19]:

f(z) =
Eo

2B

3X
i=1

aie
�

jzj
�i ; (12)

then for the energy deposition in a tower E(z), the cumulative function

F (z), for radial density �(r) we obtain:

E(z) =
Z z+h=2

z�h=2
f(z0 � z)dz0; (13)
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E(z) = Eo
B

P3
i=1 ai�i(1� e

�
h
2�i ch( jzj

�i
)); for jzj � h

2
; (14)

E(z) = Eo
B

P3
i=1 ai�ish(

h
2�i

) � e�
jzj
�i ; for jzj � h

2
; (15)

F (zr) =
Eo
2B

P3
i=1 ai�ie

zr
�i ; for zr � 0; (16)

F (zr) =
Eo
2
+ Eo

2B

P3
i=1 ai�i(1� e

�
zr
�i ); for zr � 0; (17)

�(r) =
Eo

2B

3X
i=1

ai

��i
K0(

r

�i
); (18)

where z is the transverse coordinate of the tower center, zr is the right edge

transverse coordinate of the tower in the center, h is the front face size of
towers along Z axis (h = 200 mm in our case), B =

P3
i=1 ai�i, Eo; ai; �i

are free parameters, Eo is an energy normalisation factor, K0 is modi�ed
Bessel function. Using the condition

P3
i=1 ai = 1 we reduced the number

of parameters to six.

The radial containment of shower as a function of r is

I(r) =
Z r

0

Z 2�

0
�(r)rdrd� =

Eo

B

3X
i=1

ai�i(1�
r

�i
K1(

r

�i
)); (19)

where K1 is modi�ed Bessel function.

4 Results

Using the program TILEMON [21] 30 runs with di�erent impact points of

incident particles in the range from �36 to 20 cm contained 320 K events

have been analysed and the various energy deposition spectra have been

obtained.

4.1 Transverse behaviour of hadron showers

4.1.1 Energy deposition in the towers
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Figure 3: The energy depositions in towers of 1 � 4 depths as a function

of Z coordinate. Depth 1 | up left, depth 2 | up right, depth 3 | down
left, depth 4 | down right. Curves are �ts of equation (14) and (15) to

the data.
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Figure 4: The energy depositions in towers summed overall calorimeter
depths as a function of Z coordinate. Curve is the result of �t by formula

(14) and (15). Open circles are one from the Monte Carlo predictions

(GEANT-FLUKA+GHEISHA) from Table 3.
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Fig. 3 shows the energy depositions into towers for 1 � 4 depths as

a function of z coordinate of center of tower. Fig. 4 shows the same for

overall calorimeter (the sum of histograms presented in Fig. 3). Due to the

wide beam scan provided many di�erent beam impact locations with cells

and using information from all cells it is succeeded to obtain detailed pic-

ture of transverse shower behaviour in calorimeter. The obtained spread

of transverse shower dimensions is more than 1000 mm. The energy depo-

sitions span a range of three orders of magnitude. It can be seen the at

shoulder at jzj coordinate less than 100 mm. An immediate turnover occur
as soon as jzj reached the boundary of the cell. Such picture of transverse

shower behaviour was observed in other calorimeters as well [15], [19].

We used these distributions in order to extract the underline marginal

density f(z). By adding to statistical errors the electronic noise errors of

27 MeV /cell [22], the e�ective intercalibration error of 2% [9] and uncer-
tainties of 4%, arising from the nonzero entry angle of the incident beam

into the calorimeter, we obtained a good description of these distributions.
The solid curves in Fig. 3 and 4 are the results of �t with equation

(15). In compare with [20], [19], where the transverse pro�les exists only

for distances less than 250 mm, the our more extended pro�les (up to 650
mm) demand to introduce the third exponential.

The parameters ai and �i obtained by �tting are listed in Table 1. As
can be seen from Table 1 the slopes of exponentials, �i, increase and the
contribution of the �rst exponential, a1, decrease as shower develop. The

obtained values of �1 and �2 for overall calorimeter agree well with ones
for conventional iron-scintillators calorimeter [20] amount to 18 � 3 mm

and 57� 4 mm, respectively.

Table 1: The parameters ai and �i obtained by �tting the transverse shower

pro�les for four depths and overall calorimeter.

a1 �1, mm a2 �2, mm a3 �3, mm

1 0:88� 0:07 17� 2 0:12� 0:07 48� 14 0:004� 0:002 430� 240

2 0:79� 0:06 25� 2 0:20� 0:06 52� 6 0:014� 0:006 220� 40

3 0:69� 0:03 32� 8 0:28� 0:03 71� 13 0:029� 0:005 280� 30

4 0:41� 0:05 51� 10 0:52� 0:06 73� 18 0:07� 0:03 380� 140

all 0:78� 0:08 23� 1 0:20� 0:08 58� 4 0:015� 0:004 290� 40
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The shower depth dependences of the parameters ai and �i are dis-

played in Fig. 5. As can be seen they demonstrated a linear behaviour.

The curves are �ts of linear equations ai = �i + �i � x and �i = i + �i � x.
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Figure 5: The shower depth dependences of the parameters ai and �i.

The values of parameters �i, �i, i and �i are presented in the Table 2.
It is interesting that in [1] for the low-density-�ne-grained ash chamber

calorimeter the linear behaviour of the slope exponential is also observed.
In the same time for uranium-scintillator ZEUS calorimeter some non-

linear behaviour of slope of halo component measured at 100 GeV has been
demonstrated at interaction lengths more then 5 � in shower development
[23].

Table 2: The values of parameters �i, �i, i and �i.

�i �i, 1=�� i, mm �i, mm=��

a1 0:99� 0:06 �0:089� 0:015 �1 14� 2 6� 1

a2 0:04� 0:06 0:072� 0:015 �2 42� 10 6� 4

a3 �0:001� 0:002 0:008� 0:002 �3 170� 80 30� 24

Table 3 presents the Monte-Carlo predictions for hadron shower energy

depositions in the modules of TILECAL at centre coordinates of these
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modules obtained by using the di�erent hadronic simulation packages in-

terfaced with GEANT [8]. The simulation energy cuto� for neutrons have

been set to 1 MeV . One can compare our data from Fig. 4 and Monte-

Carlo predictions from Table 3 for the same z coordinates. Comparison

show too worse agreement, with factor > 3, at distanse of �400 mm from

shower kernel.

Table 3: The average fractions of the energy fraction of the total energy

deposited per module for 100 GeV pions obtained by using the di�erent

hadronic simulation packages interfaced with GEANT (G).

Z, mm �400 �200 0 200 400

E, %

G-FLUKA+GHEISHA 0:43� :02 4:3� :1 91� 1 4:4� :1 0:43� :02

G-FLUKA+MICAP 0:20� :01 3:2� :1 94� 1 3:2� :1 0:18� :01

G-GHEISHA 0:34� :01 3:2� :1 92� 1 4:5� :1 0:38� :01

4.1.2 Cumulative function

Similar results were obtained from cumulative function distributions. Cu-
mulative function F (z) was obtained as follows:

F (z) =
4X

k=1

F k(z); (20)

where F k(z) is the cumulative function for k-depth. For each event F k(z)

is

F k(z) =
imaxX
i=1

5X
j=1

Eijk; (21)

where imax = 1; : : : ; 5 is the last number of tower in sum.
Fig. 6 and 7 (left) present the cumulative functions F k(z) for four

depths and for overall calorimeter. The curves are �ts of equations (17) to

the data. The results of the cumulative function �ts are less reliable and
in the following we will use the results from energy depositions in tower.

The knowledge of the cumulative function allows us to determine di-

rectly according to (6) the marginal density f(z) without additional as-

sumption about its form. This is demonstrated in Fig. 7 (right) where the
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Figure 6: The cumulative functions F (z) for four depths. Depth 1 | up
left, depth 2 | up right, depth 3 | down left, depth 4 | down right.

Curves are �ts of equations (16) and (17) to the data.
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Figure 7: Left: The cumulative function f(z) for overall calorimeter.
Curves are �ts of equations (16) and (17) to the data. Right: The marginal

density f(z) for overall calorimeter.

marginal density f(z) extracted by the numerical di�erentiation F (z) is

shown. Overlayed curve is a calculation of the expression (12) with pa-
rameters listed in Table 1. This curve well reproduces the such obtained
marginal density.

Thus, the marginal densities f(z) determined by three methods (by
using the energy deposition spectrum, the cumulative function and the

numerical di�erentiation of F (z) are in reasonable agreement.

4.1.3 Radial hadron shower energy density

Fig. 8 and Fig. 9 (left) show the radial shower energy density functions,
�(r), calculated by formula (18) with parameters from table 1. The contri-

butions of di�erent terms are also shown. The data of SPACAL calorimeter

calculated by formula (9) with �1 = 140 mm and �2 = 42:4 mm are shown

for comparison on Fig. 9 (right). Since in this work the lateral pro�les
are presented in term of the measured picocoulombs the density �(r) was

transformed into GeV energy scale by using the energy deposit constant

of 4 pC=GeV [15].

As can be seen at general reasonable agreement the curve of SPACAL

lies systematically below the TILECAL one beyond 1:5 �eff� .
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Figure 8: The radial energy density, �(r), as a function of r for TILECAL

for various depths: solid lines | the energy densities �(r), dashed lines |

the contribution from the �rst term, dash-dotted lines | the contribution

from the second term, dotted lines | the contribution from the third term.

Depth 1 | up left, depth 2 | up right, depth 3 | down left, depth 4 |

down right.

15



10
-2

10
-1

1

10

10 2

10 3

0 0.5 1 1.5 2 2.5 3

r, in λπ

Φ
 (

r)
, G

eV

10
-2

10
-1

1

10

10 2

10 3

0 0.5 1 1.5 2 2.5 3

r, in λπ

Φ
 (

r)
, G

eV

Figure 9: Left: The radial energy density as a function of r (in units of

�f) for TILECAL (solid line), the contribution to �(r) from the �rst term
(dashed line), the contribution to �(r) from the second term (dash-dotted
line), the contribution to �(r) from the third term (dotted line). Right:

The comparison of the radial energy densities as a function of r (in units

of �f) for TILECAL (solid line) and SPACAL (dash-dotted line).
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4.1.4 Radial containment
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Figure 10: Left: The containment of shower I(r) (solid line) as a func-

tion of radius for overall TILECAL calorimeter. Dash-dotted line | the
contribution from �rst depth, dashed line | the contribution from second

depth, thick dotted line | the contribution from third depth, thin dotted
line | the contribution from fourth depth. Right: The radii of contained
cylinders for given shower containment as a function of depths: black cir-

cle { 90% of containment, black square { 95%, black triangle { 99%. The
curves are drawn to guide the eye.

One of the important questions concerns the shower transverse dimen-

sions and its longitudinal development.
The parameterisation of the radial density function, �(r), have been

integrated to yield the shower containment as a function of radius, I(r).

Fig. 10 (left) shows the transverse containment of the pion shower, I(r),

as a function of r for four depths and overall calorimeter.

In Table 4 and Fig. 10 (right) the radii of cylinders for given shower
containment (90%, 95%, 99%) extracted from Fig. 10 (left) as a function

of depth are shown. Solid lines are the linear �t to the data. As can

be seen these containment radii increase linearly with the depth. The lin-
ear increase of 95depth is also observed for Fe-scintillator calorimeter at 50

and 140 GeV [29]. For overall TILECAL calorimeter the 99% containment

radius is equal to 1:7 � 0:1 �eff� . In the last row of this Table the corre-

sponding data for SPACAL calorimeter for 80 GeV �-mesons are given (a
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Table 4: The radii of contained cylinders for given shower containment for

TILECAL (for various depths and overall) and SPACAL (overall) calorime-

ters.

Calorimeter x in �Fe� r, in �eff�

90 % 95 % 99 %

TILECAL 0.59 0.44 0.64 1.43

1.97 0.60 0.88 1.55
3.74 0.92 1.27 1.75

5.92 1.24 1.55 1.87

overall 0.72 1.04 1.67

SPACAL overall 0.86 1.19 1.72

pions grid scan at an angle of 2o with respect to �ber direction). Note that

in the case of Pb-scintillator calorimeter SPACAL, having the same �eff�

(see Table 7 in Appendix 2), the shower containment radii are similar to

obtained for iron-scintillator calorimeter TILECAL.
It is interesting to note that it is mistaken to consider as the measure

of the transverse shower containment the one obtained from the marginal

density f(z) or the energy depositions in strips as have been made in [1].
In this work for 99% containment have been obtained the value of 1:2 �I
and the conclusion have been made that \their result is consistent with
the \rule of thumb" that a shower is contained within a cylinder of radius
equal to the interaction length of a calorimeter material [24]". But it is

showed by our and SPACAL measurements that the value of radius of
99% contained shower cylinder amounts to about two interaction length.

Reduced value of this radius obtained from f(z) is due to that according to

(10) represents the integrated function �(r). In our case if we will use as a
measure of shower containment the half-width of integrated f(z) estimated

from F (z) in Fig. 7 (left) we obtain the value of 300 mm or 1:2 �eff� that

agrees with [1].

4.2 Longitudinal Pro�le

Here we are concerned with the di�erential deposition of energy �E=�x as
a function of x, the distance along the shower axis. In Table 5 the average

energy shower depositions in various depths, Eo, the normalised to one
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interaction length �Fe� energy depositions, �E=�x, the lengths of depths,

L, the e�ective iron lengths of depths, Leff , the lengths of depths in units

of �Fe� , the centers of depth intervals in units of �Fe� , x, are given. In these

calculations the value of �Fe� = 207 mm has been used (see Appendix 3).

Table 5: Average energy shower depositions in various depths.

x in �Fe� �x in �Fe� L, mm LFe, mm Eo, GeV �E=�x, GeV

0.59 1.18 300 245 25.5�0.3 21.6�0.3
1.97 1.58 400 327 43.6�0.2 27.6�0.1
3.74 1.97 500 408 22.4�0.1 11.2�0.1
5.92 2.37 600 490 8.5�0.5 3.6�0.2

In Fig. 11 the our quantities �E=�x (open circle) together with the

data of [25] (open triangles) and Monte Carlo predictions (GEANT �
FLUKA+MICAP , diamonds) [8] are shown. The agreement is observed.
So, as to longitudinal energy deposition our calorimeter with longitudinal

orientation of the scintillating tiles agrees with the one for a conventional
iron-scintillator calorimeters.

4.3 \Electromagnetic" fraction of a hadronic shower

The lateral shower pro�le information may be used for determination of the
average fraction of energy going into �o production in a hadronic shower,
f�o [15]. Following [15] we assume that the \electromagnetic" part of

hadronic shower is the prominent central core, i.e. in our case the �rst term.
The integrated contribution from this term is f�o = (55� 3)%. This value

may be compared with the one of 56% as simulated by FLUKA for our

calorimeter [8], the one of 59% as simulated by CALOR for iron calorimeter

[26] and the one of 54% as obtained by using the lead-scintillating �ber

SPACAL calorimeter [15].

The observed �o fraction, f�o, is related to the intrinsic actual fraction,
f 0�o, by the relation [27], [28]:

f�o =
e=h � f 0�o

(e=h� 1) � f 0�o + 1
: (22)
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Figure 11: Left: Longitudinal pro�le as a .function of longitudinal coor-

dinate x in units �Fe� . Open circle { our data, open triangle | data for
conventional calorimeter, diamond { Monte Carlo prediction. Right: The

fractions of the \electromagnetic" parts of showers in various depths as a
function of x.

There are two analytic forms for the intrinsic �o fraction suggested by
Groom [27]

f 0�o = 1� (
E

E 0

o

)
(m�1)

(23)

and Wigmans [28]

f 0�o = k � ln( E
E 0

o

); (24)

where E 0

o = 1 GeV , m = 0:85, k = 0:11. We calculated the values of f�o

using a value of e=h = 1:23 for our calorimeter at � = 10o [12] and obtained

the values of f�o are equal to 55% and 56% for Groom and Wigmans

parameterisations of f 0�o, respectively. Thus, our measured value of f�o

agrees well with the experimental one [15] and Monte Carlo calculation

[26] and with our calculations.
The determined contributions of parts for various depths give the possi-

bility to obtain the fractions of \electromagnetic" and \hadronic" parts of

hadronic showers in various stages of longitudinal development of showers.

On the Fig. 11 (right) shows the corresponding results. As can be seen as
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shower developed the \electromagnetic" fraction decreases. This is natural

since the shower energy exhausts and as a result �o production decreases.

The best �t to these data is fem = (76� 2)� (8:1� 0:4) � x.

5 Conclusions

We have investigated the hadronic shower longitudinal and lateral pro�les

on the basis of 100 GeV pion beam data at incidence angle � = 10o at

impact points Z in the range from �36 to 20 cm.

� Some useful formulae for investigating of lateral pro�les have been

derived:

{ the integral expression (11) for radial density �(r) as a function

of marginal density f(z),

{ the formula (18) for radial density �(r) and the formula (16) and
(17) for cumulative function F (z) in case of three exponential
form of f(z) (12).

� We have obtained for four depths and for overall calorimeter:

{ the energy depositions in towers, E(z);

{ the cumulative functions, F (z);

{ the marginal transversal densities, f(z);

{ the underling radial energy densities, �(r);

{ the containment of a shower as a function of radius, I(r);

{ the radii of cylinders for given shower containment;

{ the fractions of \electromagnetic" part of a shower;

{ the di�erential longitudinal energy deposition �E=�x;

{ the three-dimensional hadronic shower parametrisation.

We have compared our data with relevant data for conventional iron-

scintillator calorimeters, SPACAL lead-scintillating �ber calorimeter and
Monte Carlo calculations. Our longitudinal pro�le agree with the ones for

a conventional iron-scintillator calorimeters and Monte Carlo prediction.
Our lateral pro�le is not agree with the Monte Carlo prediction.
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The three-dimensional hadronic shower parametrization for iron-scin-

tillator calorimeter have been obtained. This parametrisation is important

in fast Monte-Carlo simulation for ATLAS calorimetry.

6 Appendix 1.

Solution of Abelian equation.

It is stated above that the marginal density distribution f(z) is con-

nected with the radial energy density �(r) by relation (10). This integral

equation can be reduced to the Abelian equation [18]. Here we show how

to solve the equation (10) and to obtain the expression (11). Let � = r2

and � = z2 so that the equation (10) becomes

f(
p
�) =

Z
1

�

�(
p
�); d�q

(� � �)
: (25)

If we multiply (25) on
p
� � � and obtained product integrate over d�

in limits [�;1] then

I =
Z

1

�

f(
p
�)p

� � �
d� (26)

Using the following relation

Z
1

�
d�

Z
1

�
d� : : : =

Z
1

�
d�

Z �

�
d� : : : (27)

we get

I =
Z

1

0

�(
q
�)d�

Z �

�

d�q
(� � �)(� � �)

(28)

We should be able to use the fact that

Z �

�

d�q
(� � �)(� � �)

= � (29)

and write
I = �

Z
1

�
�(
q
�)d�: (30)
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Let us return to former variables z, r and � = r2. Then (26) and (30)

modi�ed into Z
1

r

zf(z)p
z2 � r2

dz = �

Z
1

r
�(r)rdr (31)

Di�erentiating equation (31) over r we get

�(r) = � 1

�

d

dr2

Z
1

r2

f(z)dz2q
(z2 � r2)

: (32)

7 Appendix 2.

The e�ective nuclear interaction length, the e�ective
radiation length and the e�ective Moliere radius.

In reality our calorimeter represents itself the complex structure of var-

ious materials and it is necessary to know the e�ective nuclear interaction
length (�eff), the e�ective radiation length (Xeff

o ) and the e�ective Moliere
radius (Reff

M ).

We calculated these quantities for our calorimeter. For calculating �eff

and Xeff
o we used the algorithm suggested in [10] so,

�eff =
xFe + xSc + xW + xA

xFe=�Fe + xSc=�Sc + xW=�W + xA=�A
; (33)

where xFe, xSc, xW , xA are the volume fractions of the respective mate-

rials (Fe, scintillator, wrapping, air) in a period of 18 mm thick of the

calorimeter, �i are the corresponding interaction length.
The e�ective radiation length, Xeff

o , was also calculated by the formula

(33) replacing the corresponding �i values by Xo;i values. The Moliere radii

is equal [14]

RM = XoEs=Ec (34)

and for a mixture of compound

1

RM

=
1

Es

X
j

xjE
j
c

X
j
o

; (35)

where xj are the fraction by weight, Es = 21:2 MeV is the scale energy,

Ec;j are the critical energy. Critical energy for the chemical elements with
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Table 6:

Material xj �j, mm Xj
o , mm

Fe 14/18 168 17.6

Sc 3/18 795 424

Wrapping 0.2/18 �Sc XSc
o

Air 0.8/18 747000 304200

the atomic number of Z is equal Ec = 610 MeV=(Z +1:24). The values of

the xj, �j and Xj
o are given in Table 6

In the Table 7 the results of the our calculations are given. In the

fourth column the corresponding values for SPACAL [15] are also shown
for comparison. The corresponding values for basic materials of these

calorimeters (Fe, Pb) from [14] are also given.

Table 7:

TILECAL SPACAL
e�, mm Fe, mm e�, mm Pb, mm

Xo 22.4 17.6 7.2 5.6

RM 20.5 16.6 20. 16.3

�p 206. 168. 210. 171.

�� 251. 207. 244. 198.

It turns out that the values �eff and R
eff
M for these two calorimeters

are approximately equal. The e�ective nuclear interaction length for pion

was also calculated by using relation ��=�p (Appendix 3).

8 Appendix 3.

The nuclear interaction length for pion.

Usually in hadronic calorimetry the nuclear interaction length (�I)

given in Review of Particle Physics [14] is used. It is the mean free path
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for protons between inelastic interactions, calculated using the expression

�I = A=(NA�I�); (36)

where A is atomic weight, NA is Avogadro number, �I is the nuclear in-

elastic cross section, � is a density. For Fe (�I = 703 mb) it amount to 168

mm. But sometimes the pion interaction length is needed as in our case.

We calculated the pion and proton interaction lengths and compared with

[14] and with the some experimental data [29], [25]. For this we used the

absorption cross section of pion and proton on nuclei in the range 60�280

GeV=c measured by [30]. Unfortunately in this work absorption cross sec-

tion of � and p on Fe nuclei are not measured. Therefore we used the

nearest cross section for Cu (see Table 8). Transformation from Cu to Fe

was performed using the expression

�Fe = �Cu(AFe=ACu)
�
: (37)

Table 8: Measured absorption cross sections and parameter � for Cu tar-

get.

E 60 GeV 200 GeV

�, mb � �, mb �

�+ 627 � 19 0.764 � 0.01 629 � 19 0.762 � 0.01

p+ 764 � 23 0.719 � 0.01 774 � 23 0.719 � 0.01

��=�p 1:22� 0:05 1:23� 0:05

�p � �� �0:045� 0:014 �0:043� 0:014

In Table 8 the measured cross sections for �+Cu interactions at 60 and

200 GeV together with parameter � are given. Using expressions (36) and
(37) cross sections and nuclei interaction lengths are presented in Table 9.

As can be seen from Table 9 the Fe cross sections and nuclear inter-

action lengths do not depend from energy within errors at 60� 200. The
mean over energy range values are �� = 207 � 7 mm, �p = 168 � 5 mm,

��=�p = 1:22�0:05. The value of �p coincides with that given in [14]. The

value of �� may be compared with the measured in [25] value �� = 200�10
mm and in [29] value �� = 190 mm.
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Table 9: Calculated cross sections and nuclei interaction lengths for Fe

target.

E 60 GeV 200 GeV

��, mb 568 � 18 570 � 18

�p, mb 696 � 21 705 � 23

��, mm 207 � 7 207 � 7

�p, mm 169 � 5 167 � 5

��=�p 1.22 � 0.05 1.24 � 0.05

The value measured in [25] presumably have be corrected on iron equiv-

alent length (including scintillators) and then amounts to 210�10 mm and
better agrees with ours.

Using the expressions (36) and (37) we obtained the A-dependence of

the ratio
��=�p(A) = ��=�p(Cu)(A=ACu)

�p��� ; (38)

where �p��� = 0:045� 0:014 (Table 8). For Pb nucleus it corresponds to
��=�p(Pb) = 1:16� 0:05. Therefore, it is mistaken to use the value of the
ratio ��=�p(Pb) = 1:5 as have been made in [31] when analysing of data

from lead scintillating �ber spaghetti calorimeter.
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