ATLAS Internal Note
TILECAL-NQO-033
16 November 1994

TILECAL Data Aquisition System for the
ATLAS Test Beam Experiments

Renius Arsenescu
CERN - PPE Division, CH 1211 Genéve 23 Switzerland

November 16, 1994

Contents
1 Introduction

2 Short description of ATLAS Test Beam Experiment Data Aqui-
sition System

3 Reduirements for the TILECAL Data Aquisition System

3.1 The timing of the readout by respect to the burst
3.2 Requirements imposed by the calorimeter.
3.3 Requirements imposed by the General Aquisition
4 The TILECAL DAQ System
4.1 The Hardwareorganisation
411 VMEULevel
41.2 CAMACLevel
413 NIMULevel it
414 ThePPGHardware.
4.2 The Finite State Machine
4.2.1 Normal data taking e e e e e e e e e
4.2.2 Calibration Procedures
4.3 The Software organisation
431 TheMatrix ¢ o i i v o it i it et et eeea e
432 TheActions . . . - . - ¢ ¢ v v v et i it it e e e
433 DataFormat e e
4.3.4 Interrupt management
4.3.5 Memorymanagement
4.3.6 Event Format routines and libraries
437 CAMACroutines« . ¢ ot v vt oo v v oo
4.3.8 PPG Calibration routines
439 Controlroutines« oo v v v vt
4.3.10 Database Linkroutines

5 The interactive environement - Run Control Facilities
6 Run Control Parameters for TILECAL
7 Parameters and performances

8 Contributions and references

27

32

33

1 Introduction

RD-34 uses for the 1994 test beam a more performant Local Aquisition
System in order to satisfy the requirements of the ATLAS tests . This system is
designed and organized differently than the one used in 1993.

Compared with the old DAQ System, the new one accepts higher trigger
rates, has a better data format, it is more flexible and provides a full compatibility
with the ATLAS General Aquisition (performed by RD-13). The monitoring tasks
are also more flexible and complete.

2 Short description of ATLAS Test Beam Ex-
periment Data Aquisition System

ATLAS H8 Test Beam DAQ is a complexe and flexible system designed
upon the multiple criteria required by the experiment. It integrates all local de-
tector DAQ systems, it is easy configurable in order to include or exclude a given
detector and can cope with different types of runs: physiscs events calibration or
combined.

As it was allready suggested , the system uses a General Aquisition which -
reads and process data from the different subdetectors Local Aquisitions. To
achieve this, a common interface was designed.

The block configuration of the full DAQ system is presented in fig. 1.

For each subdetector was defined a standard configuration implemented
as a VME structure. This includes:

e - an individual Memory Area divided into a number of fixed size Logical
Buffers capable to hold event data from a particular subdetector

e - a CPU unit
e - an Interrupt Manager for SPS and Trigger signals
e - a Readout Module

e - a Vertical Bus Interface

Almost the same configuration (excepting the R/O module) is used by the
Event Builder which reads data from subdetectors via the Vertical Bus.

Each local DAQ system is able to act upon the SPS signals (” Start of
Burst” and "End of Burst”) and the Trigger signals, generating a Busy signal
on the occurence of each of these ones. The Busy signal is kept active for the
whole duration of the specific procedure in progress. The Busy associated with
a given signal is interpreted by the Event Builder as a signal of the same nature,

To other < k)
VME Crates e
v r g Detector “a” Detector "0’
A 1 D B Readout
c o Inerface
. s |s
I
‘
S 1 s |,
v
t AT 3 _Busy Sigals Det'n
[,3 Trigger
€ & Int. Signals to Det. ~DES.
: ‘lri i cTe Trigger&B:usy Logic
£ v it | r|®| Detector! U
R i o | Blp v '
» ol |7[¢s| TmES N
E g 2 02 ——)..-.:_v":iw : ‘—EPS_
v T 5 s Vi -
; AR T
c ! 1
8 La Busy Signals l_:___'___,
2 i Det. 1
1 (3 It Siguals 1o Event Builder) Trigger
¥ L ¥
C
R o0
M A R Event Builder
1
N I I
3 s |
2 2 |o
: 3 |a
5 {7

Figure 1: The Configuration of the Experiment DAQ

on the occurance of which an Event Builder Busy signal is generated. This
last one should inhibit all the activities of the Local Aquisitions. A new readout
operation can start only when the E.B. Busy is released. The individual buffers of
the subdetectors are emptied at the end of each burst, when data are transfered
by DMA to the General Aquisition which performs the event building. The
individual memory buffers are organised in such a way that data from the same
physical event provided by each detector are correlated.

The monitoring tasks can be plugged in at local level or at the Event
Builder level. In particular for TileCal it is the second case.

The General Aquisition provides also the data recording system. Data is
stored on magnetic support (Exabyte Cartridges).

3 Requirements for the TILECAL Data Aqui-
sition System

3.1 The timing of the readout by respect to the burst

SOR ‘'SOB EOB SOB EOB EOR
l—l P 1S el Y Y =Y < I—I
i v ' ') -~
gohes) 26, ' '
S b3l ' 1
E(u"ﬂ-lsu.% W“-IOS. >E

Figure 2: The Structure of the Burst

The timing diagram of the readout is presented in fig. 2

The SPS ”Spill” duration (4.5 seconds) is marked by two signals: “Start of
Burst” and “End of Burst”. The bunch of particles arrives some one second after
the SoB signal and finishes some 1 second before the EoB signal (its duration
is about 2.6 seconds). This particular structure of the burst is used in order
to perform the readout for physics events and for calibration procedures. The
readout process is started by the occurence of a “Start of Run” signal at 2 moment
“t0”. No readout is performed till the SoB signal appears. The first second after
SoB and the last one before EoB (which are called “extensions of the burst”)are
used for special readout procedures as Pedestals, or Laser Calibrations. The
real burst (when particles arrive) is used for reading out the physics events and,
optionally, Pedestals and Laser Calibration events. After EoB the system remains
inactive till the next SoB.

For the particular case of PPG Calibration procedure the whole Spill du-
ration is used.

3.2 Requirements imposed by the calorimeter

During the 1994 Test Beam, RD-34 will test five modules of the Hadron
Calorimeter. Each module being read by 40 Photomultiplier Tubes, this extends
the number of signal lines to 200. It is required that the signals on each line to
be read both nonamplified and amplified (k = 7.5) in order to cover the wide
dynamic range of the detector response for different kind of particles in the beam.
This allows an analog-to-digital conversion on only 12 bits with a sensitivity of 4
ADC counts per picocoulomb of collected charge.

Data are recorded without pedestal or zero substraction.
The DAQ is able to analyse the calorimeter respose for Physics events, for
Laser and Electronic (PPG) Calibration Procedures and for Pedestals. Excepting

the PPG Calibration, all these procedures can be performed individnally , during
dedicated runs, or can be combined. The DAQ System provides also information
about the beam parameters corelated with the Physics events.

The monitoring task is required for the online check of the calorimeter
response, the beam quality, for calculating pedestal values and calibration con-
stants.

3.3 Requirements imposed by the General Aquisition

From the General Aquisition point of view the local DAQ System is sup-
posed to cope with the standards imposed for signals, for the memory structure
and for the data format.

As it was allready mentioned, the local aquisition generates interrupts and
Busy signals in response to the standard SPS signals (SOB and EOB) and to
a Trigger signal which is common for all detectors. The system treats electrical
pulse signals and generates electrical level (Busy) signals. The specific Trigger
signals for the Hadron Calorimeter (from physics events and/or calibration pro-
cedures) are "summed” (by the mean of an OR function) with Trigger signals
from other detectors in a Global Trigger Busy Logic and become part of the
common Trigger signals. .

The Hardware configuration of the Local Aquisition Sytem is totally inde-
pendent from the Event Builder and other detectors. It includes an independent
32 MBytes memory area which resides on the CPU card and an interface to the
common Vertical Bus.

The memory management is done on a Shared Memory Principle. A mem-
ory segment is created and mapped and, afterwords, both the Local and the Gen-
eral Aquisitions are accessing it (the local system for filling the buffer and the
Event Builder for dumping it).

Data are organised in a standard way as a tree structure. There is a Fixed
Header and a User Header for the Full Event and a table of pointers which give
the adresses for all the detectors data areas. Each area has again a Fixed Event
Header, an User Header and a block of pointers to the blocks of data associated
with the subdetectors which form a detector.

4 The TILECAL DAQ System

Seen from the experiment level, TILECAL (RD-34) Local DAQ System is
one part of the tree like structure. Though, it is functionally independent and
provides a hardware and a software interface to the full system.

4.1 The Hardware organisation

TILECAL Local Aquisition is implemented on 3 level:
- The CPU and the main process controllers are at the VME level.
- The Readout configuration is implemented at CAMAC level.
- The Local Trigger and Busy Logic is implemented at NIM level.

4.1.1 VME Level

The RD-34 VME structure includes a Processor Unit with independent
memory area, an Interrupt Manager, a CAMAC Branch Controller, and a Vertical
Bus Interface (fig. 3).

The Processor Unit is a CES RAID 8235 module , a risc VME processor
running real-time UNIX (TC/IX operating system). For the particular applica-
tion we discuss now only the VME accessing ability of the module is exploited.
The physical mapping of the bus is programable by software. The VME (and
VSB) interfaces can be accessed by both the R3000 CPU and the DMA controller
by the me an of two distinct address spaces. These spaces are divided in spaces
of 16MB . The local aquisition runs on the RAID processor. The other VME
modules are controlled by this one via the VME bus.

The CES VIC 8251 module is a Vertical Bus Interface which allows a
transparent connection of up to 15 VME crates on the same (VMV) bus. It
includes master/slave VMV and VME interfaces (the VSB slave interface is not
used for this application). It provides a transfer speed up to 8Mb/s. The internal
buffer memory capacity is 512 Kb. It also supports muti-processing on the VMV
bus.

RCB 8047 CORBO is a CES Interrupt Manager module. It can handle up
to four independent interrupt signals (on four independent channels). It generates
a VME interrupt on the occurance of each signal , is able to count the events
and it controls the dead time. On the occurance of a signal on one of the four
channels a Busy signal is asserted together with the VME interrupt. The Busy
signal can be cleared only by a VME access. No other trigger signal is accepted
wile the Busy signal is asserted. The module’s function mode can be programmed
by configuring the Control and Status Register.

The CAMAC branch driver is a CES CBD 8210 module. Up to seven
CAMAC crates can be driven via this module from the VME processor. It allows
16-bit and 24-bit transfers and can handle graded LAM requests in two modes.

- CAMAC
A CRATE1
A
- HARD DISK C C
VME A]J CRATE 2
‘I’ CRATE \L
C v R =c|'c ¢
1 A (o] B A
B C 1 R D E = HIGH VOLTAGE
8 D B 3 SUPPLY
U 2 8 2 o] 2 :
5 2 8 1
S 1 3 [{] 0 T
s 3 4
i
I i A TRIGGER & BUSY
LOGIC
Y
EOB BUSY
EOB
SOB BUSY
SOB
TRIGGER BUSY
TRIGGER
ETHERNET
< y =

Figure 3: The VME Configuration

For the local aquisition task the interrupt facilities on the GL signals are not used
(for reasons of speed).

4.1.2 CAMAC Level

The basic level readout for the TileCal detector is implemented as a CA-

MAC structure (fig. 4).
There are two independent CAMAC sections:

e one for the calorimeter readout

e one for the auxiliary readout(Beam-Elements) and control (Trigger Mask,
PPG Calibraion control etc.)

The calorimeter readout is implemented using seven CAEN 205 ADC mod-
ules. These are 32 channels charge ADC-s providing a 12-bit convertion range on
two paths, one with x1-gain and the other with x7.5-gain. This provides the ad-
vantage of a 15-bit like conversion on a simpler configuration. The input charge
is first converted to voltage when coincident with a Gate signal and then this
voltage is converted to number in parallel by two different gain paths. The digial
convertion is done by succesive aproximations. The two 12 bits resulting words
are stored in a RAM memory. When the conversion finishes for all 32 channels
a CAMAC LAM signal will be set to “1” signaling that data can be read. The
2*32 words can be read via the CAMAC bus in sequential order. A 65-th CA-
MAC reading operation clears the module which will now be ready for a new
conversion.

The gate signal width can be set between 100ns an 5pus.

The full scale input charges are 112.5pc(for the 15 bit dynamic range) and
900pC (for the 12 bit dynamic range).

The conversion gain is ~30cnts/pC and ~v4cnts/pC respectively.

The conversion time for the 32 channels is about 1.6ms.

With the seven modules we cover 224 signal paths, from which we use 200
for the calorimeter read-out.

Three other paths are used for the LASER monitoring diodes.

The other CAMAC section contains the Beam Elements read-out and some
auxiliary control modules.

For the Beam Counters a LeCroy 2249 12 channels ADC is used. Only
three channels are used for the 3 counters. The charge-to-digital conversion is
done on 10 bits with 256 pC full scale input charge and 0.25pC/cnts sensitivity.
The conversion time is 60us (the 12 channels are operational in paralel). The
gate width allowed is between 10ns to 2us.

For the Beam Chambers there are used two LeCroy 4208 8 channels TDC
modules. These can provide a 23 bits(plus 1 bit for sign) word for each channel,
so covering a time domain value of +8.3ms with a resolution of +1ns. For each
module the conversion is done in paralel for the 8 channels if the signals are
coincident with a unique time window. The two modules used in our configuration
are daisy-chained in order to have the same window.

e The Beam Elements ADC and TDC-s are used optionally when TILECAL
is in stand alone configuration in the beam.

In order to identify the nature of the trigger signal treated at a different
moments, we use a Pattern Unit (SEN 2026 - Strobed Input Register) which
encodes on a 12 bit word the truth value of the 12 input channels.

8/3)?3‘! Det. |Det |Det {Det |Det |Det [Det :
, ADC |ADc |adc |anc fanc aoc faoc| |4 |c= [CAMAC
N 1 Controter
tl2 s tals s | c
¢ “; Crate 2
p e . R :
plele ! u
6l6l6 c ;‘
a1 o ADCFuClw | * A
d1d|d <
1 weGw | TN VS
........................... ! ALACA Ly gigl A"
M’D\ 3
2l n) | %} n‘,ru‘,
Cabteution Trigger
.
L
- ., |Logc
Tregr O
Trigger Mask
1 17
i 1
-> 5/ S/
Y ce | CAMAC
. Cootroler
Breat |Tagg. | s [L= LT Crate |

ls
Pat | Mask |Pait |Par |Patt
Uit Protpot | Unit 1] Unit 2| Unit 3

ADC |TDCI|{TDCY]

Laser Control

Figure 4: The CAMAC ReadOut and Control Configuration
9

A CAMAC 12 bits Output Register is used to select specific triggers for
differents types of runs. According to the word wrote via CAMAC into the
register, there can be found different truth values on the 12 outputs which can
be used to veto the trigger signals. The bit significance is identical with the one
of the Pattern Unit.

For the special PPG Calibration procedures it is needed to access by re-
mote control another CAMAC crate which lays near the detector. For this we
use a CAMAC Transmitter (a SEN LTX 111 module).

The readout is performed on the occurance of each trigger signal accepted
by the Busy Logic. The reading out moment is detected by testing the LAM
signal on all the detector ADC-s(which are the slowest); at this moment all the
CAMAC elements (including the Beam Elements and the auxiliary ones) are read
and cleared sequentially.

4.1.3 ' NIM Level

TILES PreTrigger
(to General Trigger
Logic)

Monostable

Physics Trigger (L1) l | oo [;I | Trigg to CORBO
Master Trigger (L2) Memasmsie
FAST
CLEAR
N N— g -
In Burst ° ' 3 N 7
wepertecenccaanae b
GATE
Clock 1 }—5) -
i /’ -\ I
oy
TILES
OTTE >) J Calibration
L L ﬂ Trigger OR
Clock 2 I >_.) 17_
L
PPG Trigger ~
Monostable

%P

LASER

1 2 b . s * 7

Pattern Unit Gate

Figure 5: Local Trigger and Busy Logic

10

The Local Trigger and Busy Logic is implemented at NIM level. The idea is
to have a single trigger path for all TileCal specific triggers and to provide a full
compatibility with the General Trigger and Busy Logic. The calibration triggers
used by the detector are vetoed by the mean of “AND” gates (coincidence units)
with the trigger mask given by the CAMAC Output Register. Then, the different
“conditioned” triggers are put together (also with the “physics events” trigger,
which is not conditioned) into an “OR” logical function (fig. 5).

When the TILECAL detector is alone in the beam line, the “physics
Events” trigger is obtained from the coincidence of the three Beam Counters,
conditioned by the presence of the Burst “window” and the Ready signals from
the Event Builder and the Local Aquisition.

The unique trigger signal which results gives the Gate signal for the local
read-out. The same signal is sent to the General Trigger and Busy Logic as
“Tiles Pre-trigger”. There it is “OR-ed” with other detectors “Pre-triggers” and
it is further conditioned by the standard SPS signals and the Ready signals.
The signal comes back as the Master Trigger signal which is the same for all
detectors. (For the General Trigger and Busy logic please reffer to RD13 Internal
Note No.125.) '

If a local trigger is not accepted by the General Trigger Logic, a Fast Clear
signal will be generated by the Local Logic, preventing in this way the TILECAL
detector ADC-s to treat a false signal.

The nature of the trigger treated at different moments is detected by the
Pattern Unit as the coincidence of the specific trigger with the Master Trigger.

4.1.4 The PPG Hardware

The PPG Hardware configuration is shown in fig. 6.

The PPG Calibration procedure consists in injecting a fixed electrical
charge on each of the detector ADC-s inputs and measuring the response. After
this, the charge value is changed and the measurement is repeated. The charge
values are in a logarithmic succession. This provides an absolute calibration of
the ADC channels and also their intercalibration. Practically, this is done by
decoupling the Photomultiplier Tubes from the ADC-s inputs and connecting
the charge injectors. For this we provide a DC voltage (about 100V), called the
PPG HV, to the CAMICO module in the PPG CAMAC crate. This module, on
a specific comand sent by remote, will divide this voltage with different factors
and will then send it to the 3 PPG modules. Using another remote command,
the PPG modules will produce a short pulse and send it on one PPG channel
at the time. Each PPG channel is connected to a PPG box which contains the
switches for the signal path and a resistive divider. The calibration pulse will be
so divided by 10 and sent on ten ADC inputs at the time. When producing a
calibration pulse, the PPG modules will generate also a trigger signal which is
sent to the Local Trigger Logic as “PPG Trigger”. All the signal paths are 50

11

PPG Modules
3

PPG 1 2 PPG HV
Trigger e I @ 'j l o
PPG PO 1 1 1 HV sep i
Camn . from LTX Module
Remote Controled . ; . :"
CAMAC Crate =] B c
J i
50 ochms
PPG B D []soo M
OXECS ohms D 1
r ' 2
! 4
- 5 —f O 10
ADC 1 2 .10
Chann.
30 otuns
< [;l —
20 500 ochms 191
r 5 192
- { ——fF " 200
ADC '

Chann.191 192... 200

Figure 6: The PPG Hardware
ohms impedance and need to be adapted.

4.2 The Finite State Machine

The behaviour of the Local DAQ System is controlled by a Finite State
Machine (fig. 7).

The Finite State Machine is defined by a list of states (represented as
rectangles in the FSM diagram) and list of “signals” that can be accepted. On the
occurance of a “signal” the system executes a transition between two consecutive
states (the transitions are represented as arrows). The “signals” can be interrupt
requests attached upon electrical (hardware) signals or simple software commands
(software signals). One can associate to each transition a specific routine (which
we call “action”) so that that, finally, the system will navigate between its states
according to the signals that it receives, executing particular procedures if called
by these ones.

4.2.1 Normal data taking

e The fundamental state is SO (IDLE) in which the system waits for the
beginning of a new run.

12

Figure 7: Finite State Machine

When the run starts, the system receives a "Start of Run” soft signal
and makes a transition from SO to S1 (OUTBURST) executing the ac-
tion "act_sor”. No other signal is accepted. The system is now ready for
the SPS signals.

If a "Start of Burst” hardware signal arrives from SPS, the system will
jump to state S3(INBURST) executing the action "act_sob”. The system
is ready to treat "Trigger” signals.

I an "End of Run” software signal arrives within S3 the system will go back
in state SO executing the action "act_eor”. No other signals are accepted.

If a “Trigger” hardware signal occurs within state S3, there will be a transi-
tion to the state S4 (READ) and the action "act_read” will be executed. By
"act _read” the system is reading data from the calorimeter and the beam
elements.

When this procedure is finished a soft signal "Next-Event” is generated
which causes the transition back to state S3. No other signal is accepted

13

e e e e TP >,
IDLE ERROR
EOR— | <0 . TEEmEmEmmT A
—_— SOR .
act_eor l ~act_sor SOB & fc EXTEND |
. =3t sob act_ppg start
St v ;
OutBurst EOB X
) ~act_eob 52 :
InitCalib '
A]
SOB EOB
TRG BT
Y act_read .
s3
InBurst '
TRG Next B Next_Ev
t d ext_kv '
act_rea check_state \J act_ppe ;
S4 E
READ |l eeeeeeemm 1

O SOB+EOB+TRG+EOR]
Error --ERR e e e mmmmmmea
SO EXIT ' S5

within state S4.
e When again in state 53 the system is ready to treat a new "Trigger”signal.

¢ When the burst ends and the SPS “End of Burst” signal arrives the system
jumps back to state S3 where it waits for a new burst.

e If a signal arrives in a state where it is not allowed it can be either ignored
or it might cause a transition to an "Exit” state (S5) if the error might
compromise the run. In this case the run should be aborted.

4.2.2 Calibration Procedures

Pedestals and LASER calibration routines are transparent from the DAQ
point of view. They are performed in the normal way of data taking.

PPG Calibration requires a different procedure, so it will be designed as a
separate part of the FSM. The distinction between this procedure and a normal
one is made by the mean of a calibration flag "fc” which is set to ”1” at the
beginning of the run for the PPG.

e The transition from S1 upon the SOB signal will be now to state 52 (Init-
Calib). The action performed upon “SOB” signal is a particular case of
“act_sob”.

e At the end of this action a soft signal “EXTEND2” is called upon which the
system (now in state “InitCalib”) performs the action “act_ppg-start”. The
aim of this action is to add a delay between “act_sob” and the generation
of the first PPG pulse. This is needed because of the rather long SOB-Busy
time of the Event Builder which perturbs the functionality of this routine.

o The "Trigger” signals will now be treated from S2. They call the same
function “act_read”

e The soft signal “Next_Event” will call now another action, “act_ppg” which
implements the logic for this calibration routine.

The cycle is ‘repea.ted each burst.

4.3 The Software organisatioh

The software part of the Local Aquisition implements the Finite State Ma-
chine described before and also provides the routines for managing the shared
memory, for the dialog with Automatic Run Control, for loading the parameters
from the Data Bases etc. It is organized in a set of files like it follows:

¢ TCL Dagq.c - contains the skeleton of the local aquisition

14

TCL.Act.c - contains the routines which implement the “actions”of the

FSM
TCL _Build.c - contains the Data Blocks creation routines

TCL.CAMAC.c - contains the CAMAC routines

-TCL_Cam_Map.c - contains the routine which sets the CAMAC modules

address parameters according to the values set in the Run Control Param-
eters Database

TCL Def.h - contains the definitions of the global variables used by the
program

tiles_creator.c - contains the routines which remove the old memory seg-
ment, then create and formate a new one

4.3.1 The Matrix

The skeleton of the Finite State Machine is implemented as a matrix with

two fields: states and signals; the elements of this matrix are defined as a structure
of “actions” and “next-states”.The “actions” are the one performed by the system
on the occurance of a particular signal; the “next-states” are the states reached
by the system after different transitions.

4.3.2 The Actions

The specific read-out or/and control procedures are done by the mean of

those “actions” as it follows:

Action_sor - It is an action that executes the CAMAC initialisation proce-
dures, it writes the trigger mask on the Output Register and it initialises
the calibrations constants.It also writes the SoR Data Block which contains
(for TileCal) the Run Control Parameters (from the database)

Action_sob - It writes the SoB Data Block(which is empty for TileCal), it
clears the interrupt channel for the SoB signal and, if the calibration flag
“fc” is true, it starts the PPG Calibration routine.

Action.read - It reads data at CAMAC Level and writes the Event Data
Block. Then puts the Next_Event soft signal.

Action_check state - Clears and reenables the trigger interrupt channel

Action_eob - Writes the EoB Data Block (which is empty for TileCal) and
clears the EoB interrupt channel.

15

When the calibration flag “fc” is set, a PPG run will be performed. The
specific actions for this type of run are:

o Action_sob - Sets the first PPG Voltage Step calling the routine “ppg_step()”
and then puts the EXTEND?2 soft signal

e Action_ppg.start - Is an action called by the soft signal EXTEND2. It calls
“yos_macros” routines forcing the local system to wait for a time “tau”
till the whole system is ready for this procedure. Then it calls the rou-
tine “ppg_pulse(channel, module, location)” which will generate the specific
voltage pulse to be injected to the ADC inputs selected by “channel” and
“module”. Simultaneously, a PPG_Trigger signal will be generated.

e Action_read - Is the same action as for normal procedures and it is per-
formed when a trigger signal is accepted; it puts the Next_Event soft signal

e Action_ppg - Is an action called by a Next Event soft signal when fc is set
to “1”. It chooses the next PPG Voltage Step and the next group of 10
ADC inputs to be pulsed at different moments and sends the “ppg-pulse”
command. Then it clears and reenables the trigger interrupt channel. A
new trigger will be generated and treated

e The whole cycle is repeated at each burst.

At the end of the run an “EoR” action is performed in order to clear the
CAMAC Branch, to close the memory segment and to release the memory pages
used for CAMAC control and auxiliary procedures.

4.3.3 Data Format

Data have a standard format for the whole experiment. This is a tree like
structure consisting of a Fixed Header, a User Header and the Blocks of Data,
as in fig. 8.

For the Event Builder it is defined a Fixed Event Header, a User Event
Header and the Data Blocks are the detectors.

For each detector there is a Fixed Event Header with a structure identical
to the one of the Full Event, a specific User Header and the particular blocks of
data.

The information about the full event is available on RD-13 Internal Notes;
we shall refer now only to the TileCal subevent format.

The Fixed Event Header contains general information about the event:

o Marker - A check word used by the EVT open routine to check if the event
structure exists

16

o Block Structure Size - Sub-event Structure Size (set by the EVT _close rou-
tine)

e Event Type - SoR, SoB, Trigger, EoB

¢ Run Number

e Spill Number

e Event Number within Run

e Event Number within Spill

e UEH pointer - A pointer to the User Event Header (the relative address)
e CNTS pointer - A pointer to the Event Contents Block

e Error code - It is initialised to “0” by the EVT.init routine

The User Event Header contains particular information for the specific
detector:

e UEH Size - The size of the User Event Header
e Time
e Date

e Trigger Type - Physics, Pedestals In-Burst, Pedestals Out-Burst, Pedestals
Special, PPG Calibration, LASER In-Burst, LASER Out-Burst, LASER
Special

o Event Marker - Check word used by the Online and Offline data analysis
programes

Table Position 0, 1, 2, 3 - The four coordinates of the table position
PPG HV - The PPG High Voltage Step
LASER 0, 1, 2 - Three words read from the CAMAC Pattern Unit

HV Status 0, 1, 2, 3 - Four words for the Photomultiplier Tubes High
Voltage Status

e PM Block - The Number of the ADC inputs block which were pulsed for
the event recorded

e Three more words reserved for future applications

17

Det. Headers -

Event Builder Ev Marker
Ev. Struct.Size
Header FEH [EvType Detector 1 (TILES)
Block ID
Ev.Marker Run No.
EB FEH - Spill No. .
Ev. Struct Size Data Block | Size
Ev.No.->Run Data
Block ID g:::;: ADC 1-32ch non amplif .
Run No. Error Code ADC 1-32ch(7.5) amplif .
Spill No. | UEH Size Data Block 2 Size
Ev.No.->Run :':: Data Block 21D
Ev.No.->Spill Trigger ADC 2-32ch non amplif .
UEH Pointer. B .‘;’.:::: ::'f p ADC21-32ch(7.5)amplif.
Cont.Pointer Table pos.-theta
Table pos.-phil ‘
Emor Code Table pos.-phi2 .
PPG HV Step
. LASER word 0 hd
UEH Size LASER word1__| Data Block 7 Size
LASER word 2 Data block 7 ID
EB UEH Data g::‘: ADC 7-32ch pon amplif
AV o 2 ' ,
s ADC 7-32ch(7.5)amplif.
‘ PPG pulsed bl.1w. Datablock § Size
No.Blocks Teserved Data block § ID
reserved Beam ADC-12%ch
Block 1 Pur. 1
EB Cont teserved Beam TDC 1-8ch.
(| Block D Lot —
. No.Blocks L‘ i
Block 1 Pur. -
. Cont. [Biock 11D
- . Data
Block n Pur. .
Block n ID
Ev-Marker Detector n
FEH .
. Size
Error Code ID
UEH | uBHsee Data Block 1
Data
e .
COﬂt. No.Blocks .
Block 1 Prr.
Block 1 ID
18

Figure 8: Event Structure

The Contents pointer gives the relative address of a table containing the
number of data blocks, their relative address and their identification marker.

For the Tile Calorimeter there are eight blocks of data organized as jt
follows:

® The first seven ones contain data from each detector ADC module. Each
of them has 64 (12 bits length) words corresponding to the 32 chanpels
amplified and non amplified. For each such a block the first 32 words
represent the nonamplified paths ant the next 32 ones are the amplified.

® The eighth block contains data from the Beam Elements:

- 12 words (10 bits) from the Beam ADC ; only the first three words are
significant, giving the response of the three beam counters.

- 28 words from the TDC.-s ; the first 5 words of each group of 8 giving the
response of the bearn chambers.

The correct data format is given by the routines “buildSob”, “buildEob”,
“buildSor” and “buildEvent”. These call RD-13 library functions (like EVF initEvent,
EVF closeEvent, EVF insertDataBlocks etc.).

The parameters contained by the Fixed Event Header are provided by the
“build” routines.

4.3.4 Interrupt management

The local DAQ system is able to wait for and to treat multiple asynchronous
interrupts generated from VME level or other sources. The mean to synchro-
nise the user code with the activation of an interrupt service routine is a kernel
semaphore. The current version of the EP/LX system allows to wait only on a
single kernel semaphore.

The system functionality is characterised by the following aspects:

® A process may attach one or more interrupt sources, thus defining a pool
of interrupt sources the process declares to be interested in.

* A process may wait on the sum of the interrupt sources.

o Single interrupt sources may be added to or removed from the set of inter-
rupts wanted

A process may specify to each interrupt source a user function to be acti-
vated

Single interrupt source operations are provided like: “set”, “clear”, “test-
and-clear” etc.

19

The RD-34 local aquisition uses RD-13 Multiple Interrupts Libraries:
“rd13liberrs.h”, “MultilntFlags.h”, “VME_trig.h”.

The interrupts initialisation is done inside the “initTileCal” routine. The
interrupts are generated by the occurance of SPS Start-of-Burst and End-of-Burst
signals, of the Trigger signals or of the so called “soft signals” (as Next-Event).
First a function “RD13_flags_initialise()” is called which sets the internal data
structures to an initial state. After this, the interrupt vectors are added to the
pool of interrupts by the mean of the function “RD13 flags_add()”.

Once in state OutBurst (after receiving SOR signal), the system waits for
the interrupts by the mean of the library function “RD13_wait_signal()” inside
the “waitTileCal()” routine.

The interrupt channels are cleared and reenabled at the end of the routines
“act.~" called by the intterrupt signals, by the mean of RD-13 library functions
“TM.clear()” and “TM_ctW()".

When the routine “exitTileCal()” is called in “act_eor()” at the end of the
run, the interrupt channels are cleared and the flags are removed with the function
“RD13_flags_remove()”.Now the interrupt channels used before are inactive.

4.3.5 Memory management

It is designed by RD-13 who provided also the appropriate routines.
The local memory layout has several purposes:

o Management of the shared memory in the VME/VIC system. This allows
creation, mapping, formation, dumping and deletion of a shared memory
segment from a Local DAQ.

o Buffer management - The Local DAQ needs to get the addresses of free
Event Buffers and to put a mark “filled” once it wrote them. The General
DAQ needs to get the addresses of such “filled” buffers and to mark them
as “free” as soon as it read them. Apart from the Event buffers there are 3
more special buffers : SoR, SoB and EoB.

e Common access from both the Local and the General DAQ-s to a number
of fields which contain for example the Run number, the Spill number, the
Event Number etc '

The Local DAQ memory is physically contiguous, VME accessible and it
is divided into five main parts, as in fig. 9:
o A fixed part containing:
- Marker - used to check whether the memory has been formatted or not
- Pointers to other memory areas

- Fields associated to the local memory area

20

Local Fields

Run
Spill
Event Number
Event Tag
SOR Size
EOR Size
SOB Size
EOB Size
Special Buffers
SOR, EOR, SOB, EOB

FIFO-s (FREELIST, EVENTS)

Buffer Descrptors

BUFFERS

Figure 9: The Memory layout

o The buffers for the DAQ events (SOR, EOR, SOB, EOB)
o FIFO-s - used to maintain the ordered list of free and filled events

o Buffer descriptors - which contain information associated to an event copied

into the buffer and the buffer address

o Buffers of fixed size, each containing a physical event

The Local DAQ memory is managed by a set of four operations:

¢ Creation and removal of a segment

-They are performed by the mean of the library functions
“EBL._createSegment()” and “EBL_deleteSegment” in the program
“tiles_creator.c”. When a segment is created, a name is associated to it and
its base address is returned.

e Map of a segment

-Is executed by the library functions “EBL_mapSegment()” in the “init-
TileCal()” routine of the “TCL.DAQ.c” program.

o Formatting of a segment
-Is performed by the “EBL._initEvtBuf()” library function in “tiles_creator.c”

21

e Dump of a segment contents

-It is executed by “dumpev()” in “do_event()” routine of program
“TCL_DAQ.c”.It dumps on standard output the contents of a formatted
memory segment mapped at address “base”.

The buffer management assumes two kind of operations : one to access
the free buffers by the Local DAQ and the other to access the filled buffers by
the Global DAQ.

The Local DAQ performs the following set of operations:

o Prepares the pointers used by the buffer manager calls.The library function
for this operation is “EBL flushEvtBuf()”and it is called into the “initTile-
Cal” routine.

o Returns a pointer to the next free event descriptor by the mean of the
function”EBL_getEvtSlot()” in “do_event()” routine (“TCL.DAQ.c").

o Puts the buffer associated with the descriptor into the EVENTS list and sets
the state of the buffer to “available”. It is executed by “EBL_sendEvent()”
in “do_event”.(“TCL.DAQ.c”).

The Local DAQ reads the value of the single fields by the mean of the
library routines “EBL _getTriggerCounters()” and “EBL_getSpillCounters()”.

4.3.6 Event Format routines and libraries

e SOR Data Block - Contains all the parameters loaded from the Run Control
Parameters Database. It is inserted by a routine “buildSor()” called inside
“act_sor()”.

¢ SOB Data Block - Is an empty block for our Local DAQ. It is inserted by
a routine “buildSob()” called by “do_sob()” inside “act_sob()”.

¢ EOB Data Block - Is an empty block for our Local DAQ. It is inserted by
a routine “buildEob()” called by “do_eob()” inside “act_eob()”.

e Trigger Event Data Block - Contains data associated with the detector
response for physics or calibration events. This block is organized in stan-
dard format by the routine “buildEvent()” called by “do_event()” during
“act_read()”.

The “act~()” routines are contained by the “TCL.Act.c” file; “build-()”
routines are in the “TCL_Build.c” file; “do—()” routines are contained by the
“TCL_DAQ.c” file.

For each such data block a set of library rotines are called:

22

¢ EVF.nitEvent() - It is an RD_13 library function which initialjses the Fixed

Event Header(FEH), allocates the User Event Header (UEH) and allocates
the event contents space for all (sub-)detectors. This space will contain for
each (sub-)detector the pointer to the relative (sub-)block structure and
the identifier. It is called once per event inside “build-()” routine.

EVF insertDataBlocks() - It is a library function which requests space for
a certain (sub-)detector data block and allocates sub-block space for data
read from the physical memory. It also stores the starting point address of
the data sub-block so that the structuring process will fill raw data from
this starting point. It is called inside "build~()” routine.

EVF closeEvent() - It is a library function called at the end of the event
formating process (always inside “build—()”routines) to close the structure
and evaluate the end point address.

4.3.7 CAMAC routines

‘The file “TCL_.CAMAC.c” is a library of routines designed to provide a user

interface for the CAMAC modules used by the TileCal readout. To access the
CAMAC level from the VME level, they use the RD_13 library “camaclib.h”.

init_CAMAC - Performs the CAMAC initialisation during “act_sor”.
clear_ CAMAC - Clears the CAMAC crates 1 and 2 during “act_eor”.
ccrls() - Clears the CAMAC memory page at VME level.

write_outr(doutr) - Writes the Trigger Mask value “doutr” on the Output
Register during “act_sor”.

cam._trg() - Reads the trigger type from the Event Pattern Unit. It is called
in the routine “do_event()” before inserting the specific data block.

wait_LAM(ncaen) - Checks the value of the LAM signal on “ncaen” detector
ADC modules. (The LAM signal marks the end of conversion.) It is called
in “buildEvent()” before inserting the specific data blocks

read_caen(k, subdet_p) - Is the routine which reads data from the detector
ADC number “k” and writes them into the specific data block from the

starting point “subdet.p”. It is called in “buildEvent()” during writing the
data block

clear_caen(k) - Is a routine which clears the detector ADC module no.
“k”after reading. It is called immediately after “read_caen()”.

23

o read lecroy(subdet_p) - Is a routine which reads data from the beam coun-
ters ADC and writes them into the specific data block from the starting
point “subdet_p”. It is called in “buildEvent()” during writing the data
block

o clear lecroy() - Is a routine which clears the beam counters ADC module
after reading. It is called immediately after “read_lecroy()”.

o read_tdc(k, subdet_p) - Is a routine which reads data from the beam cham-
ber TDC no.”k” and writes them into the specific data block from the
starting point “subdet_p”. It is called in “buildEvent()” during writing the
data block

o clear_tdc(k) - Is a routine which clears the beam chambers TDC module
no. "k” after reading. It is called immediately after “read_tdc()”.

o read laspatt(r) - Is a routine which reads data from the LASER Pattern
Unit no.”’r”. It is called in “buildEvent()” before writing the data block

o clear laspatt(r) - Is a routine which clears the LASER Pattern Unit module
no.”r” after reading. It is called immediately after “read_laspatt()”.

4.3.8 PPG Calibration routines

e init_ppg(loc) - Sets the PPG hardware to a defined state. “loc” is the
CAMAC Station No. for the first PPG module. It is performed during
“act_sor()”.

e ppg-step(step) - Sets the next PPG voltage step to the value “step”. It is
performed in “act_sob()” where it loads the value of the first step for the
first burst of the run, or keeps the last value from the previous burst. It is
also called within “act_ppg()” where it loads the new value of “step” which
is incremented after reaching the maximal number of PPG channels.

e ppg-pulse(chann, ppg.mod, loc) - Sends the command to the PPG module
No. “ppg-mod”, whose CAMAC Station No. is “loc + ppg-mod”, for
sending a pulse via the channel number “chann”. After each call of this
routine, “chann” is incremented.

4.3.9 Control routines

At the end of the TCL_DAQ.c file there is a Control Interface which con-
tains a routine for treating the messages coming from the Run Control system
(“controlHandler()”) and a routine which opens the link and declares the Local
DAQ to the Run Control (“controlSetup()”).(For details concerning the library
functions used by these routines, please see RD-13 notes.)

24

4.3.10 Database Link routines
The Full DAQ System uses 3 QUID databases:

o A Hardware Database - which declares to the system all the hardware
devices involved in the aquisition process

¢ A Software Database - which implements descriptions of the DAQ configu-
ration in terms of DAQ modules. It declares to the system all the software
processes which have to be started at the beginning of the run for the Gen-
eral Aquisition and for the Local Aquisitions and the machines on which
they run

e A Run Control Parameters Database - which contains all the parameters
whose values might need to be changed for a particular run for each sub-
detector, parameters as Detector ID-s, Memory Size or Event Size which
have to be signaled to the General DAQ and some parameters of general
interest(as the Run Number etc.) whose values are supposed to change
from a run to another

The Local Aquisitions deal only with the Run Control Parameters Database.
For our detector in particular all the parameters from the Run Control Database
are read at the beginning of the run and wrote in the SoR Data Block as an ar-
ray (“rcdb_params[j]”) by the mean of the routine “Rcdb_array()”. Two files are
included for this purpose: “Read Rcdb.h” and “Rcdb_array.h”. The parameters
of local interest for TILECAL are read from the Run Control Database by the
mean of the routine “map.CAMAC()” (file TCL_.Cam_Map.c).

5 The interactive environement - Run Control
Facilities

The components of the full Aquisition System are implemented as Finite
State Automata (as it was allready mentioned). They are controlled by a Run-
Control program which interprets and sends the commands to these components.
The Run-Control system was designed and implemented as an interactive envi-
ronement by the RD-13 group, using ISIS which runs on the UNIX worksations.

The user can operate by the mean of a set of run control windows which
appear when the Run Control environement is called.Those are:

e rcl Command window - which displays messages from the Run Control
regarding the processes running at that moment

e rcl Processes window - which displays the list of the processes running. Here
the user will select the application needed - commonly the run-control one;

25

a specific window will appear showing the current state of the application
and the menu of permitted commands which can be executed within that
state.

o DAQ Configuration Run Control window - appears when select the run-
control application from rcl Proccesses window.

The possible states of the system are:

e Initial - from which one can select the Hardware and the Software Config-
uration Databases or can setup(going to state Setup)

o Setup - from which one can configure (going forward to state Configured)
or reset(comming back to Initial)

e Configured - where one can start the run (going to state Running) or can
abort (comming back to Setup)

e Running - from which the run can be stopped (comming back to state
Configured) or paused (going to state Paused)

e Paused - from which one can continue the run (going to state Running) or
stop it (going to Configured)

The commands are sent by sellecting one from the menu and sending it by
clicking on the SEND button in the window.

From state Configured the user should call the dfe View window which
displays all the aquisition processes running (the Readout, the Sampler, the
Recorder, the Local Aquisition processes (for TILECAL it is TILES_DAQ) and
the monitoring applications.

When the user starts the run (sending the command “run” from state
Configured, first will pop up the Run Control Parameters window from which
the user can operate on the run parameters from the Run Control Parameters
Database. General interest parameters can be set from the main window; the ones
specific for each detector can be changed clicking on “Show Detector Parameters”
and here selecting the appropriate field. One can also modify the local readout
configuration enabling or disabling readout modules in “Show Detector Readout”.

The user has also the possibility to call different monitoring applications
as the Event Dump (which is very useful when one wants to check out the struc-
ture of the data blocks) or the Status Display (which shows useful information
concerning the run as Run Number, Spill Number, Number of events FIFO rates,
Buffer Occupancy etc).

For a detail description of the Run Control System please refer to RD-13
Internal Notes No.3, 44, 60 and 69).

26

6 Run Control Parameters for TILECAL

To be able to start a run it is essential to set correctly the run control
parameters for the detector. As it was allready mentioned in the previous section,
this can be done from the Run Control Parameters window (fig. 10).

foren g s e % s W#Wﬁﬁ#h%v R A R R T TR A R S R AT R e e Ly T
g G TR TR TS T = pre T T e i =

1 Fite Detectors H.up DataBase file: /rd13 databasoslruns/RUN _Parameters.dat

Run
Number p4807

Level 2 Run
. y:nx‘s Trigger $ enable Mode 4 Calibration
. ¢ disable © Triggers
{Record ¢ gnanie ROCOTdiNG [geyimuncddd =] fdevirmuncodan
Device
_ © disable Detector Readout
1 Physical Record TLES TRD
3 Size (words) 31!!) - -

[JLARGON [IMSGC

oSt Toth 00 Lot A b R sl AR e N T I o 1o R M e i o 5 ST AT e D D A

Figure 10: Run Control Parameters window

In the main window the operator should pay attention to:
¢ Detector Readout - should have TILES enabled (the button pressed in)

o The Run Number - it is set automatically; one should set it by hand only
at the the beginning of a new Test Beam period (for a correct initialisation)

o The Physical Record Size should be set just once for a given configuration

and it should be at least 4500 for TILES only (assuming that TILECAL
tests only 5 detector modules

e The Max Events Number should be set to the appropriate value for the
specific run

e The Record Mode should be Enable if one wants to store data on tape and
Disable in any other case

o The Record Device should be Correctly chosen (actually /dev/rmt/hc0d4n)

o The Run Mode - should be Triggers when the run is for Physiscs data and
Calibration in any other case

27

__.lPPG Callbratlonl

|0nline Monitoring
{Memory-Size|
Run Conditions]

[Histograms for Beam Elements]

2 [Histograms for Laser Events]

f‘ Histograms tor PPG Events|

____[Histograms for Pedestal Events)

e e

{Histograms for Physics Events|
g l'___[ﬁﬁe LTX Module]

Figure 11: Detector Parameters Tree window

28

IDismiss

PPG LTX Modulel

Output Register

‘Event Pattem Unit

Output Register Channels

Event PU Channels[

TILES ADC #1

TILES ADC #2

TILES ADC #3

TILES ADC #4

TILES ADC #5

TILES ADC #6

TILES ADC #7

TILES Beam Elements

Beam ADC

Beam TDC #1|

e [TOW]

L___[BeamiDC #2]

|« Sn——

Figure 12: Detector Parameters Tree window (cont.)

29

For setting the Run Parameters which concern only TILECAL detector
one should click on Detectors and select Show Detector Parameters.The Detector
Parameter Tree window will pop up. Here it is shown the tree structure of
the whole EXPERIMENT which includes TILES as a branch. The user should
operate only on the leaves of the TILES branch. The fields commonly used during
the runs are Run Conditions, Online Monitoring and Histograms ** fields.

In Run Conditions the operator can choose a particular Trigger Mask for
the run. The Physics Trigger is allways enabled !

o When performing a Physics run, the Run Mode should have been set to
Triggers in the main window and one can add auxiliary triggers as Pedestal
Inside Burst, Pedestal Outside Burst, LASER Inside Burst or LASER Out-
side Burst.

e Pedestal Special Run, LASER Special Run and PPG Calibration Run are
considered as calibrations. For these ones Run Mode should be Calibration

In Online Monitoring one can select the nature of the events needed to be
sampled by the Online Monitor and some options (as applying calibrations).

In the Histograms ** fields one can set the parameters of the histograms
issued by the Online Monitor for different types of events.

The other fields are not supposed to be changed but only when a new
configuration has to be set up !

Memory Size contains the Memory Segment size and it is (for the present
configuration) 4194304.

Event size should be (for the present configuration) 4500.

The following fields:

o LASER PU #1

e LASER PU #2

e LASER PU #3

e PPG LTX Module
e Output Register

o Event Pattern Unit
¢ Beam ADC

e Beam TDC#1

o Beam TDC#2

30

contain information about the CAMAC Crate and Station numbers of the

CAMAC modules, their number of channels and the status(Enable-Disable).

The fields TILES ADC #1 - #7 contain the CAMAC Crate and Station
numbers of the detector ADC CAMAC modules and their number of channels.

The Output Register Channels field and the Event Pattern Unit Channels
field give the correspondance between the bit number of the module and the
Trigger Mask and the Trigger Path respectively.

The PPG Calibration field contains the values of the parameters for the
PPG Calibration procedure:

The Starting HV step - should not be less than 2

The number of total HV steps - up to 14 when starting from 2

The number of PPG Modules - actually 3

The first PPG module CAMAQC Station number in the remote controlled
CAMAC crate - actually 18

Using different combinations in the values of the number of PPG Modules
and the first PPG module CAMAC Station number one can access each PPG
module independently.

If one clicks in the Run Control Parameters window on Detectors and
chooses Show Detector Readout, a new window (Detector Readout Tree) will pop
up (fig. 13). Here one can enable or disable the TILES detector ADC modules or
the Beam Elements block.One should notice that these correspond to the blocks
of data in the Event Structure. Disabling one of these modules will not take out
a data block from the structure but this one will be filled with zeros !

31

-— [l TLES ADC 1
— I TLES ADC #2
Ll TLESADC &
— B TWES ADC MM
—l TWLES ADC #5
-l TRLES ADC #8
— B TRLES ADC #7
— B LA}
L— I TILES Bearn Elements
1B LAH
——] TRD SECTOR 1
B LAY
0O TRO —}—] TRD SECTOR 2
: — W Laf
E F » ——— .-

Figure 13: Detector Readout Tree window

7 Parameters and performances

The Local DAQ system is fully secure against spurious signals or fake trig-
gers due to a fully protected Trigger and Busy Logic and Interrupt Control.
The accuracy of data is given by the detector ADC-s performances.So:

e All signal paths are adapted on 50 ohms (NIM standard).
o The full scale input charge is 112.5pC (amplified) and 900pC (non-amplified)

e The conversion gain is 4counts/pC (non-amplified) and 30counts/pC (am-
plified)

o The integral non linearity is +/- 2.5 counts (non-amplified) and +/- 6.5
counts (amplified)

e The integration time (gate width) was choose to be 300ns

The maximum triggger rate accepted by the full system (meaning the
General Aquisition and our Local Aquisition alone) was 820 triggers for the 4.5

32

seconds of the extended burst, which is about 520 for the 2.5 sec. when particles
arrive and 300 for the two extensions. The main limitation in speed is due to the
latency of the CAMAC readout. The average dead time is 4.5 msec and most of
it is spent for reading the 64*7 words of the detector ADC-s.

8 Contributions and references

I am indebted to Dr. Giuseppe Mornacchi, spokesperson of the RD-13
collaboration, for allowing us to present here some information about the General
DAQ. Special thanks also for him and his colleagues for the support they provided
to us in the design and integration of our Local DAQ.

33

