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Abstract

The pion energy resolution obtained in the frame of the standard approach
and the neural net is presented. The analysis is performed for the full set
of data without any selection of the hadronic showers with respect to the
deposited energy profile. For the pion cluster selection a sigma and readout
dependent noise cut has been applied.

1 Data Processing

The September’96 testbeam data have been analysed for the pion energies from 40
to 200 GeV. The corresponding run numbers are 6119, 6118, 6117, 6116, 6114, 6150
and 6176, which contain data with the same coordinates of the beam entry point at
pad 90. To account for the hardware problems the correspondent correction factors
were applied to the ADC counts.

1.1 Selection of cells

Only the cells near the beam entry point have been taken into the consideration. To
select the proper configuration the width of cell ADC distribution of “real” events
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were compared to the width of corresponding pedestals. Only cells with wide ADC
distributions (ratio of the widths has to be more than 1.15+1.20) were selected (see
Fig. 1).

The same configuration of cells has been used for all energies mentioned. Analysis
of Monte Carlo simulated data [1] indicates that about 96% of the shower “visible”
energy are deposited within these cells.
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Figure 1: Selected configuration of the cells (ADC numbers are noticed). Dashed
line shows the beam direction.

In each event the calorimeter information from the cell was taken for the analysis
only if the special noise cut described below was satisfied.

To select the proper noise cut we have compared the experimental and the Monte
Carlo data. As the value of the deposited energy is not the same for various longi-
tudinal segments, the noise cut may be also different. We have found that the cut
of (3/1)c? is suitable for the segments 2 and 3, which contain the main part of the
hadronic showers, and the cut of (2/1)o is more effective for the first one and for
the last two segments as it allows to collect more deposited energy.

An agreement between the experimental and Monte Carlo simulated data has
been observed for this readout segment dependent cut. In Fig. 2 the “linearity” at
ADC level is presented. The shown is normalized to 40 GeV the ratio of ADC counts
summed over the cells configuration to the beam energy E: (<ADC(E)>/E)-(40/<
ADC(40)>). Many combinations of the noise cut were considered and the following
are presented: 3/1c, (3,2)/10 cut (3o for the first three readout segments and 20
for two back segments), (2,3,2)/1o (the same as for (3,2)/1 but 20 for the first
segment) - all for the cells of selected configuration, and 4/1c applied to all cells of
the module.

'The cell is left for the analysis if the ADC count is higher than the pedestal by 30 (o is the
width of pedestal distribution). If the ADC excess is less than 30 but higher than 1o, the cell
could be taken only if there is a neighboring cell with ADC count greater than 3o.
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Figure 2: ADC “linearity” (normalized to unit at 40 GeV of initial energy) for
different noise cut in the experiment and Monte Carlo (M.C.). In addition to the
selected configuration (indicated by ‘C’) the full set of calorimeter module cells was
also considered (indicated by ‘F’). In this case the noise cuts were applied for all
cells including those outside the selected configuration.

The “combined” (2,3,2)/10 noise cut has been used for our analysis. We have to
note that it was not possible to get a reasonable statistics based on the application
of the noise cut for 20 GeV pion data from the September’96 run.

1.2 Rejections of electrons

The “pion” events were selected by the standard trigger routine. To reject more
electrons from the pion beam an additional cut was applied. The first moment of
the shower longitudinal development (center of gravity) was calculated as

5 N
Sl - Z.] ) Z ‘_1(1"*J)
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where N; is number of cells in j-segment with the ADC signal greater then 1o and
A are ADC values with pedestals subtracted. In Fig. 3 an example is presented for
40 and 100 GeV pion and electron data.

For the pion event selection the cut of S| = 1.2 was introduced. The events with
the center of gravity greater then 1.2 were considered as pion events. About 10-12
% of raw events were rejected at low pion energy due to Sy cut. At the beam energy
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Figure 3: First moment distribution for the shower longitudinal profile for electron
and pion runs (the trigger cuts are applied). The electron run numbers are 6103 and
6106.

of 100 GeV and higher less then 3 % of data were rejected. Due to this cut some
pion showers absorbed in the first segments were not considered in the analysis.

1.3 Calibration procedure

The calibration coefficients ¢; (j is the segment number, j=1,5) were determined
simultaneously for the full set of pion energies and events by minimizing the sum:
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where Ejeqs = Z?=1 cj- Zki1 A(k, 7). For five longitudinal compartments the fol-
lowing values of the calibration coefficients were obtained :

e = 0.096, ¢ = 0.092, ¢3 = 0.139, cq = 0.122, ¢5 = 0.194.

In the analysis we have used these five coefficients for all energies.

2 Energy resolution

The deposited energy distributions obtained by means of these five calibration coef-
ficients were fitted by the Gaussian. The values of the calculated energy and energy



resolution (o;,;:) are presented in Table 1.

Table 1: Results of the Gaussian fit for different pion energies. The uncertainty of
the calculated energies and o is of the order of 1%. The energy resolution corrected
for the noise is presented as Ocorr-

Nominal energy, GeV 40 60 80 100 | 120 150 200

Calculated Energy, GeV | 40.3 | 59.2 | 78.2 | 97.8 | 118.1 | 149.3 | 199.4
Oinit, GeV 82 | 94 | 109 | 12.2 | 144 | 17.0 | 20.5
Ocorr, GEV 72 | 85 | 101 {116 | 13.5 | 16.2 | 199

Number of events 4216 | 4697 | 5711 | 6407 | 5971 | 8692 | 17774

2.1 Noise term calculations

The expected noise has been calculated from the random trigger events. When cell
configuration for the “real” event is determined the same set of cells has been used for
ADC summing from one of the random trigger event. The widths of corresponding
distributions are presented in Fig. 4 for different nominal energies.
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Figure 4: The width of the noise distributions for different initial pion energies. As
higher beam energy as more cells were satisfied the noise cut inside the selected cells
configuration. Dashed line is the result of linear fit.

It is seen that noise is growing with energy. These values were subtracted
quadratically from the correspondent widths of energy distribution and the results
are presented in Table 1 as oo



2.2 Parameters of the energy resolution

After the noise subtraction the energy resolution of the calorimeter prototype was
fitted using two parameters
o(E) a
— L = —— D b
E VE
with the sampling and constant terms
a=(998+22)%and b= (7.0+0.2)%

Result of the fit is presented in Fig. 5 by solid line.
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Figure 5: Energy resolution of the calorimeter module for the standard (solid line)
and neural net (dashed line) approaches.

3 Neural Net Approach for the Data Analysis

The aim of the approach was to develop the neural net which may improve the energy
resolution. The standard calibration of the calorimeter is the linear procedure which
gives the energy value as a product of the calibration coefficients and the energy
fractions deposited in different longitudinal segments. Hopefully the influence of
the dead preamplifiers, cracks, energy leakages, etc., could be taken into account
more accurately by the nonlinear fitting procedure.



The neural net algorithm was applied to the real data which has satisfied the
above described criteria.

The powerful tool of the neural nets is a straightforward method of the primary
particle energy calculation which provide the functional mapping between the en-
ergies measured in five longitudinal segments and the feature (initial energy). This
approach would reduce the problem to a "black box” fitting procedure.

3.1 The neural net training algorithm

Describing of the training algorithm method we follow the JETNET 2.0 [2].

The basic ingredients of neural network are neurons, n;, connectively weights,
wq; and the nonlinear neuron transfer function g(z), which is often taken as g(z) =
0.5-[1+tanh(z)] (where z is the signal exiting the neuron). The weights w;; are the
parameters which one may fit by feeding the input of the net with the experimental
data. For the fitting tasks the neurons have been often organized in a feed-forward
layered architecture. The general layout of the net is presented below:

Wit

Neural net general layoutl.

The bottom input layer is feeding with the measured variables z; and the out-
put features o; are taking from the top layer. The network signals are passing
layer by layer from the bottom to the top using the local updating rule U; =
g[(1/T) X; Ujwy; + 6;], where U; are neurons feeding to the single neuron U; with
the weights w;;, T is the slope of the transfer function and ; is threshold value.

The task of the neurons in the hidden layer(s) is to create an internal representa-
tion of the observed data. The network training for pattern p results in changing the
weights w so, that for a given set of input parameters 2} the output value of becomes
close to the target value t?. For this purposes the functional F = (1/2) 3, ¥,(0;—1;)?
has to be minimized.



More then one hidden layer for fitting and optimization tasks is recommended {3].
The Manhattan updating procedure is convenient for these networks [2]: Aw;; =
—1 - sign[0F /Bw;;]. In this case the learning is bounded and it is easier to find an
appropriate value for 7, which should decrease with increasing number of training.

The result, of the training are the values of the connectivity weights which provide
the direct functional mapping between ADC counts and beam energy values. These
weights have been used later on for the experimental data analysis (the same set for
all energies). Usually the uniform spectrum of initial data is used for the training.
To overcome the difficulty caused by the irregular beam energy scale, the ADC
counts as well as the beam energy were spread by the same factor randomly around
its actual value.

As far as the beam energies were distributed irregularly on the beam energy
scale, a sub-set of data events for various energies has been used for the net training
(see Table 2). Also the smaller number of events for boundary energies (at 40 GeV
and 200 GeV) have been used due to some particularity of the neural net.

Table 2: Number of evenis for the net training.

Beam energy, GeV | 40 60 80 100 | 120 | 150 | 200

Number of events | 3000 | 4000 | 5000 | 5000 | 5700 | 6000 | 3000

Big number of training events (~30 % of the total statistics) prevents a custom
of neural net to training set (it takes about 0.0001 second per event on Sun Spark
10 workstation). For the training purposes the energy was reconstructed by the
standard procedure described above. Ouly events which have the energy close to
the nominal energy (+20) were considered.

For our analysis we have used the net with different number of neurons in each
of 4 layers (5-6-2-1 architecture with 5 inputs and 1 output).

Five inputs were used for the net: z—, 3 = 4;/2500, ;=45 = A;/1500, where A4
is the sum of ADC counts for readout segment /. It is known that the neural net
is operating effectively with the value from (0 - 1) interval. That is why the ADC
sums were divided by the large numbers.

The target value in our case was the value of nominal energy. After the train-
ing procedure the neural network was applied for the total sample of data events
including those used for the training.

3.2 Results of the neural net approach

The energy distributions obtained by means of the neural network were fitted by
the Gaussian. The fit results for different energies are presented in Table 3.



Table 3: Characteristics of the deposited energy distributions after the neural net
procedure. The statistical uncertainties are close to those in Tuble 1.

Nominal energy, GeV 40 60 80 | 100 { 120 150 200

Calculated energy, GeV | 40.5 | 60.1 | 79.6 | 97.9 | 116.3 | 144.7 | 195.9
Tinit, GeV 79 1 94|99 |107] 12.3 | 144 | 19.1

Ocorr, GEV 6.8 | 8591 | 99| 11.2 | 136 | 184

3.3 Energy resolution obtained with neural net

The fit of the prototype module energy resolution after the noise corrections gave
the following values for the sampling and constant terms:

a=(89.5+2.1)%, b= (6.3%0.2)%.

The results of the fit is presented in Fig. 5 by dashed line. The quality of the fit is
not so good to insist on the advantages of the neural net method.

Probably, the noise subtraction procedure has to be implemented to the neural
net scheme. Further basis has to be provided by treatment of Monte Carlo and new
experimental data.
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